MICROPROCESSING FUNDAMENTALS

SEMINAR WORKBOOK

A SHORT COURSE FOR
SCIENTISTS AND ENGINEERS

BY
RAYMOND N. BENNETT
AND
JOHN STOCKSDALE

AMERICAN INSTITUTE
FOR
PROFESSIONAL EDUCATION

CARNEGIE BUILDING
HILLCREST ROAD
MADISON, N.J. 07940

12/1/79

be

PREFACE

As in learning to drive a car, a microprocessor must be
practiced. You cannot really learn how to use one just

from reading books alone. This course includes a microcomputer
and more information than can be covered in a three-day seminar:
because it is the authors' purpose to give you sufficient
background, written material, and hardware to be able to

design a microcomputer system. BUT THIS CANNOT happen if the

student does not study ALL the information given with the

course and build up a system using the Sym-I.

COURSE OUTLINE

READING ASSIGNMENTS

EXPERIMENTS

INTRODUCTION

EXP.
EXP.
EXP.
EXP-.
EXP.
EXP.

#1
#2
#3
#4
#5
#6

LOGIC AND INTERFACE DEVICES

BASIC LOGIC
Ls

NON~-INVERTING BUFFER

IT. INVERTING BUFFER
ITI. AND GATE
IV. NAND GATE
V. OR GATE
VI. NOR GATE
VII. EXCLUSIVE-OR GATE
VIII. EXCLUSIVE-NOR GATE
XI. DISCUSSION OF LOW-TRUE LOGIC
FLIP-FLOPS
I. R-S LATCH
II. R=~S FLIP-FLOP
IIT. D-TYPE FLIP-FLOP
IV. J-K TYPE FLIP-FLOP
V. T-TYPE FLIP-FLOP

DECODERS/DEMULTIPLEXERS

ENCODERS/MULTIPLEXERS

INTERFACE DEVICES
OPEN-COLLECTOR LOGIC
TRI-STATE LOGIC
BUS TRANSCEIVERS

ANALYZING

5
5.
5

. -
N O

STEP 2:

SOFTWARE PROBLEMS

THE SOFTWARE DESIGN PROCEDURE
STEP 1: DEFINE THE PROBLEM
PARTITION THE PROBLEM INTO

FUNCTIONAL BLOCKS

1-1
2-1

W W W W W W w
1

— b O D

O UM =

B R = T~ R

= et b e e e e el
1

N WN D

BaAss D
PR MMM
1
NV AN S e

B~

w
1

—

B R~ =
U"l(iﬂU'l
=0

ANALYZING SOFTWARE PROBLEMS (CONTINUED)

5.3

5.4
5.5

STEP 3: ALGORITHM DEVELOPMENT FOR
EACH PARTITION

OBJECTIVES TO FLOWCHARTS

PROCEDURES AFTER ALGORITHM DEVELOPMENT

QUESTIONS

THE HARDWARE/SOFTWARE APPROACH TO MICROCOMPUTER DESIGN

INTRODUCTION

6.1

6.2

6.3

6.4
6.5

6.6

HARDWARE COST

SYSTEM SPEED

MEMORY REQUIREMENTS

I/0 REQUIREMENTS
PERIPHERAL DEVICES
DEVICE SUPPORT
MICROPROCESSOR HARDWARE
SELECTION SUMMARY

ooy OY Oy
bt ot ok ot ok et
VOB WM

SOFTWARE COSTS

6.2.1 PROCESSOR ORGANIZATION
6.2.2 PROGRAM STRUCTURE
6.2.3 IMPLEMENTATION LANGUAGE

SYSTEM COSTS

6.3.1 DEVELOPMENT COSTS
6.3.2 MODIFICATION COSTS
6.3.3 MAINTENANCE COSTS

A PERSPECTIVE ON COSTS
TRADING OFF SOFTWARE AND HARDWARE

6.5.1 CONDITIONS WHICH LEAD TO DESIGN
TRADE OFFS

6.5.2 SYSTEM SPEED PROBLEMS

6.5.3 SYSTEM COST PROBLEMS

HARDWARE SPEED TRADE OFFS

PROCESSORS AND MEMORIES
DECODE LOGIC

MEMORY BUFFERS

SPECIALIZED INTERFACE DEVICES
INTERRUPTS

oo On
oy OV OV OY OY
O P QN

6.7 SOFTWARE TRADE OFFS

6.7.1 PROGRAM LOOPS AND SUBROUTINES
6.7.2 FUNCTIONAL COMPUTATIONS
6.7.3 REPREATED COMPUTATIONS

6.8 SUMMARY

REPRESENTING BINARY DATA

NUMBER SYSTEM. CONVERSIONS

DECIMAL TO BINARY

BINARY TO DECIMAL

DECIMAL TO OCTAL

OCTAL TO DECIMAL

DECIMAL TO HEXADECIMAL

HEXADECIMAL TO DECIMAL

CONVERSTONS -
OCTAL TO BINARY,
HEXADECIMAL TO BINARY,
OCTAL TO HEXADECIMAL;
AND BACK

BCD NUMBERS

BINARY FRACTIONS

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS
11.1 COMPUTER ARITHMETIC INSTRUCTIONS

11.1.1 TWO'S COMPLEMENT NOTATION

11.1.2 BINARY ARITHMETIC

11.1.3 OVERFLOW AND UNDERFLOW WITH
SIGNED ARITHMETIC

11.2 COMPUTER LOGIC INSTRUCTIONS

11.2.1 LOGIC COMPLEMENT
11.2.2 LOGIC AND

11.2.3 LOGIC OR

11.2.4 LOGIC XOR

10-1

11-1

11-2
i1-4

11-6

11-10
11-11
11-11

11-12
1i-12

APPENDICES

SYM/650x INFORMATION RESOURCES
6500 SUPPLIERS
650x SOFTWARE SOURCES
TTL REFERENCE SHEETS
MICROCOMPUTER BIBLIOGRAPHY

GLOSSARY OF COMMONLY USED TERMS

COURSE OUTLINE

10.

COURSE OUTLINE

Introduction to Microprocessors and Microcomputers
A. Terminology
B. Architecture
C. Number Systems
D. Hardware and Software

Operating a Microcomputer: The SYM-I
A. Examining and Modifying Memory
B. Loading and Running Sample Programs
C. Using the Debug Mode

Microcomputer Architecture and Elementary Programming
A. Block Diagram of CPU
B. Data Bus, Address Bus, and Control Lines
C. Memory and I/O Addressing
D. Selected SYM-I Monitor Calls
E. A Selected Subset of Instructions

Programming Examples
A. Parallel Data Input and Output
B. Use of the SYM-I Keyboard and Display

First Night: Overnight Assignment

Interfacing Microcomputers to External Devices
A. Using Programmable I/O Lines for Device Control
B. Device Control Software Techniques
C. Common Interface Devices

Further Software
A. Flags and Conditional Branches
B. Counting and Timing Loops

Second Night: Overnight Assignment

Advanced Software
A. Binary and Decimal Arithmetic
B. Indexed Addressing
C. Indirect Addressing

Interval Timers and Interrupts
A. Using an Interval Timer for Time Delays
B. The 6502 Interrupt System
C. Interval Timer Triggered Interrupts
D. Interrupt Applications

1l.

12,

13.

Serial Data Input and Output
A. The SYM-I Serial I/0 System
B. 20 mA Current Loop and RS-232 Interfaces
C. The ASCll Code

Introduction to System Expansion

Introduction to Applications

READING ASSIGNMENTS

READING ASSIGNMENTS

The greatest gain from a short course such as this one can
be realized if you are willing to participate fully by giving your
undivided attention during the presentations and experiments as
well as preparing yourself during the time between the sessions.

The readings recommended below are only a sampie §e1ecteq to
point you in the correct direction to facilitate learning during

these three days.

SYM SYM SYM
REFERENCE HARDWARE PROGRAM SEMINAR
MANUAL MANUAL MANUAL MANUAL
Chapters Pages 1-5 Basic Logic
FIRST 1 and 2; and 20-49
NIGHT Chapter 4,
sections
4.1 to §.3.3,
4.3 to 4.3.4,
and tables
4.4 and 4.5
Chapters Pages Chapters
6 and 8, 15-28 5 and 7,
SECOND Appendix J Pages 129-143
NIGHT (secondary)
Chapter 6

After the completion of the three day course, it is recommended
that you pursue the study of your microcomputer system in the follow-
ing order: First, read the SYM Reference Manual to gain an expert
working knowledge of the machine that you are experimenting with.
Second, read the SYM Hardware Manual to gain a knowledge of the
strengths and weaknesses of the 6500 family and the monitor. Third,
after you are familiar with all aspects of the system and how to
use it, then you are ready to explore the programming of the Micro
System via the SYM Programming Manual.

2~1

EXPERIMENTS

SYM EXPERIMENTS

INTRODUCTION

1.

3.

Electrical Connections:

Connect the 44 pin edge connector-harness to
the applications connector. It is laheled
"A connector" on the board. The black and red
power wires should face the "P connector" at the
top center of the board,

Power Up:

Apply power to the SYM by plucging in the power
supply. The LED mounted on the unper edge of
the board, between the A and P connectors, will
come on. You will then hear a "beep" from the
round transducer located at the lower center of
the board. The seven-segment LEDs will remain
dark.

CR ?

The SYM command syntax has been desiagned to
allow operation of the monitor from an ASCII
keyboard based terminal or the on board keyboard
with no change in syntax.

Like many operatina systems which use an ASCII
keyboard as the input device the SYM allows entry
of a command from the keyboard but witholds
execution until a carriace return (CR) is input.
After execution of a command the SYM will outnut
a period (.) as a prompting character. This
indicates the SYM is readv for a rew command.

The SYM follows this sequence whether it is
using a terminal or the on board keyboard
display. Note the presence of the CR key on the
keyboard to facilitate this.

Initialization:
Press the carriage return (CR) key. A "beep"
will be heard to indicate a key has been depressed.
The display will now output, "SYl.0..", to
indicate the SYM is successfully communicating
with the on board keyboard.
If in the future one of your nrograms should
run afoul or if you simply want the monitor to
take control, you may do so by simnly pressing
the reset (RST) key followed by the (CR) key.

5. Examining Memory:
To examine the data contained at anv given
memory location use the following orocedure as
an example.

YOU KEY IN: DISPLAY COMMLENTS

(RST) blank

(CR) S¥1/0, *sym now ready for
(MEM) 1.,0.:m command
(O)I(o)fto)fto) m 0000

(CR) 0000, XX *XX indicates the
(=) 0001.XX data found as the
(- 0002.XX contents of the

(-*) 0003.XX memory location

(- : 0004 ,XX displayed in the
(SHIFT) , () 0003.XX left four digits
(SHIFT), (+) 0002.XX *may advance or
(SHIFT) , (+) 0001.XX retreat one location
(SHIFT) , (+) 0000, XX by (=) and (+) keys
(SHIFT), (+) 0008.XX *may advance or
(SHIFT), (+) 0010.XX retreat eight locs.
(-) 0008.XX by use of (+) and
(=) 0000, XX (=) keys

6. Entering Data:
To enter the data you desire to have stored at
a particular location use the procedure demonstrated
above to specify the location. Then press the
two keys corresponding to the data you wish
stored there.
Follow the example below:

YOU KEY IN: DISPLAY COMMENTS
from above 0000.XX *let's change XX to
$54
(5) 000.XX.5
(4) 0001.XX *loc. 0000 now contains
$54
(SHIFT), (+) 0000,.54 *examine loc., 0000
(=) 0001.XX
(5) 002.XX.5
(5) 0002, XX *$S0001 now contains 355
(5),(6) 0003,XX *$0002 " " $56
(5),(7) . 0004,XX *S0003 " " $57
(5),(8) 0005,.XX *$0004 " i $58
(5),(9) 0006 . XX *$0005 " ad $59

YOU KEY IN:

(5) ,(n)
(5) ,(B)
(5),(C)
(=)
(=)
(=)
(=)
(=)
(-)
(=)
(=)

NOTE:

All addresses and data are represented with

DISPLAY

0007.XX
0008.XX
0009.XX
0001.55
0002.56
0003.57
0004.58
0005.59
0006.5A
0007.5B
0008.5C

COMMENTS

*$S0006 now contains S$5A

*$0007
*30008

*check
* (]

* % % ¥ * ¥

the hexadecimal numbering system.

"

$5B
$5C

EXPERIMENT 1

Enter The Program Below:

Enter the machine code from left to right. Each line

may contain one, two, or three hytes, depending on
the machine instruction they represent.

Run The Program:

To execute the nroaram press (CR), (f0), the starting
address of your pnrogram, in this case (0), (0), (2), (0),
then (CR). :

What Will It Do ?

When overating properly, the proaoram will sequentialy
display memory locations and their contents starting
at location 0000. It will display the information
in the same format as we use to examine rmemory vis
the keyboard. It will display all locations from
0000 to SFFFF starting over again after finishing.

Stopping the Program:

To stop a program and return machine control to
the monitor press (RST).

(START

OPEN
SYSTEM
RAM

— e

RELOCATE
OuUT VEC

CLEAR
COUNT

TEMPORARY

$8B86

$8900 to $89C1

SO00FE
SOOFF

JUMP
ouUT S

LOAD
DECIMAL
POINT

JUMP
T0
OuUT VEC

LOAD
ADDRESS
OFFSET

$8319

$2c

$89C1

”Y" REG

) 4

Jump
TO
OUT BYT

DELAY
COUNT
MEM 0050

NO

YES

JUMP
TO
SCAND

UPDATE
OUTPUT
COUNT

EXPERIMENT #1

W iinins i

$82FA

DELAY
FIXED $FF

LIGHT
DIsPLAY

$8282
INCCMP

DISPLAY ROUTINE

MEMORY LOCATION MACHINE CODE COMMENTS

;sEXPERIMENT 1
;DISPLAY ROUTINE

0000 20 86 8B
0003 A9 C1l
0005 8D 64 A6
0008 A9 00
000A 85 FE
000C 85 FF
000E 20 19 83
0011 A9 2C
0013 20 C1 89
0016 A0 00
ools ' Bl FE
001A 20 FA 82
001D Cé 50
001F FO 06
0021 20 06 89
0024 18

0025 90 F6
0027 20 B2 82
002A 18

002B 90 El

3-5

EXPERIMENT 2

Input and Nutput (I/0)

6522 (VIh)

The SYM allows the user to input anéd outnut digital
information from the applications connector. The
SYM does the transfer through a SY€522 Versatile Interface
Adapter (VIA). Within the SYM systerm it is referred to
as device no. 1 and U25. The chin provides input or
output through sixteen (16) seperate lines. These 16 lines
are divided into two groups of eight (8) lines. Each
group of 8 is referred to as a "nort". The two (2)
ports are designated "vmort A" and "vort B". Each line,
under control of the processor, can be configured as
either an input or an output line, independent of all other
lines.

Manipulation of an I/O port is accomnlished wvia three (3)
processor accessable registers within the 6522.
These are:

(A) Data Direction Register (DDRA, DDPRB3)

This register snecifies whether an I/0 line
will act as an innut or outnut. A bit value
of one (1) will cause the I/D line of corresncnding
bit position to act as an outnut line. A bit
value of zero (0) will cause the I/0 line cf
corresnonding bit position teo act as an input
line,

There are two (2) data direction reqgisters,
one associated with each nort. They are labeled
DDRA and DDRB.

(B) NDutput Register (ORA, ORB)

When a bit of the Data Direction Register
is a one (1} (indicatinag the line is to act
as an outnut), the voltage on the corresponding
I/0 line is controlled by the corresvonding
bit in the outpnut register. A one (1) in the
output register would equate to & voltage of
2.4 or greater on the I/0 line. This could
be interpeted by TTL as a"high"or"true"” condition.
A zero (0) in the output register would equate
to a voltage of .4 or less on the I/0 line.
This could be interpeted bv TTL as a"low"or"false"
condition.

