ENSONIQ

semiconductor group

263 Great Valley Pkwy., Malvern, Pa 19355

5503 DIGITAL OSCILLATOR CHIP

GENERAL DESCRIPTION

The 5503 digital oscillator chip was designed to provide high quality electronic music synthesis capabilities for any music related applications. These applications range from professional music products (synthesizer's etc.) to arcade or home video games. The 5503 chip contains 32 digital oscillators, various control registers and an R/D converter.

FESTERS.

- Dweetly addresses 64k bytes of memory
- Beak select output expands addressing to 128k
 bytes of memory
- Bllows waveform output to be assigned to different channels (voices)
- Generates clock signals compatible with the Motorola 6809e microprocessor (E & Q clock inputs)
- Generates the row and column address strobes used by dynamic memories (RAS & CAS)
- Rutomatically refreshes 64k x 1 compatible dynamic memories
 - On chip 8 bit linear Analog to digital converter
 - Compatible with 6800/6500 family microprocessors

5503	S PIN DES	CRIP	TION
CLK [1	40	BS
RAS [2	39	D N99
CRS (3	38	D RO
Q [4	37	181
E [5	36] R2
CSTRB [6	35] A3
CRO [7	34	∃ 84
CR1 [8	33] A2
CR2 [9	32] R6
CA3 [10	31	7 R
UUREF [11	30	D 88/00
LFDBK [12	29	A9/D1
VOL- [13	28	A10/D2
UUREF [14	27] A11/D3
SIG+ [15	26] A12/D4
SIG-	16	25] A13/D5
A/D [17	24]. 814/06
	18 3	23] A15/07
Uss [19	22) <u>WE</u>
RES C	20	21	

r.d. P.

F

1

Reference and the second second

..

UOL Ш

· Section as

1. Sucher Wil

The P.

5503 PIN DESCRIPTION

PIN NUMBER	SIGNAL NAME	FUNCTION	
	CLK	CLOCK INPUT - Master clock for the 5503 chip. Must be 50% duty cycle. It is internally divided by 8 to get the basic cycle time.	4.
2	RAS	ROW ADDRESS STROBE OUTPUT - Strobe for accessing dynamic memory.	
3	CAS	COLUMN ADDRESS STROBE OUTPUT - Strobe for accessing dynamic memory.	
4	Q	Q CLOCK OUTPUT - Compatible with the M6809E microprocessor Q clock. This clock leads the E clock (pin 5) by 1/4 cycle and has a 50% duty cycle.	
5	E	E CLOCK OUTPUT - Compatible with the M6809E microprocessor E clock. This clock also has a 50% duty cycle.	
6	CSTRB	CHANNEL STROBE OUTPUT - Low active signal indicates when the channel assign outputs (CRO - CR3) are valid.	
7 - 10	CRO - CR3	CHANNEL ASSIGN OUTPUTS - Allows the outputs of the oscillators (SIG+ & SIG-) to be directed to different channels.	
11	UUREF	VOLUME VOLTAGE REFERENCE INPUT - Reference voltage for the internal volume D/A converter. Must be -5v + or - 5%.	
12	VOLFDBK	VOLUME FEEDBACK INPUT - This signal is the output of the VOL- output after it has been converted to a voltage	

5503 PIN DESCRIPTION (CONT.)

and Parts of

PIN Number	SIGNAL NAME	FUNCTION	
13	NOT-	VOLUME OUTPUT - This signal is a current output which should be converted to a voltage, the output of which is fed into the WUREF input (pin 14). This voltage will be used as the reference voltage for the internal D/A converter for the SIG+ AND SIG- outputs. It must also be fed back into the volfdbk input (pin 12).	
14 15 - 16	WUREF SIG+ & SIG-	WAVEFORM VOLTAGE REFERENCE INPUT - This input will provide the reference voltage for the internal D/A converter for the SIG+ AND SIG- outputs (pins 15 & 16). WAVEFORM SIGNAL + AND - OUTPUTS - These two outputs are differential currents representing the final waveform output value (sample).	
17	A/D	ANALOG/DIGITAL CONVERTER INPUT – This is the input for the analog to digital converter on the 5503 chip. The conversion time is 30 usec and the input range is 0v to 2.5v. The linearity error is + or – 1/2 LSB.	
18	ĪRQ	INTERRUPT REQUEST OUTPUT - This low active signal indicates that one or more oscillators have completed their cycle. This output can be disabled through the individual oscillators control registers. It is an open collector output.	