(Note: For loading limitations see SY6522 datasheet)

(C) Input Register (IRA, IRB)

The data in this register reflects the voltage
present on the port line if the line has been
configured as an input line. A voltage of 2.4
or greater will be interpreted as a one (1)
and a voltage of .4 or less will be interpreted
as a zero (0).

(Note: The above statement recarding the
operation of the input register will
be true within the outlined experiments
in this course, however the device
can be caused to operate in exception
to this., See the SY6522 data sheet
for a complete discussion of operating
modes.)

In the SYM the registers (of U25) described above
are located at the following memory locations:

Port A. Port B
DDRA=SAQ03 DDRB=SA002
IRA =$SA001 (R/W=high) IRB =SA000 (rR/W=high)
ORA =SA001 (R/W=low) ORB =$A000 (R/W=low)

EIGHT BIT PARALLEL OUTPUT:

Configure all eight (8) lines of port A as output
lines., This is done by writing $11111111 (% indicates
the number following is represented in base 2) to the
DDRA located at $A003. Use the SYM keyboard to do this.
Write various hexadecimal numbers into the ORA located at
SA001.
You will observe the binary representation of these
numbers on the eight (8) LEDs on the off board peripheral
device. (See Fig, 1)

EIGHT BIT PARALLEL INPUT:

Confiqure port B as an input port. This is done by
writing $00000000 to the DDRB located at SA002. This
is done automatically by the monitor every time you
press the (RST) key.

Note: NEVER configure ANY of the port B I/0 lines
as output lines. To do s6 may result in
damage to the SYM, (This apolies so lonag
as the SYM is connected to the experimental
device provided for use with the course.)

Examine the contents of the IRB which is located at
SA000. The data in this register reflects the state
of the I/0 lines which are connected to the experimental
device. (See Fig. 1)

INPUT FROM THE SYM KEYBOARD:

The SYM monitor contains a number of subroutines
which it uses to control machine operation. These
routines are available to the user. Most monitor
subroutines make use of a small section of RAM
contained within the SY6532 (U27). The machine
however, protects itself from faulty user programs
by "write-protecting" this block of RAM. When using
a monitor subroutine which accesses this area of
memory, and most do, it is necessary to disable this
write-protect feature. This is most easily accomplished
by callina the monitor subroutine which it itself
uses to "un-write-protect" this special section of memory.
This subroutine is labeled "ACCESS" and starts at
memory location $8B86,

The SYM uses a monitor subroutine labeled "GETKEY"
to poll the keyboard. While waiting for a key
depression it scans the display, thus keeping it lit
while the operator takes time to figure out which
button to press next. When a kev is finally depressed
it will generate the ASCII code for the key, store this
value in the accumulator, and return to the calling
program,

Enter the following program., It uses the GETKEY
subroutine to return the ASCII value of the key
depressed to the accumulator. This value is then
transfered to the eight (8) LEDs located on the
peripheral device provided for use with the course,

WHAT WILL IT DO ?

When the processor beqgins executing the program
the onboard display will remain lit. Tt will disvolay
the contents present just previous to pnressina (CR),
most likely "G 0000". The onboard display will remain
unchanged until machine control is returned to the monitor
program. The eight (8) LEDs on the external display
will initially go dark.

When a key is pressed (except for (RST) and (DEBUG))
some of the off board LEDs will light. The binary
code they present is the ASCII code for the last
key depressed. Prove this to yourself by trying different
keys and comparing the result output to the LEDs with
the ASCII codes on the back of the SYM reference card.

3-8

KEYBOARD INPUT

LOoC CODE LINE COMMENTS

;s EXPERIMENT 2
s KEYBOARD INPUT ROUTINE

0000 20 86 8B JSR $8B86 ;UN-WRITE PROTECT SYSTEM RAM
0003 A9 FF LDA #%11111111 sCONFIGURE PORT A AS OUTPUT

0005 8D 03 A0 STA $A003

0008 20 AF 88 JSR $88AF ;CALL GETKEY

000B 8D 01 AQ STA $A001 ;STORE RETURNED VALUE IN ORA
000E 4C 08 00 JMP $0008 ; LOOP BACK FOR ANOTHER KEY

l.

EXPERIMENT 3

OUTPUT TO THE ONBOARD DISPLAY:

The SYM display is driven by the monitor. ?he monitor
actually stores the data to be displayed in six

‘reserved memory locations. These locations are

referred to as the "display buffer". Each location
within the buffer corresponds to a display digit.
The programs and subroutines which appear to modify
the dfsplay actually manipulate this display buffer.
Oone useful subroutine in the monitor that does
just that is called "OUTBYT". OUTBYT takes the value
stored in the accumulator, converts it to two (2)
hexadecimal digits, and scrolls these digits onto the
display (in reality the display buffer).
The display scrolls from right to left. Data scrolled
off the display is lost.
The monitor contains another subroutine which it
uses to transform the data in the display buffer
into signals which will light the LEDs in a readable
form, This routine is labeled "SCAND" and starts at
location $8906. It is of note that this routine
will light each digit for only a brief instant. Therefore
it must be called repeatedly to produce a readable display.
The following program will use these subroutines to
force the display to read "010203",

WHAT WILL IT DO ?

This program will force the display to read "010203".
The keyboard will no longer function (except of course
for the (RST) and (DEBUG) keys) as there are no
instructions in the program to interrogate it.

(Remember: the program starts at location $0011l,)

3-10

(START D
A
OPEN
SYSTEM $82FA
RAM
LOAD
01
Juwvp $82FA
TO LOAD 01 IN
OUT BYT DISPLAY BUFFER
LOAD
02
JUMP
TO $82FA
OUT BYT
LOAD
03

JUMP
TO
ouUT BYT

SCAND

JUMP
SCAND

EXPERIMENT #3

$82FA

$8906

LoC

0011
0014
0016
0019
001B
001E
0020
0023
0026

3.

CODE

20
A9
20
A9

A9
20

ac

86
0l
FA
02
FA
03
FA

06

23

82
82

82
89

DISPLAY OUTPUT

LINE

JSR
LDA
JSR
LDA
JSR
LDA
JSR
JSR
JMP

OPTIONAL EXPERIMENT:

$8B86
#3501
$82FA
#3502
S82FA
#503
$82FA
$8906
$0023

COMMENTS

sEXPERIMENT 3

:DISPLAY OUTPUT
;UN=-WRITE PROTECT SYSTEM RAM
:GET CONSTANT "01"

;CALL OUTBYT

;GET CONSTANT “02"

s+CALL OUTBXT

;GET CONSTANT "03"

;CALL OUTBYT

;CALL SCAND

;JUMP BACK TO CALL SCAND

Try to link this program and the previous experiment

so that the ASCII value of the last key depressed will
appear not only on the off board LEDs, but also on the

onboard display.

(Hint: Use the "GETKEY" subroutine to licht the display
rather than the "SCAND" subroutine.)

3-11

EXPERIMENT 4

Controlling External Devices

DEBUG:

It is possible to execute a proaram one instruction
at a time on the SYM using a feature called “debug”.

To use the feature enter a nrogram as before. When
you have finished press debug (ON), (GO), the starting
address, and (CR)., This will cause the SYM to execute
the first instruction and stoo. To execute the next
instruction press (G0O), then (CR). You may continue
in this manner through the entire nroaram,

"After the completion of an instruction the disvlay
will read "XXXX.2 .", XXXX will be the current value

of the program counter.
EXAMINING MACHINE REGISTERS:

Often when stepping throuch a nrogram as described
above one desires to examine the registers within the
machine to determine whether the intended mrachine
action has occured.

To examine the machines registers nress (REG), (CR),

The display will read "P XXXX", XXX¥XX will be the current

value of the program counter. Bv nressinag (=) you
may examine the remainina registers.

P =Program Counter

rl =Stack Pointer

r2 =Processor Status Register
r3 =Accumulator

r4 =Index Register X

r5 =Index Reqister Y

The value of the registers may be changed by examining

the desired register and enterinag the new value.
SIMULATING A SIMPLE CONTROL SYSTEM:

This experiment will use the SYM and the external
peripheral device to simulate the use of a microcomputer
in a process control anplication.

The experiment uses three (3) of the switches on
the outboard device as inputs. These are:

Switch 2 - Goes on when the solution in the vat passes

a "vass - fail" test for clarity.

3-12

Switch 1 - GCoes on when the vat runs empty.
Switch 0 - Goes on when the wvat becomes full.

We will use the LEDs on the outboard device as outputs.
They Indicate:

LED 0 - will go on to indicate that the pump is on.
LED 4 - will go on to indicate that the filter is on,

LED 7 - will go on to indicate that the drain valve
is closed.

WHAT WILL IT DO ?

First run the program usina the "debuqg" mode.
Note particularly how the ROR, AND, and OQRA instructions
are used to force decisions on the basis of a single
bit. Follow the program comments and flowchart as
you step through the program.

Initially set the inputs to the followinc states:

SW2 - off (not clear)
SW1l - off (not empty)
SWO0 - off (not full)

When running the prooram at normal speed you will
first observe the drain valve close and the pumn go on.
When the vat fills up (SWO=on) the pumn will go off.
In addition, the filter will ao on. When the fluid
becomes clear enough (SW2=on) duc to the action of the
filter, the filter will be turned off. The purified
fluid will then be drained from the vat by opening
the drain valve. As the level drops the level high
indicator will go off (SW0=off) and finally the vat
empty indicator will go on (SWl=or). When this
occurs a new cycle is started.

3-13

LOC

0000
0002
0005

0007
000A
000D
000E
0010
0013
0015
0018
001B
001D
0020
0023
0025
0027
002A
002C
002F
0032
0034
0037
003a
003B
003C
003E

LDA
STA
LDA

STA
LDA
ROR
BCC
LDA
AND
STA
LDA
ORA
STA
LDA
AND
BEQ
LDA
AND
STA
LDA
AND
STA
LDA
ROR
ROR
BCC
BCS

$SFF
$A003
#8811

$A001
$A000

SFA
SA001
#SFE
$A001
SAQ001
$#$10
SA001
SA000
$#504
$F9
$A001
#SEF
$A001
SA001
$STF
SA001
SA000

SF9
$C5

3-14

COMMENTS

:EXPERIMENT 4

:PROCESS CONTROL

:PAO=PUMP

:PA4=FILTER

:PA7=DRAIN VALVE
1PBO0=LEVEL HIGH

:PB1=VAT EMPTY

: PB2=CLARITY

;DDRB=SA002

:DDRA=SA003

;IRB=SA000

;IRA=SA001

sORA=SA001

sCONFIGURE PORT A AS OUTPUT
s DDRA

;s FORCE PUMP ON, DRAIN
sCLOSED, ALL OTHERS OFF
;ORA

sCHECK FOR LEVEL HIGH

: (ACCUMULATOR ADDRESS MODE)
;IF NOT CHECK ACAIN (WAIT)
sTURN OFF PUMP

;TURN ON FILTER

sCHECK CLARITY

sNOT CLEAR? CHECK AGAIN
+IS CLEAR,TURN OFF FILTER

;OPEN DRAIN

sCHECK FOR VAT EMPTY

; (ACCUM. ADDRESS MODE)
: (ACCUM. ADDRESS MODE)
sNOT EMPTY? CHECK AGAIN
;EMPTY, RESTART CYCLE

INITIALIZE
PORT A

_4

SET PUMP ON
FILTER OF

5

TURN
OFF PUMP.

I

TURN
ON FILTER

IS
LIQUID

TURN
OFF FILTER

l
' OPEN DRAIN

of
!
!
x&‘
!

EXPERIMENT 4
FLOWCHART

] LEVE L—= [
HIGH

cLAmmo
i PURIFICATION
J |
VAT
. VAT Emrrrs e
q s, o) S
(Thorcarons ¢) Dj AALI c’ £

EXPERIMENT 4 PICTORIAL

S
""‘t
}y

]
e

. FILTER

1,

3.

EXPERIMENT 5

Counting Loons

TRACE:

The SYM offers to the user a modified form of the

debug mode called "trace".
To use this feature first store some non-zero value

at address $A656 ($09 is a good value). Then execute
the program just as you would using the "debug" mode.

The monitor will then display the program counter
and accumulator, pause, execute the next instruction,
display PC and A, pause, etc. .

A COUNTING LOOP:

The following example shows how to set up a counter
(here the X index register) to allow execution of a
program segment some preselected number of times.

We could have just as easily used the Y register, the
accumulator, or any R/W memory location.

Run this program using the "trace" mode and at full

speed,
WHAT WILL IT DO ?

At full speed the program will execute so guickly
that the only indication that the program ran will be
the outboard LEDs displaying the value 10, In
gracelmode the outboard LEDs will slowly count from

to o.

COUNTING LOOP PROGRAM

;COUNTING LOOP PROGRAM

;s EXPERIMENT S

LDA #SFF ;s CONFIGURE PORT A AS OUTPUT
STA DDRA
LDA #0 :TURN OFF LEDS
STA ORA
COUNT LDX #10 + LOAD COUNTER WITH 10
LOOP INC ORA + INCREMENT OUTPUT PORT
DEX : DECREMENT COUNT
BNE LOOP :IF COUNT NOT ZERO GO
:TO LOOP
DONE JMP $8000 s JUMP TO MONITOR

3-15

~ TIMING LOOPS:

All machine operations on the SYM are controlled
with the crystal controlled clock oscillator., This
oscillator operates at a nominal one meaahertz. The
frequency is very stable but mav not be exactly the
specified value, Each machine instruction requires
a specific number of clock cycles. Thus program
segments and loops can be used to produce very
precise time delays which are as accurate as the clock.
The number of cycles for each instruction can be
found in the SYM reference card and the SY6500/MCS6500
Programinag Manual.

The following program yields a delay of 501 clock
cycles or if the clock really is a one meqgahertz clock,
501 microseconds.,

TIME DELAY PROGRAM

LDX #100 32 CYCLES
LOOP DEX ;12 CYCLES
BNE LOOP ;3 CYCLES EXCEPT WHEN

sBRANCH IS NOT TAKEN
s THEN JUST 2

The loop is five (5) ecycles long and is executed
one hundred (100) times. Except on the last pass through
the loop when the branch is not taken. 1In the 6500
series of processrs this shortens the execution time
by one cycle. The calculation used in finding the
cycle time of the loop is illustrated below.

INITIAL COUNT VALUE CYCLE TIMES 2F INSTR. IN LOOP
((X * [2 - 3)=1) +2=

((X*(2+3)-1)+2=501

The value "1" was subtracted to account for the shortened
branch instruction and the final value "2" was added to
account for the initial "LDX" instruction which is
not within the loop.
DELAY SUBROUTINE: F

Now that you have the basic idea here is a more

complicated program., We put the time delay in a
subroutine so that it may be used more readily.

3-16

6. WHAT WILL IT DO ?

The main program continually increments the value
present at the output port. However between each
increment it calls the delay subroutine.

Start the main program at location $0000 and
the subroutine at $0200,

’

EXPERIMENTS
;EXPERIMENT 5
{MAIN PROGRAM
;START AT $0000
START LDA #SFF ;CONFIGURE PORT A AS OUTPUT
STA DDRA
LDA #$00 ;INIT A TO ZERO
SHOW STA ORA ;MOVE A TO OUTPUT REG
CLC ;CLEAR CARRY BEFORE ADD
ADC #S01 ;ADD 1 TO A
JSR DELAY sWATIT
JMP SHOW ; LOOP BACK TO SHOW
;EXPERIMENT 5
;DELAY SUBROUTINE
;START AT $0200
DELAY LDy #200 ;LOAD Y WITH 200=Ty
LOOPY LDX #98 ;LOAD X WITH 98=Tx
JMP LOOPX sWASTE 3 CYCLES
LOOPX DEX ;DEC X COUNT
BNE LOOPX ;IF X NOT 0 DEC AGAIN
DEY ;DEC Y COUNT
BNE LOOPY ;IF Y NOT O CNTDWN 98 X AGATI
RTS

3-17

OPTIONAL:
The total time delay here is :

Ty* (5Tx+9)+13= Total Time Delay

Run this program with different values for Ty and
Tx. You might try to write a program that would allow
you to enter time constants from the keyboard in
real time,

This is a good program to use to see the effects of
some of the other accumulator insructions. Replace
the CLC, ADC # sequence with SEC, SBC # or ROR or
ROL or ASL or LSR. If you replace a two byte instruction
with a one byte instruction be sure to add a NOP
to fill the gap left in the program,

3-18

C START

)

:

CONFIGURE
PORT “A"

I

CLEAR
PORT “A"

Y

CLEAR CARRY
AND ADD 01

:

Jump
TO
DELAY

'

LOOP BACK
TO UPDATE
OUTPUT

MAIN PROGRAM

EXPERIMENT #5

g

C

START

.
J

[

v

LOAD Y*
COUNTER
#200, $C8

%

LOAD "X"
COUNTER
#098, $62 i

!
|

v

WASTE
3 CYCLES

— e]

¢

n]

;

DECREMENT |
X COUNT

NO

i YES

v

DECREMENT
Y COUNT

DELAY SUBROUTINE

(START

CONFIGURE
PORT “A"

CLEAR
PORT “A"

v

LOAD
COUNTER
WITH #10

INCREMENT
PORT “A”
CONTENTS

DECREMENT
COUNTER

(STOP

ENTER

N

SUPERMON

EXPERIMENT #5

EXERCISES

‘ START

)

LOAD
COUNTER

COUNT =
COUNT -1

NO

YES

(sToP

EXPERIMENT 6

INTERRUPTS &
INTERVAL TIMERS

Tl & T2

The SY6522 versatile interface adapter contains
two very useful interval timers.

The timers structure is that of one sixteen (16) bit
counter divided into two eight (8) bit sections and
two (2) eight (8) bit latches which are used to load
the counter,

The processor may load the latches at anytime without
affecting the countdown in progr2ss. At the appropriate
time the values stored in the latches are loaded
into the counter simultaneously. The counter
then begins to decrement at he system clock rate.

When the count reaches zero (0) the chip may deliver
an interrunt request signal (IRQ) to the processor to
indicate the end of the time interval.

Timer 1 will operate in two modes:

(a)
ONE SHOY MONE:

In this mode the high order latch is not used. The
low order latch may be loaded before the actual countdown
begins. The countdown is initiated by a "write T1 (timer 1)
counter high", This triggers the transfer of the value
in the low order latch into the low order section of the
couvnter, writes the value specified into the high order
section of the cocunter, and starts the counter decrementing.
When the counter reaches zero (0) the IRQ output on the
SY6522 will go low (active) (see discussion below on
control registers) and the Tl interruot flag in the
Interrupt Flag Register (IFR) will be set,

(B)
FREE RUNNING MODE:

This mode is available for Tl oniv. Yt operates in
essentially the same manner as the o1e shot mode,
except when the count reaches zero {3} the valiue «f the
high and low order latches wiil AUTMATICALLY 3e
transferred to the counter, This =2i.ws even. snaced
interrupts which have no dependence »nr service

routine response time.

In either mode, after the timer times out it sets
an interrupt flag in the IFR (a reacister within the 6522).
Before this flag can be set again (to trigger another
interrupt) it must first be clearec. ne method
of doing this is to write a one (i) i1nto the bit
position you wish cleared (that is into the IFR).

3-19

IFR

IER

CONTROL REGISTERS:

The SY6522 provides several control registers which
will need to be manipulated to control the operation
of the chip. Here we will only cover three which
are essential to a basic understanding of the
operation of the chip, The others which are not discussed
are explained at length in the SY6522 datasheet in your
S¥M Reference Manual.

Auxillary Control Reaister:

This register controls the timers, the shift register,
and input latching. A 0 in bit position 6 enables
the free running mode of timer 1., A 1 in hit position
6 forces timer 1 to operate in the one shot mode.

Interrupt Flag Register:

Each possible source of an interrupt from within
the chip corresponds to a bit within this 8 bit
register., There are seven possible sources within
the chip. These are:

Bit 0 - (CA2) Port A Control Line 2
Bit 1 - (CAl) Port A Control Line 1
Bit 2 - (SR) Shift Register

Bit 3 - (CB2) Port B Control Line 2
Bit 4 - (CBl) Port B Control Line 1
Bit 5 - (T2) Timer 2

Bit 6 - (Tl) Timer 1

The remaining bit indicates whether an interrupt
request signal is being output from the chip.

Interrupt Enable Register:

Each possible interrupting source described above
has a corresponding bit within the IER, If the
bit in the enable register is a 1,the source is allowed
to cause an interrupt request signal to be generated.
If however, the enable register bit asociated with
the source is a 0 then no matter what the state
of the Interrupt Flag Register bit, the source will
not be allowed to cause an interrupt request signal
to be issued from the chip. For example if Tl were
to time out (and it was the only source within the
chip to request an interrupt) bit 6 of the IFR would
be al , if in addition bit 6 of the IER were a 0
no IRQ signal would be generated by the chip.
Bit 7 of the IFR would remain a 0 in this case also.

3-20

The bit assignments within the IER are the same as
in the IFPR,

The IEP has an unusual nrocedure for letting the
processor alter its contents.

If you wish to set a bit or bits within it write a
one (1) to the positions you wish set and a one (1)
to bit seven (7). The positions you write a zero (0)
to will remain unchanged.

If you wish to clear a bit or bits within it write
a one (1) to the positions you wish cleared and write
a zero (0) to bit seven (7). The positions you write
a zero (0) to will remain unchanged.

REGISTER BIT
7 6 5 4 3 2 1 0
IFR IRQ Tl T2 CB1 CB2 SR Cal CA2
IER SET/ T T2 CB1 CB2 SR cal CA2
CLEAR
CONTROL
3. EXPERIMENT 6

Note that the main program is the same program
we used for experiment 1 with additional code
preceding it.

These extra stems are used only once to initialize
the various control registers within the SY6522, insert
the proper interrupt vectors into syster RAM, and
initialize port A as an output port.

Once these functions have been nerformed Experiment 1
will operate just as before.

WHAT WILL IT DO ?

The LEDs on the outboard device will increment
at a rate svecified by the value loaded into the
interval timer (Tl) by the initialization section
of the program,

Experiment 1 will operate as before with no
observable performance deqgradation.

3-21

LOC

0000
0003
0005
0008
000A
000D
000F
0012
0014
0017
0019
001C
001F
0022
0025
0027
002A
0o02c
002E
0030
0033
0035
0038
003A
003C
003F
0041
0043
0046
0047
0049
004cC
004D

0200
0201
0204
0207
020Aa

020B

LINE

JSR $8B86
LDA #$00
STA SA678
LDA #$02
STA S$SA679
LDA #SFF
STA SAQO03
LDA #$40
STA SADOB
LDA #$CO
STA SAQOOE
STA $A007
STA SA005
20 86 8B
A9 Cl

8D 64 A6
A9 00

85 FE

85 FFr

20 19 83
A9 2C

20 Cl 89
A0 00

Bl FE

20 FA 82
cé 50

FO 06

20 06 89
18

90 M6

20 B2 82
18

PHA
LDA $SA00D
STA SAO00D
INC $SA001
PLA
RTI

EXPERIMENT 6

COMMENTS

1 EXPERIMENT 6
;INITIALIZATION & MAIN (EXP. 1)
UIRQVCL=$A678

UIRQVCH=$A679

DDRA=$A003

ACR=$A00B

IER=SAQ00E

T1L-H=$A007

T1C-H=$A005

:UN=-WRITE PROTECT SYSTEM RAM
sSTORE NEW INTERRUPT VECTOR

: USER IR) VECTOR (LOW)
H USER IRQ VECTOR (HIGH)
;CONFIGURE PORT A AS OUTPUT

? DDRA

¢:SET Tl TO FREE RUNNING MODE

: ACR

; IER

’
;ENABLE INTERRUPTS FROM 6522
L
;SET INTERVAL TIMER

sEXPERIMENT 1

INTERRUPT SERVICE ROUTINE

;START AT $0200

IFR=SA00D

ORA=$A001

;CLEAR INTERRUPT FLAG IN IFR

$ INCREMENT LEDS ON OUTBOARD

3-22

LOGIC AND INTERFACE DEVICES

ESIC LOGIC DEVICES

Although microprocessors are called (and often are used as) logic replace-
ments, basic logic gates are -t:iil needed in most microcomputer systems. They
are used for Buffers, Latches, Address Decoders, and Signal Conditioners.
Therefore, it is important to have a good understanding and working knowledge
of basic logic gates.

Digital logic operates in the binary nmumber system. Therefore, any one
input or output can only be in one of two distinct states, either a "1 or
a "@". Normally, references made in regard to a digital signal, a logical
nl" i3 greater than 2.0 volts and a logical "@" is less than 0.8 volts;
this is called HIGH=TRUE or POSITIVE-~TRUE LOGIC. LOW=TRUE or NEGATIVE~-TRUE
LOGIC 4is the opposite, a logical "1" is less than C.8 volts and logical "g"
is greater than 2.0 volts. On logical diagrams, the type of logic (Positive
or Negative) is showm by the use of a circle in the input/cutput lead touche
ing the logic symbol for the gate to indicate a LOW-TRUE input/output. The
absence of this circle indicates a HIGH=-TRUE inmput/output.

PCSITIVE LOGIC |
INPUT 1

NEGATIVE LOGIC
INPUT

When the circle is used in an ocutput lead of a POSITIVE-TRUE input gate
or the absence of it in a LOW-TRUE input gate, it changes tna name of the
gate by adding the letter "N" in front of the gate's name, such as

HIGH=-TRUE INPUT GATES LOW=TRUE INPUT GATZS

mn_jjom AND

e

An explanation ol the basic logic gatas follows:
I. NON=-INVERTING BUFFER
This device is used primarily to increase the load handling
capabilities of another device. The output of this device will
always be the same logic level as its input.
ANALOGY :

.

7

Closing the switch turns

the lamp ON. Opening the
switch tarns the lamp OFF.

The switch closed represents a aigh input
éq The switch open represents a low t

e

The lamp on represents a high output
The lamp off represents a low output

LOGIC SYMBOL:

BOOLEAN EQUATION :

II. INVERTING BUFFER
- This device is used primarily for logic level inversion. The

F—
-4
J

A - Input
‘—-Do—q Q - Output

The small circle at the end of the
gate indicates output inversion.

TRUTH TABLE:

A Q

1 0

0 S !
BOOLEAN EQUATION:

A = q

g, AP
This device used primarily to indicate whether ar not all of its
inputs are high at the same time. The output is HIGH=-TRUE.

ANALOGY:
~he—rg ¢ A switen closed represents a high input

- A switch open represents a low input

- Q The lamp on represents a high output

The lamp off represents a low ocutput

Both switches must be closed
to twn the lamp one If either
or both switches are open, the
lmp will be off,

LOGIC SYMBOL:
L Spe—
Q A& B -~ INPUTS
B
- < - OUTPUT

L.l

3

TRUTH TABLE:

A B Q
0 0 0
0 3 0
1 0 0
1 1 1
BOOLEAN EQUATION :
A+ B = Q

IV. NAND
This device is used the same as the AND, except the output is LOW-TRUE.

ANALOGY :

AI A switch closed represents a high input
{ Q A switch open represents a low input
B/ @ The lamp on represents a high output

The lamp off represents a low output

When both switches are closed, they
out the lamp and turn it off.

light one.
LOGIC SYMBOL:
A
Q A & B - Inputs
B_'_"'f Q - Output
IRUTH TABLE:

H +H O of »
H O +H O|w
QO 4 +H H|loO

h Il-h

BOOLEAN ATION s

Ve OR

This device is used to indicate when at least one of its inpats 1s

high. The cutput is HIGH-TRUE.

ANALOGY :

Closing of either or both switches

A switch closed represents a high in]
A switch open represents a low input
The lamp on represents a high ou t'\
The lamp off represents a low cutput

tens the light on. All the switches
mst be open to twrn the lamp off.

LOCGIC SYMBOL:

A

B

TRUTH TABLE:

BOOLEAN EQUATION:

A & B - Inputs

Q - Output

H K o O |pm

H O = O |w

~ + o |o

L.1-5

BOOLEAN EQUATION :

A switch closed represents a high input
A switch open represents a low input
lamp on represents a high output
lamp off represents a low output

A & B - Inputs
Q - Output

ol »

o

I-'Ol-‘ow

© © o H|o

A + B

P 4

-‘a

ViI,

EXCLIBIVE - OR
mgdavmumodtomicatswhmm,mdmlym, input is high.

The output is HIGCH-TRUE.
ANALOQY ¢

A switch in the "1" position
represents a high input

A switch in the "2" position
represents a low input

The lamp on represents a high output
The lamp off represents a low output

For the lamp to be on, one switch
must be in the "1% position and cne
must be in the "2" position, Othere
wise, the lamp will be off,

LOGIC SYMBOL:

A
B
e = Qutput

TRUTH TABLE:

oo
O

o
o

o
H o
O M

BOOLEAN EQUATICN :
A@B =~ B+ B =g

L‘ 01-7

VIII. EXCLUSIVE=-NOR
This device is the same as the EXICLIBIVE-OR gate, except the output

iz LOW=TRUE.
ANALOGY :
A A switch in the "1" position reprssents
a high input
Q A switch in the "2" position represents
T 1 A2 a low input
B The lamp on represents a high output
The lamp off represents a low output
The only way to short-ocut the
lamp and tarn it off, is to
have one switch in the "1"
position and one switch in
the "2" position. Otherwise,
the lamp will be one
LOGIC SYMBOL:
A : ;
B
Q - Output
TRUTH TABLE:
A B Q
0 0 5)
0 1 0
1 0 0
1 1 k2
BOOLEAN EQUATION :

A @B = AB + B = Q
IX. DISSCUSSION OF LOW-TRUE LOGIC
The preceeding discussion on the basic logic gates has not discussed
gates with LOW or NEGATIVE-TRUE inputs, This is because there are no
I.C.'s specifically designated tqr LOW=TRUE inputs, but a close examination

L.1-8

of the truth tables shows the following relationships:

NOTE: In the following truth tables, "L" & "H" are used instead
of #lv & no® to reduce the confusion of what is a LOGICAL

nlY or 0" between HIOH-TRUE and LOW=-TRUE input LOGIC.
M L€ 0,8 volts and an H= 2,0 volts,

HIOHTRUE INPUT - LOW=TRUE INPUT
HIGH-TRUE AND - LOW=TRUE OR
A A
Q
B__| B
Al Blg AlB]q
AR A s N
L|E]|L sl
ElLlL ElL|L
E| 5 |H H|HE|H
HIGH=TRUE NAND w LOW=TRUE NOR
A
B 8 B i
A| B Q Al B| Q
L|L|=H LiL!H
LIiH|H L| H} H
H|lL|=H HiL| ®
H|H|L Hl ®HlL

hol‘g /

LOW=TRUE AND

HIOH-TRUE OR

B—q

LOW=TRUE NAND
g

HIGB=-TRUE NOR

. Lel-10

FLIF-FTOPS

I. Re8 LATCH:
T™he R-8 latch was probably the first type of flip=flop ever built,
(R = Reset & 8 = Set)e

Q| Qq
x| 1x
l1]|o0
011

-

© +# o |w

M o olw

1l | NO CHANG
3%' #Not allowed
To make the R8 latch into 2 clocked flip-flop, a clock input must be
added,
II. R-8 FLIP FLOP:
The R-8 flip-flop is the simplest of the flip-flops.