5503 PIN DESCRIPTION (CONT.)

PIN NUMBER	SIGNAL NAME	FUNCTION
19	Uss	VOLTAGE INPUT - This is the ground reference for the 5503 chip.
20	RES	RESET INPUT - This pin when low will internally reset the 5503's registers.
21	<u>CS</u>	CHIP SELECT INPUT - This pin when low will enable the 5503 to communicate with a microprocessor or other controlling device.
22	WE	WRITE ENABLE INPUT - This pin is the read/write signal for the 5503. A high signal on this pin initiates a read cycle and a low signal on this pin initiates a write cycle.
23 - 30	815/D7 - 88/D0	ADDRESS/DATA LINES INPUT/OUTPUT - These pins are address lines A8 - A15 and data lines D0 - D7 when the 5503 is accessing waveform data (E clock output is low) and they are data lines D0 - D7 when the 5503 is being accessed by an external controlling device (E clock output is high).
31 - 38	RO - A7	ADDRESS LINES INPUT/OUTPUT - These pins are address lines RO - R7 out when the 5503 is accessing waveform data and are address lines RO - R7 in when the 5503 is being accessed by an external controlling device.
39	Ngq	VOLTAGE INPUT - This is the positive power supply pin - +5v + or - 5%.
40	BS	BANK SELECT OUTPUT - This output pin is essentially address line A16.

ি সিতাৰ কৰিব

5

5503 ELECTRICAL SPECIFICATION

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias	–10 to 80 degrees C
Storage Temperature	-65 to 150 degrees C
Voltage on any Pin	-0.3v to +7 v

D.C. CHARACTERISTICS

Ta = 0 to 50 degrees C, Vdd = 5v +/- 5%

CHARACTERISTIC	MIN.	MAX.	TYP.	UNITS
R/W, CS, A0 - A7,			.÷	
A8/ D0 - A15/D7, RES				
Vil	0.0	0.4	-	Volts
Vih	2.4	5.0	-	Volts
	•.			
CSTRB, CAO - CA3,		n dir dir	1	
VSTRB, WSTRB, BS			1997 - 1997 1997 - 1997 1997 - 1997 - 1997	
A0 - A7, A8/D0 - A15/D7		0.8		Valta
Vol	2.4	0.0		Volts Volts
Voh	2.4	2.0		mA
lol – Sink Current, Vol = 0.4 loh – Source Current, Voh = 2.4				
1011 - 5001 Current, volt = 2.4	-	1100		uA
CLOCK INPUT (CLK)				
Frequency	_	16	8	Mhz
Vil	0.0	0.4	-	Volts
Vih	4.5	-	_	Volts
CLOCK OUTPUTS (RAS, CAS, E Q)				
Frequency (RAS, CAS)	-	-	2	Mhz
Frequency (E,Q)	-,	-	1	Mhz
Vol	-	0.8	-	Volts
Voh	2.4	-		Volts
lol – Sink Current, Vol = 0.4	-	2.0	-	mA
loh – Source Current, Voh = 2.4	-	100	-	uA

DIGITAL OSCILLATOR CHIP SPECIFICATION

There are 32 oscillators in the chip. Each oscillator is controlled by a set of seven registers:

- 1. Frequency Low
- 2. Frequency High
- 3. Volume
- 4. Data Sample
- 5. Address Pointer
- 6. Control Register
- 7. Resolution/Table Size Registers

In addition to these 224 oscillator control registers, there are three other registers:

- 1. Oscillator IRQ
- 2. Oscillator Enable
- 3. Analog to Digital Converter

The seven oscillator control registers are grouped as a set of 32 registers. In other words, all 32 frequency low control registers are grouped together and addresses consecutively, e.g., frequency low for oscillator D is address at location \$00, DSC 1 frequency low is at \$01. Frequency High Control for DSC is at \$20, which is 32 locations above frequency low control. The register map for each of the seven oscillator control groups is as follows:

Address	Register Function Description
00-1F	
	Frequency low for OSCO thru OSC31
20-3F	Frequency high for OSCO thru OSC31
'40-5F	Volume - ·
60-7F	Waveform Data Sample
80-9F	Address Pointer
A0-BF	Control Register
CO-DF	Resolution/Table Size
EO	Oscillator Interrupt Register
E1	Oscillator Enable Register
E2	Analog to Digital COnverter
The second se	

Note that the oscillators are also grouped into 8 "voices". Each voice consists of four oscillators, e.g., OSCO, OSC1, OSC2 and OSC3 are referred to as Voice 0; OSC4, OSC5, OSC6, and Osc7 are Voice 1.