Ol

Q |[R|s|Qq]|Q
0 | 0 [NO CHANGE
CLOCK ©f1i1]0
1lofofs
3|2

1 [1#] 1s
R"—T ' #Not allowed

Thoadditd.onaft-hnwoNANDgateawiththoclockinputchanges it
into a clocked R-8 flip-flop, The inputs (R & S) can only change the
outputs (Q & Q) during a high input clock Pulses The B3 fiip-flop is
usually dram in this mammer:

—R Q[
s Qq—

III. DATA OR D-TYPE FLIP-FLOP:

The D-Type F. F. is used primarily for a data latch. It can be made

effectively from an R-S F. F. by:

D Q| Q

D._T-D)_R Qp—o Q
CLOCK o cL _ 11310
S QpP— Q 0 0 1

Iv, J-K TYPE FLIP-FLOP:

The J-K or Master-Slave F. F. is used whenever data is to be trapped
and latched at a given instant in time, such as in shift registers. It can

be effectively made from two R-S F. F.'s by:

J K Q
0 0 Qn WHERE :
Qn = value
K o R Q S Q ¢ Q 0 1 0 of Q-during
CLOCK =g C L. .D;. CL previous
J e— }r_.s Q R o) ¢ 3 1 0 | 1 clock cycie.
1 (1] Qn

V. TOGGLE OR T-TYPE FLIP-FLOP:

The T-Type F. F. is used primarily in counters. It can be effectively

made from a J-K (Master-Slave) F. F. by:

L 9 | @
1 1Y 0
T | J Q Q
CLOCK o L _ of 110
K Q pb—e q
1 0 1l
0 Q X

For every complete clock cycle (|), Q and § go through % of their
cycle. Therefore,'the T-Type F. F. divides the clock frequency by 2 as long

as the "T" input is held high.

Lh.2-2

DECODE.S/D:MULTIPLEERS

DECODERS :

These devices are most commonly used for address decoding. They are
avallable in 2-line to 4-line, 3-line to 8-line, L-line to 10-line, L-line
to 16-line configuration. For simplicity, a 2-line to L-line decoder is

shown below:

A + 0
Bl A|jO] 1] 2| 3
i oflo|L|H|H|H

B 1
to{ 1| H| L| H| H
l1{0|H|H|L|H
}2 1{1|H|H| H| L

Where "A" is the least-
significant bit and "B"
is the most-significant
bite

Y

With this device, it only takes 2 lines to specify or enable L different
devices. The output is low-true.

DEMULTIPLEXERS :
These gates are the same as a decoder, except the NAND gates have an

additional input for data. This device separates serial data on cne line

to separate lines. 0
]
A Blalof1j2;3
!]
e l0 Ol D{ H| Hi H
L—- 0|18y D] H{ H
B . |
- 1{0jH{H{D}| H
: 2
1l X |\ H H| H}] D
Where "D'" is the DATA
DATA IN 3 ;nr;:?:tad to the data
.——D A ;
L.3-

ENC O SER/MUL Y PLELERS
T T T ——

ENCODERS s
These devices are used to convert several inputs into a few encoded
lines. These are uwsed on keyboards and multi-position switches.

1 e 1238 [a
A L{rjr]o|o
E{L|L]|o0o|1

2 o
) B L|e|L|1]o

3 & <l

LiL|BE]1{1

MULTIPLEXERS s

Multiplexsrs or Data Selectors are used to select one of several data
sowrces and place the data from that source onto a single output line. These
are available in 4 to. 1, 8 to 1, and' 16 to 1 canfigurations.

cd i

Cl

ce

c3

Uelele

h ah"l

C3

c2

Cl

cg

= DON'T CARE

X

L.l-2

INTERFACE DEVICES

OPEN-COLLECTOR LOGIC

There are several instances where a large multiple input OR gate
is needed. In certain cases the common practice is to create a
WIRED-OR. This is done by wiring two or more gate outputs together
to create a single input into another gate. The WIRED-GR is a LOW-TRUE
output. The WIRED-OR is used frequently to OR several interrupts together.
BUT, this procedure CANNOT be done with just any logic gate. The
standard TTL logic gate has both active pull-up and active pull-down.
Therefore, if two standard TTL outputs were tied together and one output
was high, while the other was low; each gate would try to make it's
output prevail wntil finally one of the output transistors of one of the
gates burned out.
The only type of logic that can be WIRED-OR together is OPEN-COLLECTOR

logic. The internal differences of the output driving circuits is shown

below:
STANDARD TTL ' OPEN-COLLECTOR
OUTPUT DRIVER OUTPUT DRIVER
Vee f V Vce

i EXTERNAL

PULL-UP

| RESISTOR

~ OUTPUT

L.5=1

NOTE: The open-collector logic has no internal pull-up device (neither
active nor passive). Therefore, the gate can ONLY pull what is attached
to its output to ground. Since there is no pull-up device in the gate,
several of these types of outputs can be wired together with no ill
effects. But their combined outputs must have two states (high and low)
to be of any use as an input to another gate. Therefore, an external
pull-up resistor must be added to the junction of the WIRED-OR. The

value of the resistor is calculated by:

2.6 L.6
PP o

Ir;, = Total of the leakage currents of all the gates of
the WIRED-OR when their outputs are all high.

Is = The lowest maximum cwrrent sinking capability of

any of the gates forming the WIRED-OR when its
output is low.

TRI-STATE LOGIC

In a micro-computer system transferring of data from one part of the
gsystem to another is done via the DATA BUS. In a large number of systems,
the number of devices attached to the data bus exceeds the load driving
capabilities of the microprocessor or other devices that are connected to
it. Therefore, there is a need to buffer the sections of the system to
the data bus. There is always more than one section connected to the data
bus, so for intellegent communications, one and only one can comaunicate
to the bus at any one time. Therefore, there is a need to turn off or

disconnect all but the section that has been enabled by the processor.

L.5-2

But a large number of devices only have two output states (high or low).
So, there is a need for a special output that has three states (high, low,
or off). This is referenced to as three-state or TRI-STATE logic. The

logic symbols for these devices are below:

HIGH-TRUE ENABLES

P

LOW-TRUE ENABLES

b
b
DL
DD

L.5-3

These ostes wnen eruabled, through tne separate enable input, will
function like the standard gates that we have already discussed.
But, when they are disabled their outputs go to a high-impedance or
off-state. Therefore, many 3-state devices can be attached to a
common line without unwanted interaction as long as one and only one

is enabled to output to that line at any given time.

BUS TRANSCEIVERS

The TRI-STATE devices that have been discussed are essential
to one-way communications to a bus, BUT, the processor and a number
of other devices are by-directional and need to communicate ip both
directions with the by-directional data bus. This caused the crzation
of BUS TRANSCEIVERS. BUS TRANSCEIVERS are effectively two TRI-STAT:
buffers strapped together in such a manner as to tie the input of each
buffer to the output of the other. One of the junctions is to be
attached to one of the data bus lines while the other junction is ailtached
to the same respective line of a device or section that is to be buftered.
One and only one gate is enabled at any given time. The zate that is
enabled is determined by the desired direction of communications (IN
or OUT). This is usually done by the READ/WRITE control line. There
are usually four strapped pairs in one IC. In some Bus Transceivers,
one of the junctions (input to output) is not made within the IC to
facilitate interfacing a bi-directional bus to a split data bus or
device. If.this is not desired or needed, the user can externally make

the connection.
IN/OUT ~® OUT

L4 h -S-ﬁ

ANALYZING SOFTWARE PROBLEMS

ANALYZING SOF TWARE PROBLEMS

INTRODUCTION

The object of this chapter is to present a general procedure used to
design software to solve a problem. This procedure is completely machine
independent, and it can be applied to any software problems you are likely
to encounter. The most important thing to remember about this procedure
is that you do not concern yourself with the programming language details
until well into the solution. This is true of even the seemingly "trivial"
programs. There is no way more certain to result in a program that is
sloppy, ill-designed, and hard to debug than to try to write the program
directly from the problem definition. To be effective software must be
designed first and then implemented using the correct techniques.

5.0 The Software Design Procedure
The systematic approach to developing a programmed system is a logical
extension of the normal problem solving cycle engineers and scientists
have employed for years. It consists of seven basic steps:

problem definition,

problem partitioning,

algorithm development for each partition,

writing the program for each partition,

debugging each program,

integrating the programs back into the system, and
final system debug.

:-la\m-n-wmr-

Using this technique, the problem is broken down into smaller and smaller
sub-problems until they are a size which you can deal with conveniently
and effectively. This is because it is much easier to focus your atten-
tion on one small section of the system at a time. You develop each of
these blocks and sub-blocks into a group of detailed flowcharts and oro-
grams, each of which is tested and debugged. They are then interfaced

and the whole system tested. This systematic approach is intended to help
you minimize errors, since the small highly localized programs are much
easier to thoroughly check out than a single large, spread out program.

5-1

Graphically, the procedure is illustrated in Figure S.1. You start wiih
a central problem and partition it into logical blccks, solve and debug
each of the blocks, and finally integrate and refine the blocks into the
final system. There may be one or many levels of blocking, deperding on
the complexity of the problem. With experience, you will find this gen-
eral approach to be the most direct and consistent way to implement a
working software system, regardless of size. Less organized approaches
may work for smaller systems, but you will become hopelessly tangled as
the systems grow in size. It is best to learn the general procedure and
use it on all problems, small or large. The greatest disasters usually
occur when the whole design procedure is dispensed with because the pro-
blem is too “trivial" to warrant the general approach. Conversely, dogged
application of this approach can make many formidable problems turn out
far better and faster than anticipated.

In the remainder of this lesson we will initiate our study of the general
software solution procedure. Lessons Three through Ten will then expand
and refine the techniques used during the solution process.

§.1 Step 1l: Define the Problem

As with any procedure for solving any problem, the first step is always
the same (and the hardest): define the problem. For the case ot software
problems, you must decide exactly what the finished software system 1s to
do. This definition of the operational characteristics you want the final
system to have is called the functional specification. Naturally, it is
easier to define and specify solutions for some type of problems than for
others. Problems which are concerned with the implementation of specific
features are generally easiest. Problems which require both judgement

and implementation are the hardest. In the first case, the task is to
figure out how to do something. In the later case, it is often a question
of whether or not the job can be done, and if it can, what is the best way
to do it. For example, a program to write single data bytes onto a mag-
netic tape unit is a fairly specific problem with a similarly straight-
forward functional specification. There is little conceptual design work
to be done. It is mainly a question of using a program to control *he

5=2

PROBLEM

y

y

MAJOR MAJOR

SYSTEM BLOCK SYSTEM BLOCK SYSTEM BLOCK

MAJOR

y y

J

=

I]

SYSTEM SYSTEM SYSTEM |
SUB-BLOCK SUB-BLOCK | SUB-BLOCK |

J

|

v

DEVELOP
ALGORITHM

y
CODE
AND
DEBUG

i

INTERFACE AND DEBUG
MAJOR SYSTEM BLOCK

y

SOLUTION

e N

FIGURE S.l GENERAL PROBLEM SOLUTION PROCESS
5=3

selected hardware. On the other hand, the program required to use this
program as part of a system to format sequences of datda bytes into records
on the tape will require considerably more design. You wili have to de-
cide on record length, record marks, whether or rot you want to format the
data with parity and/or check sum, and so on. Not only that, you must
decide on the probable usage of the routine. The quick format program
required to test a tape deck's operation in the lab is apt to be quite
different from a general usage exchange format for a tape library. In the
second case you must consider problems of compatibility with different
hardware, reliability, userdocumentation, and many other details. All of
these questions should be settled in the functional specification before
you proceed to the next design phase. We wiil examine both of these

cases as examples of general problem solutions in this and later lessons.

5.1.1 Information Required For A Functional Specification
It is difficult to give a complete definition of information that 1s always

required for a functional specification. It varies widely from proolem
to problem. Simple systems can be specified adeguately in a few pages.
Large, complex systems may have hundreds of pages of specifications and
still be inadequately defined. However, the foliowing i1nformation should
always be present.

| [A concise problem statement. One short paragraph describing
the problem the system is being designed to solve.

2 Required hardware. You must know what sicnals and davices are
available or required. The exact I/0 or memory addresses are
not important at this point, but you must know the hardware
you will be using.

3 Required software interfaces. When designing programs, you
will often be placing them into systems where they will have
to co-exist with or utilize other programs. I[f this is to be
the case, it should be noted in the specification. In tnis
case, exact details are necessary; you should menticn the

5=L

relevant system standard or format (i.e., all output must
conform to system 1/0 standard 1-13) for all routines to be
interfaced. These requirements will often have a significant
affect on your design.

4. A complete description of how the system is supposed to function
when complete. This is usually the longest part of the func-
tional specification. This section should include a description
of user interaction (if any), data required, output produced,
special features, error condition handling, etc. In other words,
a complete description of how the system will look to the world
from the outside with no consideration for how it will look
from the inside.

This problem makes writing the software specification sound like a rather
formidable task. It is. A good, well thought out specification is the
key to a good (i.e. successful!) project. It is well worth the time re-
quired to think the problem through completely. If you know what you have
to do, it becomes much easier to proceed directly to a soiution than when
you must constantly stop and start to fill in the blanks in the problem
definition. Few specifications are ever totally complete, but you should
strive to get as close as possible before you start the actual design.
Once you become immersed in the details of the solution, it becomes much
more difficult to separate the normal implementation problems from those
caused by a fundamental design logic error.

Example 5.1

Consider the design of a program to interface a magnet:c tape
recorder to microcomputer. This program will controi the *transfer
of parallel data between the tape deck and the microcomputer. It
will control all tape deck hardware functions which are required to

~ perform these data transfers. The following is a possible function-
al specification.

5-5

Scope: This specification covers the program required to interface
a Magbyte Model 1010 digital magnetic tape drive to an everyday
microcomputer.

Required Hardware: The interface will require the tape drive to be
connected to the computer through two input ports and two output
ports: one data input port with parallel data from the tape deck,
one data output port with parallel data out to the tape deck, one
status input port and one control output port. Status input signals
available are End of Tape, Write Protect and Ready. Control signals
required are Tape Advance, Read/Write and Transfer Data. The timing
waveforms are shown in Figure 5.2.

Software Requirements: The I/0 routines must conform to the normal
system requirements: output data to be passed via the C register

(or the appropriate register or memory location for your system) and
input data is to be returned in the A register (or the appropriate
register or memory location for your system) upon exit. The routines
must restore any registers or memory locations used.

Operational Description:

Input Operation: Upon call, the routine will generate all timing and
control signals required to transfer one data byte from the tape in
the tape drive into the processor. It will then return to the call-
ing program with that data byte. If the tape drive status indicates
End of Tape, an error indicator should be set on return. Otherwise
it should be reset.

Output Operation: Upon call, the routine will generate all timing

and control signals required to transfer the data byte passed from

the calling program onto the magnetic tape in the tape drive. If

the tape drive status indicates End of Tape or Write Protect, an error
indicator should be set on return. OQtherwise it should be reset.

5-6

READ — ADVANCE TAPE

—> READ/WRITE

<— END OF TAPE

—> TRANSFER
<—DATA(S) Z////////////PON' T CAREZ/7//7///////ADATA STABLE
<— READY woka] |

If
I

WRITE —> ADVANCE TAPE

—

— READ/WRITE

<— END OF TAPE

HIGH IF PROTECTED
<— WRITE PROTECT
LOW IF ENABLED

— DATA 7//////00N'T CAREZ/////f DATA STABLE

— TRANSFER

<— READY

—> ADVANCE TAPE
END OF TAPE

<— END OF TAPE

FIGURE 5.2 TAPE DECK TIMING WAVEFORMS
51

The above example is the specification for an 1/0 driver routine. All an
I/0 driver does is control the transfer of data between the computer and

an 1/0 device. Note that the specification makes no mention of the re-
quirements for initialization of the tape drive, how the data is to be
formatted, etc. This is because an I/0 driver is strictly concerned with
transferring data to or from the device it interfaces. It is the responsi-
bility of those programs which utilize an I/0 driver to interpret the data
and signals returned. A complete tape I/0 system which will use this
driver will be discussed in Lesson 7.

§.1.2 Using the Functional Specification

The functional specification is the base upon which you will build your
system. If it has been properly designed, it will support and guide the
rest of your problem solving effort. If it has not been properly designed,
your project is probably doomed to failure or overrun before you even get
started. Therefore, once you have established a functional specification,
use its If you don't, you are apt to run into that dreaded software

disease known as "creeping features". This happens when an inadequate or
disregarded problem specification allows non-specified "neat" features to
creep into the system after work has begun. This can be disastrous, be-
cause changes easily accommodated in the planning stage can require massive
effort and re-design work during the implementation stage. Usually, the
farther work has progressed, the more effort is required to make any sig-
nificant changes. The disease is often well advanced before detected and

it can be fatal to even the best software projects. (Professional engineers
note: marke*ing departments are notorious carriers of this disease. While
they seldom show any symptoms, they are known to infect entire departments.)

The above comments should not be construed to mean that advanced features
are to be shunned or omitted. Far from it. The microcomputer makes these
features both possible and attainable. What is meant is that they snhould

be designed in from the top, not added from the side. Therefore, when you
design your functional specifications, take some time. Brainstorm for a
while and come up with a Tist of features that the system can really accom-
plish. Try trading off some hardware and software to lower cost or increase

5-8

system performance. Microcomputérs make whole new fields of features
possible, and it is worth your time to see if you can find some for your
project. But once that functional specification is done, stick with it.
If really drastic changes are needed, you will probably be better off
starting over than trying to patch an inadequate specification.

6.2 Step 2: Partition The Problem Into Function Blocks

Once you have completed the functional specification for your system,

you can begin to partition it into operational blocks. An operational
block is a section of the system which is responsible for performing some
specific system function. Operational blocks can be as complex as a com-
plete floating point arithmetic package or as simple as a few instruction
data conversions. In system operations, control passes from one functional
block to another as the program executes. In this respect the block diagram
can actuafly be considered as a type of overall system flowchart. It dif-
fers from the flowchart in that it does not specify the actual algorithms
used to implement the functions (see Section §.3). You first design the
structure of the program as a series of successively more detailed opera-
tional blocks until you reach a level of complexity that you can deal with
effectively. You then proceed to algorithm development for each block.

Blocking and partitioning are the cornerstone of converting a functicnal
specification into a functional program. You can have as many levels of
blocks and sub-blocks as the problem requires. When you are first learn-
ing, you should not hesitate to block down to sections which seem almost
trivial. As you gain experience you will be abie to judge more accurately
what size blocks you can comfortably handle. Also, extremely involved

or complex sections of a system may require much more detailed blocking
than the more straightforward sections. The flexibility of blocking is
that it allows you to easily adjust the level of detail to match the com-
plexity of the problem.

6.2.1 Deciding on the System Blocks

The decision of what blocks to divide the system into initially is usually
made by referring to the characteristics defined in the functional speci-
fication. Some common initial blocks are:

5-9

a. input operations,
program functions (transfer data, search memory, do arithmetic,
etc.),
system control and timing,
output operation, and
major data structures (tables, lists, etc.).

These blocks are then drawn and interconnected to form the system block
diagram. It is important to remember that at this initial point you are
concerned with identification of the major system structures. You are not
yet concerned with their actual operation. The design of how the opera-
tional blocks will implement their functions will commence once the overall
system structure has been established. In theory, it should be possible
to implement the system in either hardware, software, or some combination
of hardware and software at the end of the blocking operation. This
leaves you with the maximum flexibility for actual system implementation.

Example 5.2

Let's take the specification for the magnetic tape I/0 driver we
wrote in Example 5.1 and do the block diagrams for that system.

We can see from the functional specification that we will reguire
blocks to input data, output data, and control the data transfers.
Figure 5.3a shows an initial block diagram for this simple system.
Note that it shows all data and control signals that are passed
through the system. Since the data is transferred to and from the
tape deck in parallel form, no further blocking is needed for the
Input and Output blocks. However, the control block is required to
perform several operations. It must detect end of tape, control
the read/write line, sense a write protect condition, and 2qvznee
the tape. This block is sufficiently complex to warrant sub-blocking.
It is shown sub-blocked in Figure 5.3b. Note how all inputs and
outputs of the sub-block diagram match those on the mair block
diagram. It is the same interface expanded to show more detail.

5-10

e et e

DATA TO SYSTEM ;

TAPE DATA IN ————» DATA INPUT
L
y
END OF TAPE ———»
WRITE P
“:::ig: G TIMING
i3 Faos AND
<
CONTROL

TAPE_ADVANCE

e
-

TRANSFER DATA

e

ERROR INDICATOR

TAPE DATA OUT

DATA QUTPUT

le——— DATA FROM SYSTEM

FIGURE 5.3a MAGNETIC TAPE I/0 BLOCK DIAGRAM

DATA INPUT
END OF TAPE STATUS —» TAE’E‘DDE%CT INTE};FACE
< TAPE_ADVANCE | TAPE ADVANCE [*— CONTROL ‘
CONTROL DECODE |
A L
e
<« READ/WRITE REAG/WRITE DATA OQUTPUT
) SELECT - INTERFACE

WRITE PROTECT

TRANSFER DATA

4

READY -
FIGURE 5.3b

i

TIMING AND CONTROL SUB-BLOCK DIAGRAM

FIGURE 5.3
5-11

5.2.2 Checking the Biock Jiagram

Once you have blocked out the system, step bacx ard see if it will meet
your functional specification. Be sure you have accounted for all inputs,
outputs, data transformations, systems functions, error conditions, and so
on. A useful test is to list all the required system features and verify
that you have included all the blocks required to perform these functions.
After you have confirmed that everything is there, be certain that the
blocks are detailed enough for you to proceed on to the logic design im-
plementation. If some of the blocks sound vague or only partly defined,
you may need to add more sub-blocks in that area. Repeat this procedure
untii you are convinced the system defined by the block diagram matches
your functional specification. Once you are satisfied that you have covered
all the required functions in sufficient detail, you are ready to proceed
to the next step and begin designing the actual logic functions required

to implement the system blocks.

At tnis point it is important to recognize that while we are going to
continue using the assumption that we are designing a software system, this
is not always the case. The problem specification and blocking methods we
have presented so far are perfectly general; they can be applied with equal
facility to hardware, software, and hardware/software system designs. In
the latter case, the optimum trade off between the two implementation tech-
niques will be looked for at this point. Background Sect{on C is devoted
to how these fundamental design decisions are made.

5.3 Step 3: Algorithm Development For Each Partition

Up to this point we have only been concerned with.the functions to be
performed on a block (or non-functional) level. With algorithm develop-
ment we make the transition from logical system partitions to the actual
logic required to implement the system. Most of our algorithm development
will be done using flowcharts. The flowchart is often mentioned as the
most important step in the software problem solution. This is plainly not
true. The fiowchart is simply a tool in the continuing design process
which began with the problem specification. it is no more correct to sit
down and sfart drawing fiowcharts than it is to sit down and start writing

5-12

machine code. Both operations have their place in the problem solution
procedure. Neither is satisfactory alone. Flowcharts are one possible
way to conveniently develop and check the logic of the problem blocks for
correct operation. Using flowcharts it is possible to develop program
logic independent of any specific computer. It is also much easier to
find logic errors in the symbolic flowchart than to try and hunt them

down once they are committed to program implementation. (This is particu-
larly true with the relatively primitive debug facilities currently pro-
vided by microprocessor manufacturers.)

c.3.1 Flowchart Symbols

The data processing industry has a standard set of flowchart symbols and
you should adhere to these in the interest of making your work usable to
others. (IBM produces an excellent template of all the standard symbols;
it is widely available in stationery supply houses.) The most commonly
used symbols and their functions are shown in Figure 5.4 (see page S-14).
These symbols should prove adequate for the construction of any flow-

charts you will require.

5.3.2 Type of Flowcharts

Flowcharts can be drawn to represent algorithms at any desired level of
complexity. The two most commonly used types of flowchart are the logic
flowchart and the machine dependent flowchart. A logic flowchart repre-
sents algorithm logic in general operating terms with no reference to
specific machine features (registers, memory, flags, etc.). The machine
dependent flowchart presents algorithm logic within the context of the
features provided by some specific processor. It is advantageous to
initially draw a logic flowchart for each functiona! block in the tlock
diagram. These are then thoroughly debugged and used as the basis for the
machine dependent flowcharts required for the computer you are usinc.

If you program in higher level languages, you will hardly ever use machine
dependent flowcharts. The logic flowcharts required to define the algo-
rithm to be used are all that are required. This is because all of the
machine dependent details will be handled by the language processor.

5-13

SYMBOLS

v

ADD 2.

EXAMPLES
PROGRAM FLOW. ARROWS INDICATE
SEQUENCE THAT THE PROGRAM FOLLOWS.
{ !
PROCESS. THE FUNCTION SPECIF{il | |
IN THE RECTANGLE IS TO BE PER- b A AND |
FORMED, e.g. A IS TO BE MULI- 1
PLIED BY 2)
Y

PRE~DEFINED PROCESS. THE EATER- W
NAL ROUTINE DEFINED BY THE NAMC !
IN THE RECTANGLE IS TO BE IMVOKED i CALL TTI
TO PERFORM ITS FUNCTION. e.g. THE |

ROUTINE DEFINED BY THE NAME "TT:i" i

-3

IS TO PERFORM A FUNCTION.

- —

rd

<//”A 2

-

St

!

NO
Y L Y
DECISION. THE FLOW OF THE PROGRAM | |
WILL BE BASED ON THE CONDITION :
SPECIFIED INSIDE THE DIAMOND. I A=A+ 2 I
e.g. IF A =2, ADD 1. OTHERWISE : :
L N
1/0 OPERATION. THE INPUT OR Y
OUTPUT OPERATION INDICATED IN it / /
PARALLELOGRAM IS TO BE PERFORMED, PRINT A /

-
O U

e.g. THE VALUE OF THE VARIABLE
"A" IS TO BE SENT TO AN OUTPUT
DEVICE.

TERMINAL OR INTERRUPT. THE OVAL

INDICATES THE BEGINNING OR END OF ENTER TT!
A PROGRAM OR AN INTERRUPT OPERA-

TION, e.g. ENTRY POINT FOR ROUTINE "TTI".

CONNECTORS. WHEN FLOW MUST PROCEED TO ANOTHER
PAGE OR ANOTHER PLACE ON THE SAME PAGE, USE A
CONNECTOR IF IT IS AWKWARD TO USE AN ARROW.

\

FIGURE 5.4 FLOW CHART SYMBOLS
5-1

Similarly, general algorithms and problem solutions which are to be
implemented on a variety of computers are best presented using logic flow-
charts. Any user can then take the general logic flowchart and use it as
the basis for the implementation of a solution on any computer or in any
language. As you gain experience with your particular installation, you
will be able to go directly from the block diagrams to flow charts that
are a cross between purely logical and purely machine dependent flowcharts.
However, if you intend to save the algorithm or solution for documentation
or possible use on some other system, it would be a good idea to draw a
good logic flowchart after the system is completed.

5.3.3 How to Design Algorithms

The design of program algorithms is actually the design of software, a

vast subject indeed. We will be covering a portion of that subject in the
next eight lessons. However, we can discuss some of the general procedures
used when translating a logical system block to an algorithm.

1. Decide what the block is to do. This is the same step as when we
initially specified the problem. The only difference is that it is
now being done for a small, local program rather than for the whole
system. Naturally, the label on the block will provide a gooa start-
ing place for this description. Usually a one or two sentence
description of the operation to be performed is all that is requirea.

2. Decide where the data to be operated upon is located. Is it read in,
passed from another block, looked up in a table, or what? You wiil
need operation blocks to input the required data. While you decide
where to get the data, decide if you need to do anything special to
it before you use it. Does it have to be complemented? Rotated?
Masked? Scaled? If so, you know you will need some data transforma-
tion blocks in the flowchart.

3. Figure out how to perform the required operation. This is the real
meat of the algorithm development. This will be where you combine
process blocks, data and decisions to convert the data from the input

5-15

format to the output format. This part of the process will usually
account for the largest portion of your work. Kemember, develcdiny
the algorithm is an iterative process.

It will usually take several trijesbefore you get the algorithm

correct. Start out by writing down the sequence of operations to

be performed in the order they must be performed, like "read in data,
then test for control characters, then test for lower case characters”,
and so on. This will give you that all important feel for the se-
quences of actions which are to be performed. After you have the
general flow, add the process and decision biocks you need to actually
perform the operations.

After you have an algorithm that should work, try it out with data
to see if it does work (all on paper, of course). Try to imagine
every possible data condition that could occur and then be sure your
algorithm can process it correctly. You must be certain your logic
is correct in the algorithm before you proceed to coding. Be parti-
cularly careful that your algorithm can handle error conditions.
This is an area which is particularly susceptible to errors wnich
will be very hard to detect. Be patient and thorough. Time spent
getting the logic correct in the algorithm will be time saved during
system debugging. Think first, program later.

Decide what to do with the finished data. Does it have to be specialiy
formatted? Do you save it? Pass it back to a calling routine? Qut-
put it? Add the blocks required to get the output data ready for the
receiving routine or device.

Keep the structure simple. Make it a goal to keep the flow straight-
forward, logical and rlear. Be particularly careful about how you
enter and exit from the routines. There are really only a few simple
structures you should ever need to use in construction of any algorithm.
We will examine these structures in the next few lessons.

5-16

Example 5.3
Let's develop the algorithms required for our magnetic tape drive
interface system used in Examples 5.1 and 5.2. The first thing
that becomes apparent is that the data input and output blocks are
very large blocks and very small programs., The data is to pass
through the routine in parallel without being modified. Thus the
flow charts for those blocks would be simply one block each:
y 3
INPUT DATA FROM TAPE DECK OUTPUT DATA TGO TAPE DECK

v .

The obvious conclusion is that the majority of these flowcharis wiii
be concerned with when to read and write the data, namely the timing
and control blocks. Let's take the read block first. From the tim-
ing diagram we can see that for this tape deck the sequence of control
for reading a data byte from the tape is advance the tape (from the
manufacturer's specification we find that it automatically advances
in one byte increments), test for End of Tape, set the Read/Write
line to Read, wait for data ready, read the data, then exit. The
algorithm for this function is shown in the logic flowchart in
Figure 5.5. Note how the flowchart defines a logical solution to
the problem without reference to any specific hardware.

A similar procedure is used to design the algorithm for writing aata.
For Write operation the timing waveform specifies that we advance
the tape, test for End of Tape, test for Write Protect, set the Read/
Write Tine to Write, set up the output data, strobe the data trans-
fer 1line, wait for Data Ready and exit. This flowchart is shown in
Figure 5.6. Using these two logic flowcharts we could then araw tne
machine dependent flowcharts or proceed direct’y on to the actual
program.

5-17

ENTER
TAPE READ

i

|

ADVANCE
TAPE

..