CONTROL REGISTER (AO-BF)

The following chart indicates the decomposition of the control register into its bit definitions:

D7	D6	D5	D4	D3	D2	DI	DO
CA3	CA2	CA1	CA0	IE	M2	M1	H

For each OSC the control register is used to control three functions.

1. Channel Assignment (CA3-CA0)

Bits 7 thru 4 of the control register are defined as CA3 thru CAO. These four bits are used to control the final voice multiplexor. Sixteen different channel assignments are possible; only eight are normally used. Channel assignment is usually synonomous with voice assignment.

2. Interrupt Assignment (IE)

Bit 3 of the control register is used to stop an interrupt from being possed to the Oscillaor Interrupr Register (OIR). If IE is set, then the oscillator will cause an interrupt to be passed to the OIR when it completes a cycle, which n turn will interrupt the processor. If IE is clear, then the interrupt will be put into the oscillator interrupt table, but not passed to the OIR. When more than one oscillator interrupt occurs, the interrupt stack will retain the status and pass interrupts to the OIR as they are serviced by the processor. If the interrupt has been stored into the interrupt table while IE = 0, when IE is changed to a 1 the IRQ will be passed to the OIR.

Oscillator Mode (M2, M1, H)

Bits 2,1, 0 control the functional mode of each oscillator.

The following chart describes these modes:

M2 M1

0

Oscillator Mode

Free run

Address one cycle, reset OSC accumulator to zero, and set halt bit.

Sync OSC2 to OSC1 or emplitude modulate OSC1 by OSC0.

If set for an Even voice then the Odd voice will sync to the Even voice.

It will reset the accumulators for both the Even and Odd voices to zero and the cycle will start again.

If set for an Odd voice then the Odd voice envelopes the next Even voice. Note: voice O has no modulation source.

Address one cycle, reset OSC accumulator to zero, and set halt bit then reset halt bit of associated oscillator (togle mode)

Whenever the halt bit is set by DOC or the processor and M1 is set, the OSC will be reset to zero.

M1 * H = 1 causes oscillator to be reset

Sync will cause OSC2 to sync to OSC1 in each voice group. (OSC6 syncs to OSC5 for voice 1 etc.)

Amplitude mosulation will cause OSCO to be used as an envelope for OSC1 in each voice group. (OSC4 modulates OSC5 in voice 3 etc.) Volume for OSCO and OSC1 is ignored.

DATA SAMPLE (60-7F)

This set of registers is used to indicate the current 6-bit value of the waveform sample. This value will be fed to the DOC for that particularoscillator. This function is useful for LFO or modulation applications where the DOC oscillators are used to fetch sine wave samples that can be read by the processor for additional processing. These registers are read only.

VOLUME (40-5F)

This set of registers is used to control the volume level of the waveform data. The 9-bit volume level is multiplied by the 6-bit waveform value to form the final analog output for each oscillator.

FREQUENCY CONTROL HIGH AND LOW (00-3F)

This group of registers is the 16-bit value which defines in part the octual frequency of the oscillator. These tworegisters are concatonated and become the incremental value for the linear accumulating oscillators. The oscillator block diagram is indicated below:

11

Arte and the same

...

ADDRESS POINTER (80-9F)

This is an 8-bit register which defines the strarting base address of the waveform table. The number of address pointer bits actually used in the final address depends on the size of the waveform table specified. The following chart indicates the use of the pointer bits:

WAVEFORM TABLE SIZE A15 A14 A13 A12 A11 A10 A9 A8

256	P7	P6	P5	P4	P3	P2	P1	P0
512	P7	P6	P5	P4	P3	P2	P1	-
1024	P7	P6	P5	P4	P3	P2	-	
2048	P 7	P6	P5	P4	P3	-		
4096	P7	P6	P5	P4	-			
8192	* P7	P6	P5	-				
16384	P7	P6	-					
32768	P7							

WAVEFORM TABLE SIZE/RESOLUTION/BANK SELECT (CO-DF)

This rgister controls three oscillator functions. The following chart indicates the bit positions within the register to control the three functions.

D7	D6	D5	D4	D3	D2	DI	DO
N.U.	B.S.	T2	T1	ТО	R2	R1	RO

1. Bank Select Bit (B.S. = bit 6) This hit is used to extend the addressing ra

This bit is used to extend the addressing range of the DOC from 64K to 128K.

2. Table Size (T = b5, b4, b3)

These 3-bits are used to specify the size of the waveform table addressed by the oscillator.