INPUT
TAPE DECK
STATUS

END OF TAPE

ouTPyT
READ
STATUS

QUTPUT
TRANSFER
SIGNAL

[

INPUT
TAPE DECK
STATUS

DATA READY
?
YES

INPUT
THE
DATA

RETURN

SET ERROR
INDICATOR

y
(RETURN)

FIGURE 5.5 TAPE DECK READ LOGIC FLOW CHART

5-18

(ENTER)

OUTPUT
TAPE
ADVANCE

TAPE
STATUS

[E]
[Z]

UTPUT WRIT
TATUS, DAT
AND TRANS-
FER SIGNAL

INPUT
TAPE
STATUS

YES
RETURN

4

SET ERROR
INDICATOR

I y
(RETURN)

e

FIGURE 5.6 TAPE WRITE LOGIC FLOW CHART

5-19

5.4 Objections to Flowcharts
We have been using (and will continue to use) flowcharts to represeni the
algorithms we have developed. This procedure is not universally accepted,

particularly in the data processing industry. Critics maintain, with a
certain amount of justification, that flowcharts are unnecessary and even
misleading. This position arises from the basic contention that (1) flow-
charts are only marginally useful in higher level language program develop-
ments and (2) complex flowcharts can become very difficult to follow. To
support this position they cite very valid evidence that most professional
programmers draw only very limited flowcharts prior to commencing coding.
In fact, most flowcharts for large systems are drawn for documentation
purposes after the program is complete. This situation arises from the
fact that when writing programs in modern higher level languages, algorithms
can be efficiently developed directly in the language with no intermediate
flowcharts at all.

To answer these arguments (which we really basically agree with), we must
point to two basic facts: (1) satisfactory higher level languages are
not yet generally available for microcomputers, and (2) most programmers
developing microcomputer programs are not professional programmers. The
contention that poorly structured flowcharts are hard to follow is com-
pletely true. We will always go to great lengths to keep flowchart logic
structure clear.

The first fact, the lack of higher level language availability, is obvious.
There are at present only two widely available higher level microcomputer
languages (Intel's PL/M* and various BASIC** interpreters.) Of these,
only BASIC is available for small system use. It will be some time before
common higher level languages such as FORTRAN or COBOL will be available
for microcomputers. In the interim, the work will be done in assembly
language. Even when higher level language processors become available

for microprocessors, the nature of many microprocessor applications is

*P/Mis a registered trademark of Intel Corp.**BASIC is a registered
trademark of Dartmouth University.

5-20

such that a knowledge of assembly language will still be required. Higher
Tevel languages are only marginally effective in developing programs for

use in control or real time applications. Programs of this type require

the complete control of the computer's hardware that assembly larguage
provides. For assembly language, use of the flowchart provides a pseudo
higher level language for algorithm development that can be either dependent
or independent of the computer to be used. (We will have much more on

the higher level-assembly language tradeoffs in Lesson 9.)

That most microcomputer programmers are not professional programmers is
also fairly obvious. Most current microcomputer programmers are 10gic
designers and hobbyists, many programming for the first time. Since they
will probably be forced to use assembly language, these users will be
learning programming, algorithm development, and machine structure all at
the same time. The use of assembly language programming and flowcharts
will enable us to separate these learning activities. In particular, the
initial process of teaching general algorithm development is better pre-
sented with general flowcharts than with some specific language. The
techniques pﬁesented using some specific language may reflect the compro-
mises made by the language rather than those required to solve the problem.
After some initial algorithm development training, the user may be able
to proceed to flowchart free higher level language programming. For that
initial training, however, the logic flowchart is an important teaching
tool.

To make maximum use of flowcharts without becoming unduly attached to

them we will adopt a carefully structured approach. All algorithms will
be presented in general logic flowcharts. We will not use machine depen-
dent flowcharts except in the context of specific examples. All flowchart
structures will be chosen from a small group of simple, logically suffi-
cient structures whose use can be directly transferred to most higher
level languages. In this way we will make maximum use of flowcharts while
avoiding the major objections.

5-21

5.5 Procedures After Algorithm Development

After you have completed the problem definition, block diagrams, and
algorithms, you can begin to think about writing the program required to
implement the logic system you have defined. However, it should be appar-

ent by now that if you have followed the first three steps correctly,

this step should present you with very little trouble. The blocking and
algorithm steps combined with the flow charts will have supplied the sys-

tem structure and control logic. A1l you will need to do is implement

these features using the programming language you have available. Naturally,
that is easier said than done, but if the logic is correct, the problem

will have been reduced to finding combinations of machine instructions or
higher level language statements to perform the desired operations. We

will spend the next eight lessons refining and expanding your problem

solving skills, augmenting these skills with useful programming techniques.

5.6 _Summary

This lesson has presented the general approach required to solve software
problems. All software problems can be solved by dividing them into blocks
and sub-blocks, developing algorithms for those blocks, writing programs

to implement the algorithms and interfacing the blocks back into a system
which solves the problem. The general approach to problem definition,
blocking and algorithm development was then presented and illustrated us-
ing the example of a digital Read/Write magnetic tape deck.

5-22

UESTIONS

1. Describe the general software problem solution process. Is this the
way you normally approach problems? Do you think the genera! proce-
dure can be applied to other, non-software problems?

2. Why is it important to establish and follow a functional specification
at the outset of the solution to a problem?

3. Describe "creeping features". Have you ever seen it in action? What
was the cause? What was the result?

4. Describe the difference between a logic flowchart and a machine
dependent flowchart. Which do you usually use? If you usually use
a machine dependent flowchart, do you usually draw a logic flowchart
of the solution for future use?

PROBLEMS

1. What value of A will be printed in the example flow chart below:

PRINT A

5-23

The Fibonacci series F(N) is a mathematical number sequence which is
defined for all integer values of N by the following algorithm

F(O) =0

F(1) = 1

F(N) = F(N~1) + FI[N - 2) for al1 N > 1
For example, F(2) = F(2 - 1) + F (2 - 2)

= F(1) + F(0)
=1 40
=1,
Thus the Fibonacci series can be represented as follows
N01234567...N
F(N)011235813. . .F(N-1)+F(N-2)

Draw the flowchart to compute F(N) for any value of N.

Draw a flowchart which incorporates the flowchart developed in
Problem 2, to compute and print the first 100 values of N and F(N).
(Assume that the command “Print" is sufficient to print a value.)

One simple method often used to multiply two numbers together is to
repeatedly add one number to itself. For example, 3 * 4 can be thought
of as 3 + 3 +3 + 3 =12. Develop the algorithm to multiply two num-
bers using this method. Draw the flowchart. Do you feel this is an
efficient way to multiply two numbers? Is there any way to make this
basic algorithm more efficient?

5-24

THE HARDWARE/SOFTWARE APPROACH TO MICROCOMPUTER DESIGN

THE _HARDWARE/SOFTWARE APPROACH
TO MICROCOMPUTER DESIGN

INTRODUCTION

In the course of designing a system there are a series of crucial decisions
which must be made regarding the ultimate system implementation. Through-
out the software course we are concerned primarily with the implementation
of the software portions of these systems and how they interact with avail-
able hardware. To be sure, this area is vital to the designer. However,
the thorniest problem initially confronting most designers of microprocessor
based systems is how to partition the system functions between hardware

and software implementations. This is understandable since most users are
far more experienced with hardware design than software design. However,
the plain truth is this: within the speed limits imposed by any computer,
anything that can be done with hardware can be done with software. In fact,
only a small percentage of applications will present speed problems.

Usually even these applications are only speed sensitive in areas which

can be readily identified and processed with discrete logic to make them
adaptable to a software solution. We thus have a sliding scale of imple-
mentation possibilities from applications with no software (i.e. no micra-
processor) to applications where 95% of the system cost will be in the soft-
ware. Given this wide range of possibilities, how do we decide where to
draw the 1ine? Where indeed. Assuming that the objective is to do the

job and make some money, the answer is obvious: we draw the line at the
point where we find the lowest cost hardware/software system that does

the job.

Before we can discuss how to trade hardware cost for software cost, we
must first identify the areas that affect cost in both of these areas.

For the purposes of discussion we shall consider cost to be localized in
three areas: hardware cost, software cost, and system cost. After we
have discussed the various cost areas we will be able to discuss tradeoffs
required to modify system cost and performance.

6-1

The CPU chosen for the system will have the central effect on the hardware
cost of the system. This is not because of the cost of the processor it-
self. For most systems the actual CPU cost will be an insignificant portion
of the total system cost. It is a result of the effect of the CPU on all
other aspects of the system design, both hardware and software. It there-
fore makes the most sense to discuss these costs within the context of the
CPU itself.

©.1 Hardware Cost

Hardware cost will be considered to be all of the hardware which must be
designed to implement the required system functions. This would include
themicroprocessor, memories, interfaces, clocks, power supplies, terminals,
printers, or other pre-configured peripherals.

6.1.1 System Speed

To paraphrase an old police traffic slogan, "Speed kills microcomputer
projects". This is due to the sad fact that of all the great things micro-
processors do, doing them fast isn't their best attribute. Most commonly
available microprocessors have maximum cycle speeds in the 2MHz range.
Execution of an instruction generally requires from 4 to 10 machine cycles.
Moreover, doing anything useful will require several instructions. What
all this means is that a microprocessor operates considerably slower than
conventional sequential and combinational logic. As a rough rule of thumb,
if your system requires the processor to do anything faster than 10usec
(100 kHz) you will need to be very careful in your design.

There are a Timited number of high speed microprocessors available, but
these are sets of devices, not single package microprocessors. They are
somewhat harder to use and considerably more expensive. If you begin to
use these you may discover your cost rapidly exceeding the cost of some
other form of logic implementation. Also, high speed for the CPU generally
requires high speed memories, interface logic, and peripheral devices,
further raising costs.

e-2

As we mentioned earlier, few projects have overall speed requirements that
are so severe as to preclude microprocessor use. However, they do exist,
and if you think you have one, be very careful to be certain from the start
that a microprocessor will be able to do the job. Conversely, there is no
point in paying for system speed you don't need. Speed is expensive. You
generally get a certain level of speed with the microprocessor. If you're
not using it, see if you can trade it for some interface simplicity. No
use buying a fast processor and fast interfaces if a fast processor and
some slower, dumber, and cheaper interfaces will do. We'll talk more about
this later.

6.1.2 Memory Requirements

The system memory is where you will store the programs and data required
for system operation. With most microcomputer systems this memory will
consist of a combination of read/write memory (RAM) and read only memory
(ROM). (With some processors the CPU itself contains a small read/write
memory, thus making it possible to implement simple systems with just the
CPU and ROM's. Larger systems will require additional read/write memory.)
The object of the game here is, as usual, to minimize cost. This is done
by getting as much of the software into ROM as possible. This is because
ROM can be left with power off and the program will still be there when
power is restored. Alas, such is not the case for RAM. Thus when yoOu
hear people say that programs should be in ROM because ROM is cheaper then
RAM, it isn't really true. Bit for bit the costs are becoming quite com-
parable, with many types of ROM considerably more expensive than RAM. The
fact is that RAM is not practical in dedicated systems which must maintain
the program without re-loading memory every time the power is turned ON.

Read/write memory can be broadly divided into static RAM and dynamic RAM.

A static RAM will maintain its data as long as power is applied. A dynamic
RAM must be "refreshed" periodically. This refresh operation is accomplished
by pulsing some of the address lines (usually the most significant bits)
periodically. To do this requires the addition of special circuitry to

the system. In general, the integrated circuit constraints are such that

a static memoﬁy requires more area on the semiconductor chip than a dynamic

6-3

memory of similar size. Static memories also dissipate more power per bit.
The largest RAM memories are, therefore, usually dynamic, at ieast initially.
As the device technology improves these larger memories usually then be-
come available in static form.

The cost of both static and dynamic memories has deciined and will continue
to decline. This cost is based on the absolute cost per bit for a given
amount of storage. However, the device organization and not this absolute
cost per bit is often more important in practical applications. In terms
of cost per bit, a 4096 x 1 dynamic memory may be much cheaper than a 256 x 8
static memory. However, you will need eight of the dynamic memories tc do
any good. They will require refresh circuitry, and they will take up eight
times more P.C. board space in production. If you only need a 128 byte
buffer and some miscellaneous program storage, the bigger "cheaper" memory
may cost far more. For cost effective design it is imperative that you
avoid memory overkill. Design in what you need, allow some extra for un-
foreseen difficulties and reasonable future expansion and stop.

The advances in memory technology are impressive and they receive lots of
publicity. But the fact remains that few systems for mass production will
require vast amounts of RAM. Often minimum package count and ease of
system interface will be far more important than sheer volume. Buy one
development system with lots of RAM. Use it to develop lots of systems
with only the RAM required to do the job.

With ROM's, the situation is considerably different. Read only storage is
really only useful organized in multiples of the computer's basic data word.
It doesn't make much sense to mask program two 1023 X 4 ROMs for use in an
1024 X 8 system. As a result, ROMs are widely available for eight-bit
processors in sizes from 8 x 8 to 2048 x 8. ROMs are available in three
types, each suitable for certain areas of application: EROMs, PROMs anc
masked programmed ROMs.

An EROM is a ROM which can be erased and re-used. An EROM can be prograi:i o
and, if errors are found, erased and reprogrammed. Erasure is accomolishe~

6-4

by exposing the EROM to intense ultraviolet lignt for a half hour or so.
In this way the EROMs can be re-used indefinitely. EROMs are the most
expensive type of ROM. They are best used in development work or low
volume production equipment which require frequent changes to the operat-
ing program.

A PROM is a ROM which comes from the manufacturer with all locations as
one's or zero's. It can then be programmed by the user. Unlike an EROM,
however, once programmed a PROM cannot be erased. PROMs are somewhat
lower in cost than EROMs. However, frequent program changes can quickly
make them more expensive. They are best used in production systems which
will require few changes but whose production volume does not justify a
mask programmed ROM.

A mask programmed ROM is fabricated by the manufacturer to contain the
desired program. It is neither field programmable nor erasable. A ROM

is ordered by sending the semiconductor manufacturer your program. They
then generate a custom ROM from your specification. The cost of ROMs pro-
duced this way is the lowest available. However, the semiconductor manu-
facturers charge a flat fee for the generation of the required mask. This
cost makes mask programmed ROMs cost effective only for those high voiume
products whose program will never (hopefully) require change.

€.1.3 1/0 Requirements

It is rapidly becoming apparent that 1/0 is the soft underbelly of most
microprocessor based systems. Interfacing the microprocessor to the rest
of the system is always a requirement. The microprocessors currently
available generally provide only enough interface capability to directly
interface one normal TTL device. This means that all signals in and out
of the microprocessor must be buffered. Further, control signals must be
decoded, interrupts must be processed, data must be latched and held until
the processor or peripheral is ready to accept it, and many other system
requirements must be met. All this falls within the realm of [/0.

The fundamental element of microprocessor [/0 operations 1s the [/0 port.
An 1/0 port is the point where the signals to ana from the various 1/0
devices meet their respective signals from the microprocessor. 1/0 ports
provide both buffering and some control decoding. The I/0 addresses sent
out by the CPU are decoded to provide an enable signal to a specific 1/0
port, thereby gating the information from that port onto the system data
bus for a read operation or gating the information on the system data bus
into the port for a write operation. The mechanics of how the port works
are not as important as the realization that all data into and out of the
microprocessor is going to have to pass through [/0 ports. This means
that you will want to get your money's worth out of every port. To help
you do this, some processors provide a small number (usually two or four)
of I/0 ports right on the CPU chip itself. If you only need one or two
ports for a simple system, this can be a significant cost saving factor.

After you've got the I/0 ports, you then must design the special logic
required to control the devices or circuits you are interfacing. For most
microprocessor applications this is where you wiil do the majority of your
hardware design. If you do lots of microprocessor systems, you will
eventually arrive at some standard [/0 port design, but there wiil aimost
always be some detailed interface design work to be done.

When making the decisions about how to implement your I/0 perts and control
logic, you may be able to obtain some cost advantage by using a specislized
interface device. Some microprocessor manufacturers have designed special
families of devices to ease 1/0 design. These devices usually consist of
several I/0 ports, some defined logic functions, and all required contrc!
logic required to interface some device directly to the microprocessor with
little or no external logic. For example, the data ports, control logic,
and interface circuitry required to input and output parallel data directly
to a serial interface is one popular example. Others include interrupt
handlers, real time clocks, bi-directional data ports, and so on, with

more becoming available as the industry defines what functions are commonly
useful. If you can find someof these to fit your needs, they can save

you mone}.

€-6

[/0 design is the area where you can often achieve significant savings by
trading hardware for software. It is also the area where you may be able
to trade some cost for enough added speed to make a usable system. 1/0
design is an area where creative use of software and hardware will result
in optimum system performance at lowest system cost.

©.1.4 Peripheral Devices

In terms of production cost the most expensive portions of your system

can easily turn out to be those assemblies you have to buy pre-assembled.
A1l types of computer keyboards, displays, printers, tape equipment, A/D
and D/A converters, and similar peripherals are very expensive relative

to the cost of the microprocessor hardware. In the normal microprocessor
system these devices account for over 50% of the hardware cost. I[f you
must include these components in your system, it is very important to make
a very careful analysis of whether or not your product is still cost effec-
tive. It can be devastating to have to add a $75 keyboard to a micropro-
cessor system where the total component cost is only $50. In this type

of situation you might see if you can use a less expensive device and add
the other features with software. All these types of decisions must be
weighed carefully before you start the actual design.

6.1.5 Device Support

Into this category we toss all those microprocessor system details that
drive your system cost up. These are particulariy obnoxious because they
are often overlooked until it is too late. The three most common offenders
in this category are clocks, power supplies and interface requirements.

The system clock is used to provide the timing signals required to run the
CPU and some of the other system logic. From a cost standpoint, there are
two areas of interest: who generates the clock and how good does it have
to be. In the first case the answer is either the CPU or the system. If
the CPU generates its own clock (it may need an external resistor and
capacitor), you don't have to worry about the seéond question. If you have
to generate the clock, you definitely have to worry about it. Some micro-
processors are very finicky about their clocks. This means special driver
e-7

chips, crystals, logic, power supplies (i.e. money). If you are in a
very cost sensitive operation, this can make a significant difference.

In addition to the main CPU clock, certain interfaces will require their
own clocks. This includes serial interfaces, real time clocks, and many
special interfaces. In some cases you may be able to derive the required
clock(s) from the main system clock. If not, you will have to plan on
the added cost of the required additional clock(s).

Power supplies are another area where requirements differ widely from
microprocessor to microprocessor. Some microprocessors will run off

the same +5V power supply that is used for all the logic. Some require
up to three different power supplies. Power supplies are not cheap and
you can quickly add a large cost to the system that you may be able to
avoid entirely by chosing a different processor. (Note: after you go to
the trouble of picking a microprocessor, be sure the rest of the system
runs on the same voltages. It doesn't make much sense to cut corners to
get a single supply microprocessor and discover the memories chosen need
three supplies anyway.)

Besides paying attention to the number of system power supplies, you must
be aware of the overall system current requirements. These requirements
can vary widely, depending upon the CPU, memories, and interface logic
used. You must be certain that your power supplies can supply enough
current to meet peak system usage. Conversely, you don't want to pay for
more capability than you need. To solve this problem, you usually don't
settle on the final production power supply ratings until the system is
complete and its power requirements are characterized. This is in contrast
to the selection of the system hardware, where the number of supplies to

be used in the system is determined before beginning the design.

Interface requirements relate to support circuitry required tc use the
microprocessor with other devices in the system. A microprocessor that
is very easy to use among the members of its own family of devices may
turn out to be a horror to interface to the rest of the world. This is

6-8

particularly true of P-channel devices to be used in N-channel or TTL
systems. Incompatibilities among system components can lead to problems
and increased costs all over the system, including the previously mentioned

clock and power supply areas.

©.1.6 Microprocessor Hardware Selection Summary

It should be obvious from the preceding brief discussion that picking
Even ignoring the software

microprocessor hardware is a tricky business.
criteria, you must be very certain you get a devicewhichwill meet your
system requirements at the lowest cost. It is important to remember at
this point that lowest system cost may not always be the same as lowest
possible hardware cost. Modification ease, maintenance and other factors
may enter into the picture. There are times when you may want to knowingly
allow some extra hardware cost to lower the costs in some other area. We
will point out these areas as we go along.

6.2 Software Costs

Software costs are insidious. You can't see it, or feel it, or hear it,
but software can break your microcomputer project faster than almost any-
thing. As hardware systems and peripheral devices become more and more
standard, more and more of the design-to-price burden is going to fall on
the designer who has to design the software to hold these hardware blocks

together.

Software is characterized by a very high development cost and a very low
duplication cost. By way of example, IBM's software development of 0S 360
(a very large and complex software project, to put it mildly) is estimated
to have taken over 5000 man_years of development time. However, the entire
system can easily be duplicated and stored on $1000 worth of magnetic tape.
As we said, duplication is cheap, development is expensive. This character-
istic brings with it the following generalization: software for use in
high volume products must be fixed. It is absolutely not possible to pro-
duce low cost custom software. Once you commit a program to ROM, don't
consider changing the program unless you are prepared to change every other
identical ROM in every other system. (Not to mention updating all

6-9

reference documentation.) The cost of custom software (unless you are in
that business) is so high as to completely preclude it from volume systems.
The software development cost very quickly completely overshadows the hard-
ware cost.

Software exerts cost pressure on projects in two basic ways. The first

is when poor technique and analysis lead to systems with inefficient use

of expensive hardware resources. This causes the system to end up with
more memory than it really needed, high speed interfaces that could have
been eliminated with good software, extra I/0 ports that some software
multiplexing could have eliminated, and so on. The second way software
raises cost is in the development/support cycle. This results in late
projects due to inadequate time requirement forecasting, program bugs that
turn up just after you take delivery on 10,000 mask programmed ROMs,
documentation that requires a complete software system redesign when the
program has to be changed a year after release, and other gory, expensive
examﬁ]es. Of the two areas software causes problems, the second is far
more serious than the first. The first set of problems will naturally
become less severe as you become more familiar with hardware/software
system designs. (After all, that's what this course is here to teach you.)
The second set belong to that group of problems that the entire computer
community suffers along with year after year. Some progress is being
made, but it is still a thorny problem. Good engineering practice is

your best defense. Remember this basic rule: hardware and software design
are equally complicated. The only difference is the rules.

Let's look at those areas where software can raise (or lTower) your hardware
costs. Remember we are considering a sliding cost scale from all hardware
to virtually all software.

6.2.1 Processor Organization

The architecture of the processor you choose for your system can have a
significant effect on your software costs. This is felt primarily in two
areas: memory and 1/0. A processor which is deficient in memory address-

ing modes will require larger programs to accomplish the same job as a

6-10

processor with more flexible addressing. More program means more memories,
and more memories means more cost. A lack of on-chip registers may re-
quire you to use memory for temporary data storage. These memory references
take more time during program execution and may make the difference between
a simple (i.e. cheap) interface and a more complex (i.e. expensive) one.

A versatile interrupt system may enable you to do most of the interrupt
decoding with logic built into the CPU. Otherwise, you will have to add
more service routines, 1/0 devices and money. A processor with a versa-
tile instruction set may enable you to implement your programs much more
efficiently, thereby saving memory space. The list goes on and on. Any
area of the microprocessor's architecture can become a cost sensitive

point in certain applications. The ultimate goal is to find the cost
sensitive areas in your application and pick a processor that is strong

in those areas.

6.2.2 Program Structure
The program structure, just as with the processor architecture, exerts its

primary effect on the system memory requirements and 1/0 structure. Poorly
designed programs will often take twice the memory of more carefully de-
signed programs. You must balance the time and cost required to optimize
programs against the cost of memory saved. Ideally, you will become
skilled enough to design near optimum code the first time, thereby avoid-
ing the expensive refinement procedure. Also, different program structures
can be used to get maximum speed of program execution in speed sensitive
areas. Failure to take advantage of these structures can result in the

use of more expensive I/0 interface hardware than is actually needed.

The different program structures and their tradeoffs in speed and memory
usage are discussed throughout the software lessons.

6.2.3 Implementation Language

The level at which you develop your programs has its primary effect on
system memory size and overall system speed. Programs developed in higher
Tevel languages will generally be faster to develop, but they will take
more time to .execute and occupy from two to ten times more memory than the
same program done in assembly language. Assembly language programs can

6-11

be designed for optimum memory usage and system speed but they take more
time to develop. A data processing industry estimate is that assembly
language programs take from two to five times longer to develop than com-
parable higher level language programs. This is particularly true of
large, complex systems. You must balance the cost of development against
the cost of the additional hardware resources. As a general rule, higher
lTevel languages will be lower in cost for small quantities of systems with
assembly Tanguage becoming more cost effective as production quantity
increases. (This assumes the higher level language programs can meet all
system speed requirements without extra work.) The higher level language/
assembly language tradeoffs are discussed in Lessons 9 and 10.

6.3 Systems Cost

Beyond the costs associated with producing the hardware are those costs
associated with developing and maintaining the product. Unlike production
costs, which are incurred as a function of how many units are produced,

these costs are largely independent of production. Indeed, it is possible
to incur very large costs in this area and never produce a single unit.

6.3.1 Development Costs
System Development Costs include all of the expenses you incur during the

design of the product. Since these costs will be incurred prior to pro-
duction, they will usually have to be met from your available resources.
The areas of cost in this phase are all well known. However, the addition
of software development adds a few extra categories.

Hardware Selection

A1l time and money spent evaluating various microprocessors and
system components prior to commencing the actual system design.
This would also include all analysis of crucial timing and inter-
faces and the initial partitioning of the system into hardware and
software blocks.

Hardware Design
A1l time and money spent designing and cebugging the hardware required
to implement the system hardware.

6-12

Software Design

A1l time and money spent designing and debugging the programs
required for use in the system. This may include a significant
amount of expense for timesharing computer usage if you do not
have the required program translation facilities available in
house.

Development Tools

This includes any special hardware (such as a microcomputer
development system or special test hardware) you have to buy
for debugging and checking out the system design. Some of
this cost will actually be spread out over all developments
which end up based on the same microprocessor.

Documentation

A1l cost spent in developing the user manuals, production
documents, reference specifications, and other documents
essential to converting a working lab project into a viable
product. This cost should not be underestimated. Thorough
documentation will probably consume 20-25 percent of your
development budget. However, it will be money well spent as
your product matures and requires changes.

Marketing
This is the cost incurred in taking your finished product

from the lab and presenting it to the world. This is not
usually an engineering activity.

6.3.2 Modification Costs
Once you have a working product, there is always the possibility that you
will want to issue a new, improved version. This is one area where a

microprocessor based system can really save you time and money. In a
total hardware system, a design extension or re-design will usually mean
an almost total re-investmentof the initial development costs. However,
with a microprocessor based system you may be able to make substantial

6-13

functional changes with Tittle or no changes to the hardware. .This is
because a software system can be re-configured by changing the program.
Bearing in mind that all the software cost rules still apply, this is
still usually a very effective technique. Expanding or changing an exist-
ing system is one area where you will find that the money spent on docu-
mentation was well spent. It can often make the difference between a
successful and cost effective design modification or a complete re-design.

Program changes will often not be effective in products which were optimized
so completely initially that there is not much extra hardware left to work
with. The program can, after all, only perform functions which use avail-
able hardware. No matter how clever your programmer, if there isn't

enough memory or I/0 ports, some things just won't be feasible. If you

have a product which looks like it is a candidate for later expansion, you
may wish to incur a little higher production cost initially by adding some
hardware for later use.

6.3.3 Maintenance Costs

Any cost you incur when your product fails in the field comes under this
heading. ATl those field servicemen, return clerks, rework lines, and
other support are expensive. Here too, the microprocessor can save you
money. Almost by definition, the microprocessor must communicate with

the entire system. This means that with the addition of some programming,
memory, and some small amounts of hardware you can convert your micropro-
cessor based system into its own diagnostic tester. You may not need to
provide thorough tests, but even some simple tests can make troubleshooting
a lot easier. Anything you can do to make testing and servicing easier
will Tower your maintenance costs.

Naturally, you must weigh the benefits of self-testing against the cost
it will add. Often, however, you will discover at the end of the project
that you have some extra I/0 lines or a partially full ROM. Since these
are going to be there anyhow, you may as well use them if you can. Since
this type of thing is not usually discovered until well into the project,
the addition of self test features at that point is one of the few times

6-14

when it may be desirable to add features after the design has started.

However, if you want to be sure you have self-testing you should never

wait to see what is left over. In that case, the self-testing features
should be designed in like any other system feature.

6.4 A Perspective On Costs

Now that we have examined the various component costs, let's see how they
relate to the total cost per unit of our proposed product. Over the total
life of a product, the cost can be represented by the following general
equation:

TC = %§-+ vC where TC is the total cost per unit,
FC is the fixed cost required to develop
and maintain the product,
VC is the variable cost associated with
producing each unit, and

N is the number of units.

The terms in this equation can now be further broken down into those cost
areas we discussed in the previous sections. Thus the fixed cost portions
of the equation would turn out to be the development costs of the hard-
ware and software, the documentation, the modification costs to the line
of products, marketing, and all other cost which is incurred regardless

of the volume of product produced. These costs are amortized over the
number of uhits produced; the larger the number of units produced, the

lower the fixed cost per unit.

The variable costs would be the cost of all the hardware components, produc-
tion labor, field service for the percentage of units which prove defective,
and all those other costs which vary based upon the number of units pro-

duced.

It is clear from this equation that the area where we will want to direct
our cost reduction effort is dependent upbon the quantity of units produced.
For small quantities of units, we will want to minimize the fixed costs.

6-15

In practical terms this means using higher level languages (when available),
hardware that is designed for ease of debugging and high reliability, and

a general emphasis on development speed rather than low cost production.
Conversely, for high volume production we will want to absolutely minimize
production costs. This means highly optimized programs to minimize memory
use, maximum use of program controlled interfaces to eliminate unneeded
hardware, mechanical designs for easy production and any other techniques
which can be used to hold the cost down.

The exact point at which the emphasis shifts from fixed cost reduction to
variable cost reduction naturally changes for every product. In general,
the more expensive the final product, the lTower the emphasis on the variable
costs.

6.5 Trading Off Software and Hardware

Now that we have discussed the main factors affecting system performance
and cost, we can discuss the areas where system problems will force us tc
trade off hardware and software to modify system performance and cost.

As we mentioned earlier, high speed (programmed, hardware, or whatever),
large numbers of parcs, and complex software are él] expensive. We will

be trying to implement all required system functions using the minimum
cost combination of these items.

©.5.1 Conditions Which Lead to Design Trade Offs

In the course of the design we will be faced with several possible project
conditions, some of which will require us to consider the various possible
system tradeoffs. These conditions can be summarized as follows:

system speed too low, system cost too high,
system speed too low, system cost acceptable,
system speed acceptable, system cost too high,
system speed acceptable, system cosf acceptable,
system speed excessive, system cost too high,
system speed excessive, system cost acceptable.

o O W N

6-16

Clearly, each of these conditions requires different remedial action.
Condition one is an obvious crisis situation. Unless some major break-
through can be discovered, the project is probably doomed. Condition
two is also fairly critical. It can be worked on only if the necessary
speed can be acquired without driving cost into the unacceptable range.
Very careful analysis will be required. Conditions three and five are
probably both solvable by application of some hardware/software trade offs.
Conditions four and six can be left alone. They may also be examined to
see if extra features might be added to utilize the excess system speed
without increasing the cost to an unacceptable level. If you elect to
try this, be very careful not to go overboard. Any additions are best
made in very small controlled increments. Avoid "creeping features"
(see Lesson 2). If you aren't sure what to add, don't. Be happy you
brought this one in under budget and save your money for next time.

After you figure out which condition your project is in, you have three
alternatives: built it, change it, or cancel it. Building it or cancel-
ing it are decisions that you have to make on a situation by situation
basis. Changing it may help you postpone that decision for awhile, but
ultimately you will still have to decide. We can now examine how to
change it so that hopefully you can decide to build it.