T2	T1	TO	Table Size	
0	0	0	256	
0	0	1	512	
0	1	0	1024	
0	1	1	2048	
1	0	0	. 4096	
1	0	1	8192	
1	1 _	0	16384	
1	1	1	32768	

3. Resolution

These three bits determine which set of 16 bits, of the 24 in the oscillator accumulator, are used to address the waveform table. The purpose of this accumulator bit selection is to allow the frequency resolution to be adjusted to the waveform table size. For example, when using a 32K waveform table, accumulator bits 8 thru 23would normally be used, but in a 256 byte table a lower resolution setting would be used to step through the table faster.

There are eight accumulator address bit selections available.

R2	R1	RO	Accumulator Bits Used as Addresses
0	0	0	1 through 16
0	0	.1	2 through 17
0	1	0	3 through 18
0	1	1	4 through 19
1	0	0	5 through 20
1	0	1	6 through 21
1	1	0	7 through 22
1	1	1	6 through 23

ADDRESS CALCULATION

The final address that is used to access a waveform table is a function of the address pointervalue, the table size, and the resolution. The following table indicates the various address possibilities for the DOC.

Table A1 Size 256 PT		1 A 13 P5		'	A10 P2		م P0	23		A5 A \$ A	A4 A \$ A	A3 A \$ A	A2 A \$ A	A1 A \$ A	A0 A16 ‡ A9	R2 1 ‡ 0	R1 1 \$	R0 1 ‡ 0
512 P7						P1	423 ¢ 16	\$	\$	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A15 \$ A8			
1024 P7					P2	A23 \$ A16	\$	A ‡ A	A ¢ A	A ‡ A	A ‡ A	A ‡ A	A ¢ A	A ¢ A	A 14 \$ A 7			
2048 P 7				P3	A23 ‡ A16	÷ A ‡ A	A ‡ A	A ‡ A	\$	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A 13 ‡ A6			
4096 P 7			P4	A23 ‡ A16	A ‡ A	A ‡ A	A ‡ A	\$	A ‡ A	A ‡ A	Д ‡ Д	A ‡ A	.А ‡ А	\$	A 12 ‡ A5	2		
8192 P 7 ,		P5	A23 ‡ A16	A ‡ A	A ‡ A	A ‡ A	A \$ A	\$		A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A11 ‡ A4			
16384 P 7		A23 \$ A16	A ‡ A	A \$ A	A ‡ A	A ‡ A	A ‡ A	\$	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A 10 ‡ A3			
32768 P 7	A23 ‡ A16	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	\$	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A ‡ A	A9 \$ A2			

Are for more arrest

OSCILLATOR INTERRUPT REGISTER

The OIR is used to inform the processor which oscillator has caused an interrupt request to occur. When an oscillator completes a waveorm table an interrupt is generated. This interrupt will be passed to the OIR if IE = 1. The OIR will then issue an IRQ to the processor. Upon recognizing th IRQ, the processor reads the oIR to determine which oscillator issued the IRQ. The OIR is an 8-bit register where Bit 7 indicates the state of the IRQ line. (bit 7 = 0 for valid IRQ). Bits 5 through 1 contain the oscillator number Othrough 31. Bits 6 and 0 are always 1.

D7 Dð D5 D3 D4D2 D1 DO IR 1 03 02 01 00 04 1

After the processor reads the OIR, the DOC will clear the appropriate oscillator interrupr request, e.g., if oscillator 4 causes an IRQ, then the processor will read: OIR = 65 + 4.

OSCILLATOR ENABLE REGISTER (E1)

This register determines the number of active oscillators on the DOC. Load the register with the number of oscillators to be enabled, multiplied by 2, e.g., to enable all oscillators, load register with a 62.

Note: There are 32 oscillators on DOC plus 2 additional time slots for RAM refresh. Therefore, 34 actual oscillator time slots are used. If the number of oscillators is halved to 16 the frequency is not doubled since the two refresh time slots still exist. To halve the frequency, the number of enabled oscillators should be 15. Oscillators which are disabled will not hold their associated register data since they are not refreshed.

5503 REGISTER MAP SUMMARY

ADDRESS (HEH)	FUNCTION	07	D6	D5	D4	D3	D2	DI	DO
00 - 1F	FREQUENCY LOW	FL7	FL6	FL5	FL4	FL3	FL2	FL1	FLO
20 - 3F	FREQUENCY HIGH	FH7	FH6	FH5	FH4	FH3	FH2	FH1	FHD
40 - 5F	UOLUME	דט	U6	U5	U4	U3	V2	UI	vo
60 - 7F	WRUEFORM DATA SAMPLE	דש	W6	W5	W4	W3	W2	ושו	шo
80 - 9F	WAVEFORM TABLE POINTER	Р7	P6	Р5	Р4	P3	P2	P1	PO
A0 - BF	CONTROL	CR3	CR2	CR1	CRO	IE	M2	мі	Н
CO - DF	BANK SELECT/ TABLE SIZE/ RESOLUTION	H	BS	T2	TI	TO	R2	R1	RO
EO	OSCILLATOR Interrupt	IRQ	1	04	03	02	01	00	1
E 1	OSCILLATOR ENABLE	н	н	E4	E3	E2	E 1	EO	н
E2	R/D CONVERTER	57	56	\$5	\$4	53	52	51	so

NOTES: 1) BITS LABELED 1 ARE NOT USED AND ALWAYS READ BACK AS A 1.

16

....

2) BITS LABELED I ARE NOT USED AND ALWAYS READ BACK AS A 1.

5503 SYSTEM TIMING

INPUT CLOCK TIMING

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
Input Clock Cycle Time	Tcyc1	100		125	ns
Clock High	Tpwh	50		-	ns
Clock Low	Tpwl	50		-	ns
Rise and Fall Times	Tr, Tf	-		10	ns

OUTPUT CLOCK TIMING

CHARACTERISTIC	SYMEOL	MIN.	TYP.	MAX.	UNITS
Two MHz Clock Cycle Time	Tcyc2	480	_	500	ns
RAS/CAS Clock Output High	Toh1	270	-	290	ns
RAS/CAS Clack Output Low	Toll	190	-	210	ns
RAS High ofter E Low	Trd	-	-	40	ns
CAS High after RAS High	Tcd	40	-	70	ns
1MHz uProcessor Clocks	Тсус3	980		1000	ns
Cycle Times					
E/Q Clock Output High	Toh2	480	-	500	ns
E/QClock Dutput Low	To12	480	-	500	ns
E High from Q High	Tqd	240	-	250	ns
(Q leads E)					
Rise and Fall Times	Tr, Tf	-		10	ns
(E, Q, RAS, CAS)		•			

17

.

MICROPROCESSOR READ/WRITE TIMING TO 5503

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
Address Setup Time	Tas	350	-		ns
Address Hold Time	Tah	. 0	-	100	ns
R/W Signal Delay From E Low	Trs	-	-	-	ns
R/W Signal Valid for Read	Trw	350	-	-	ns
Chip Select Hold From E Low	Th	0	-	-	ns
Data In Setup Time	Tds	150	. - 1	: -	ns
Data In Hold Time	Tdh	30	-	. –	ns
R/W Signal Valid for Write	Tww	350	-	-	ns
Data Out Hold Time	Tdh	30	-	-	ns

5503 READ FROM MEMORY

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
Time to Valid Address From E	Tas	-	1	50	ns
Address Hold Time (A0 - A7)	Tah	0	-	ľÖ	ns
A8 - A15 Hold Time	Thh	-	-	30	ns
From RAS Fall					
A8/D0 - A15/D7 Lines	Tof	30	-	-	ns
Switching Time	·				
Data In Setup Time	Tds	100	-	-	ns
Data In Hold Time	Tdh	20	-	-	ns

200-7-CRC 150-7-CRC 7850-

18

OM

INPUT CLOCK

OUTPUT CLOCKS

20

1.1.1.1

A States

A State of the second

the second second

Symbol	Parameter	MIN	TYP	MAX
ten	time to E high O	40	50	60 ns
tel	time to E Low	50	63	EOns
t _{RASH}	time to RAS high	50.	60	FOns
t AAS L	time to RAS Low	60	82	9705
t CAS H	time to CAS high	60	65.	80 ns
tEASL	time to CAS Low	50	60	70 ns
tor	time to Q low	50	55	70 ns
tgH	time to Q high	50	60	ZOns
			1	

D Referenced to the rising edge of the indicated cycle of the SMAZ input clock at DOC CHIP CHANNEL JTROBE HAD CAP-CAS IIMINU

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
tecyc	E clock cycle Time		1000		ns
ten	E clock HIGH TIME		500		U2
TEL	E clock Low Time		500		20
tCSTBL	CHANNEL STROBE LOW TIME		500		ns
ECAV	CAP-CA3 VALIO TIME		1000		٥J
tcas	CAP-CA3 SETUP TIME TO CHANNEL STROBE LOW	,	250		ns
tcan	CAB- CA3 HoLD TIME FROM CHANNEL STROBE HIGH		a 50		5 <i>1</i> 1

Notes 1) ALL TIMMING IS BASED ON SMAZ CLOCK INPUT

2) CHANNEL STROBE AND CAP- CAS ARE ALWAYS HIGH DURING THE TWO REFICIAL CYCLES