6.5.2 System Speed Problems

As we have emphasized all along, speed usually costs money. There are
very few situations where increasing system speed lowers the cost. If you
have a project which has to have increased speed, you might consider the
title of this section to be "Trade Offs that Increase Cost". With that

in mind, we can examine where to look to increase system speed.

System speed problems can be broadly divided into data transfer rate
problems and data manipulation rate problems. In system operation these
two types of problems will require distinctly different solutions. However,
the same general techniques will apply to correcting both.

6-17

©.5.2.1 Data Transfer Rate Problems

Data transfer problems are encountered when transferring data between the

computer and system I/0 devices. This class of speed problem can be fur-
ther subdivided into processor rate limited prooiems and peripheral rate

limited problems. Processor rate limited problems arise when the compu-

ter is transferring data to a device which must have a high, non-varying

transfer rate. This is characteristic of many real time interfaces, disk
drives, and high speed buffered 1/0 devices. In the case of the disk

drive, for example, it is not practical for the computer to vary the speed
of disk rotation. Therefore, the processor must be able to read tne data
as fast as the rotating disk presents it to the read head. Data transfer
rate problems of this type will result in lost or erroneous data. They
represent the most serious system speed problems and they must be detected
and corrected before the system will function properly.

Curing processor. rate limited problems where the speed differential is
excessive requires the addition of hardware:to transfer some of the speed
burden from the CPU. If the speed differential is close, restructuring
the program sections which perform the actual data transfers may provide
the speed margins you need. However, since instructions execute in fixed
multiples of system cycle times, it will be impossible to adjust the sys-
tem speed any more accurately than the execution time of the fastest
instructions. For this type of problem, adjusting system speed by varying
the program structure will only be effective over a fairly narrow range

of timing. ‘

Unlike processor rate problems, peripheral rate limited problems turn up
when the computer is able to process the data at a much higher rate than
the 1/0 devices can supply or accept it. This problem is most commonly
encountered when the microcomputer is communicating with peripherals which
are mechanical or which require user interaction, i.e. printers, tape
readers, teletypewriters, etc. For example, many small microcomputer
systems rely on the Teletype Corporation's model ASR 33 teletype as the
main system peripheral. It serves as the keyboard, display, punch and
reader for all program [/0 operations. Now the teletype can only transfer

6-18

data at the rate of ten characters per second, or one data byte every 100
milliseconds. Printing 2500 characters (a small program listing) will
take over four minutes. In this case, the computer will be spending most
of its time waiting for the teletype to finish printing.

Peripheral rate problems are probably the most commonly encountered system
speed problems. Fortunately, they seldom present a critical! design pro-
blem. The cure is usually to add a faster 1/0 device. Even this solution
has Timitations. Most computer peripherals involve mechanical d2vices,
and these will almost always be slower than the computer. You must trade
off the cost of the faster peripheral against the time saved. If you
discover you have a system which spends most of its time waiting for [/0
transfers (a condition referred to as 1/0 bound), you may want to see if
you can come up with some features to utilize what is essentially free
processor time. Even better, you may be able to use some of that time to
replace some hardware and further lower system cost. On the other hand,
if the system can do everything it needs to at a cost you can afford, who
cares if it spends 95% of its time waiting for the user to press a key?
Microprocessor hardware is going to become so inexpensive that it wiil
probably become far more economical to underutilize several microprocessors
than to spend the development cost to optimize the use of one.

6.5.2.2 Data Manipulation Rate Problems

Where data transfer rate problems were related to how fast we can Jet data
in and out of the computer, the data manipulation rate proplems are con-
cerned with how fast the data is processed once the computer has it.

Where data transfer rate problems will be solved mainly be adding or
changing system hardware, data manipulation rate problems will be solved

mainly by restructuring the system's software.

The typical data manipulation probiem arises when some section {(or sectiions,
of the system program takes an excessive amount of time to execute. The
more commonly used that portion of the program, the worse the problem.

This type of problem is characterized by your pushing a button and waiting
for fifteen seconds until the teletypewriter priats the ter digit answer

e-19

to your equation. Using some hand held scientific calculators for complex
calculations (try SIN 89°) provides some excellent examples of aata mani-
pulation rate limitations.

Some problems of this type are unavoidable in microprocessor systems.

Their low speed (relative to minicomputers and large computers), modest
instruction sets, and small data element size iimit the efficiency with
which any program will run. They are simply not designed for complex data
processing applications. No matter how good the algorithm, certain classes
of operations are going to take up significant amounts of computing time.
Some examples of this group are complex mathematics routines (anything
more complicated than a sixteen-bit integer divide can safely be considered
complex), large memory searches, array operations, and moving blocks of
data around in memory. In the large and minicomputer world, another
primary cause of this problem is multiple user systems. Fortunately, to
date the microprocessor world has been spared this particular problem.

If your system requires any of these types of operations, you will end up
paying some speed penalty. You will be able to minimize it to some extent,
but 1t will be there. Fortunately, the types of applications which will
use microprocessors do not normally require large numbers of complex opera-
tions. If you have one that does, you might seriously consider one cf the
sixteen-bit microprocessors or a low end minicomputer.

6.5.3 System Cost Problems

System cost problems become significant when you have a working system
which must be made more economical for practical production. The term
“problems” in this context is probably misleading. Virtually all systems
intended for high volume production will go through some cost optimization
procedure between prototype and final production. Usually you will have
decided that the cost range for the product is acceptable before proceeding
with the development. This decision is based on market studies, compari-
son with existing products, and other evaluations of what is a reasonable
final selling price of the product. This number can then be projected
back to arrive at a cost range for the product.

6-20

In general, the techniques for lowering product cost will be the reverse
of techniques to increase speed. You will want to remove extraneous hard-
ware, compact all programs into minimum memory space, and in general,

make the maximum use of the processor and software to implement system
functions. This must all be done without creating any system speed pro-
blems. Therefore, the proceedure is best carried out in discrete steps.
You refine one section of the system, make sure the system still works,
and move on to the next section. Ultimately you will reach a point where
no further cost economies can be achieved without compromising system
performance.

Cost optimization should always be undertaken with the firm realization
that the end must justify the means. It is an expensive process that is
usually only vigorously applied to products whose high volume will justify
the expense. Otherwise the cost of the optimization will overshadow any
savings made in production.

6.6 Hardware Speed Trade Offs
When you must modify system speed using hardware, you will be trying to

either increase or decrease the amount of work done by the processor. In
the first case you will be trying to simplify the system hardware or re-
place much of it with software. This results in decreased hardware cost
and lower system speed. In the second case you will be trying to trans-
fer some of the work being performed by the software out to the hardware.
This will result in higher system cost. Within this framework let's
examine some of the alternatives available.

6.6.1 Processors and Memories
A simple solution to some system speed problems may be to change processors

within the same family. Some manufacturers provide microprocessors which
are graded by speed. If the nominal processor speed is 2 MHz, some devices
may be available in selected speed ranges from 1 to 4 MHz. Since the
processor cost goes up with the speed, using this method you only have to
pay for Fhe speed you require.

6-21

If you are considering a faster (or slower) processor, you must also
consider the effect that memory speed has on program execution. The
computer must get all instructions and data from memory. If the memory
is not at least as fast as the processor, there is no point in increasing
processor speed. Similarly, you may be able to increase system speed by
using the same processor with faster memories.

6.6.2 Decode Logic
Decode logic is required for a variety of purposes in a microcomputer

system. Most decoding is done to determine I/0 device addresses and
memory addresses. This logic is almost all done with hardware, and it
can usually be minimized in a dedicated system. For example, many micro-
processors can address 65K bytes of memory using 16 address lines. Very
few applications will require this much memory, so after you determine
how much memory the system requires, you can eliminate the excess decod-
ing. For example, if you only need 4096 bytes of memory, you need only
decode 12 address lines to access all valid memory addresses in your
system. Similar minimization can be applied to the I/0 device addresses.

One added benefit of reducing the decoding is that the undecoded Ilires
can be used as extra control lines in the system. Usually the ful!l
address bus runs everywhere in the system. If system speed permits, the
undecoded address lines may be used to eliminate further hardware control
logic. In the case of the system with 4096 bytes of memory we mentioned
earlier, the four unused address lines could be used individually {or
even decoded) to provide system control signals. Similar trade offs can
be performed in systems which require fewer I/0 devices than the maximum

available.

€.6.3 Memory Buffers

Memory buffers are used to collect or hold data that is in transit between
the CPU and system peripheral devices. The addition of a high speed buffer
dedicated to a specific peripheral can be used to solve processor data
transfer rate problems. This is particularly effective if the peripheral
has a low average data rate with high speed burst transfers of data. A

6-22

buffer can be used to collect the data during the burst transmission,
with the CPU reading the individual data elements from the buffer after
the transmission is complete. This type of buffering can also be used in
conjunction with the computer's DMA facility. In this case, the buffer
accumulates the data and transfers it into the main computer memory in a
single block transfer.

Buffers can also be used to solve peripheral data rate problems. In this
case, the CPU transfers the data out to the peripheral buffer. The peri-
pheral can then take the characters at its own rate with no further processor

intervention.

Addition of buffers to the system requires the addition of considerable
hardware expense. Accordingly, they should only be added if the system
really needs them. As long as speed is not a problem, most microprocessors
can do a good job of implementing buffers. They can do this using already
present main memory and some programming. Data is transferred into and
AUt af this type of buffer using an interrupt. The device interrupts

whan it is ready for a transfer and the CPU performs a single transfer.
When the buffer becomes full or empty, the data is then processed, just

as with a dedicated buffer. This is always much cheaper than an external
buffer system. In the course of the design, if you think you need data
buffering, look very carefully to see if it can be done using software.
Even after the design is done you may discover that a hardware buffer
initially thought necessary can actually be done in this way. It may be
worth the redesign cost to save the hardware cost, particularly if pro-
duction volume will be high.

6.6.4 Specialized Interface Devices

A specialized interface device is designed to perform some defined function
in the system. Usually the function to be performed could be performed
using either software or the specialized device. You will consider a trade
off when you either find yourself with a speed problem and no interface
device or the interface device and lots of program time available. In the
first case you design in the device to free up the program time that

6-23

performing the function is tying up. In the second case you take out
the device and replace the function with software.

A common example of this type of device is the UART (Universal Asynchronous
Receiver Transmitter). This device accepts parallel data and converts it
to a serial bit stream conforming to the EIA RS232C data transmission stan-
dard. The function can easily be performed under program control, but as
mentioned earlier, each character sent or received will take up 100 milli-
seconds of computer time. During this time the software must convert a
character from parallel to serial, add start and stop bits and generate

all timing and control signals required to perform the transfer. [f your
system has the time, fine. If it doesn't, you add a UART. The only time
required now is the time required to write one parallel byte out to the
UART. After that, the UART generates all those functions that were done
by the software, freeing your processor to do other things. Simiiar trade
offs can be made using other pre-defined functional devices.

6.6.5 Interrupts

In many systems the computer must spend considerable time responding to
interrupts. If there is more than one possible interrupting device, tne
processor must determine which device generated the interrupt before it
can process any data. This identification can be done in a combination
of hardware and software that can be varied to meet system speed/cost

requirements.

For maximum system speed you design the hardware so that each interrupting
device responds to CPU acknowledgement with the address of its own dedi-
cated service routine. This gives maximum response speed, since no time
is spent decoding any device identification codes. In some processors
this can be reduced to the interrupting device providing an actual sub-
routine call instruction, making the interrupt almost transparent in terms

of overhead time loss.

To lower hardware expense, the device identification can be moved into
the service routines. In this case, the interrupting devices all provide

6-24

the same routine address. The software must then poll all devices in the
system to see who generated the interrupt. This adds a significant amount
of overhead time to the routine, and will probably not be satisfactory for
faster devices.

As a compromise, the system can be implemented as a combination of direct
and indirect interrupt decoding. In this case, you assign your highest
priority or fastest (usually the same) devices their own identification
address. They will then interrupt directly to their routines with mini-
mum time loss. The lower priority devices can then be assigned to a common
address and these can be decoded under slower, cheaper software control.

6.7 Software Trade Offs

Software trade offs are made for the same reason as hardware trade offs,
namely modifications of system cost and speed. Where we traded off hard-
ware for different hardware or a combination of less hardware and some
software, with software we will usually be.trading off program speed for
memory size. Increases in program speed will often take more memory,
thereby costing more money. Conversely, if speed is not a problem, certain
program types can‘be replaced by markedly less code, with a subsequent
lowering of memory size and cost. It must be kept in mind, however, that
not all decreases in program size lower memory cost nor do all increases

in program size increase cost. The only time changes in program size
affect memory cost at all is when the change results in the saving or use

of an entire memory. For example, if your program is to be located in

2K x 8 mask programmed ROMs, the only time that your cost will change is
when your program size exceeds multiples of 2048 bytes. Up to that point,
the memory is essentially free. Similarly, if you discover your new, im-
proved, program is now 2075 bytes long, you may want to expend some time
eliminating those 27 extra bytes. (The terms and techniques discussed in
the next few sections are covered in greater detail in the software lessons.

6.7.1 Program Loops and Subroutines
Program loops and subroutines are used to minimize program size and control
execution. A sequence of operations which is to be executed a fixed number

6-25

of times can be placed in a loop. A section of code common to several
portions of the program can be placed in a subroutine. The actual coding
is thereby only written one time no matter how many times the ioop is
executed or the subroutine is called. Loops and subroutines minimize
program size at the expense of some program speed.

The instructions which must be executed to control execution of the loop
or the calling of the subroutine take a certain amount of time that is

not required for the actual function being performed. In speed critical
situations the effect of these overhead instructions can be eliminated or
modified to increase execution speed. This is done by replacing the loop
or subroutine with the actual straight line code that was originally there.
This eliminates the overhead instructions completely. Alternatively, a
Toop may be modified to use a lower percentage of its time for overhead.
This is done by partially replacing the loop with the straight line code
and Towering the number of times through the loop. For example, say a
certain function is to be performed 10 times, once for each execution of
the loop. In this case, say loop overhead is 20%. By duplicating the
function and Towering the loop count to five we would do the same process-
ing with only 10% overhead. The price wouid be a doubling of the amount
of memory occupied by the function.

©.7.2 Functional Computations

Throughout your program you will use functional computations to evaluate
data and decide on program responses to input conditions. You will be

able to vary the execution speed and memory usage of many of these blocks
based on how you evaluate the data. For example, let's say we have an
application where we need to multiply two eight-bit integers. One solution
is to write an algorithm which will multiply the two numbers. If for some
reason the speed of the algorithm execution was not adequate for our appli-
cation, we might consider storing all possible results in a ROM (or part

of a ROM). We would then use our two numbers to compute the address of

the product, thus removing most of the computations. This method should
execute considerably faster. Again, the price is more memory usage.

6-26

In practice, not many mathematical functions can be produced in the manner
just described. However, the technique is very often applicable to memory
addresses. A required address can often be computed as part of the pro-
gram execution or stored as fixed data. Computation by algorithm is more
efficient, but fetching defined data is faster. These types of alternatives
can be traded off throughout the course of system software design.

6.7.3 Repeated Computations
Related to functional computations is the class of program operations

called repeated computations. Analysis of programs over the years has
shown that in most programs 90% of the execution time is spent executing
10% of the program. These software "critical paths" are what we call
repeated computations. If your system has a speed problem, the first
thing to do is to see if you have any repeated computations. You can then
devote your optimization effort in those areas where it will do the most
good. Some common types of repeated computations are common mathematical
functions, table searches, data movement routines, and data sorts.

If you find you have a clearly defined repeated computation, you may ¥ind
it worthwhile to study it. See if you can find a better algorithm in the
data processing literature. If you can't find one, do your best to cevise
one. Time spent thoroughly optimizing a repeated calculation can be far
more valuable than partially optimizing several sections of less frequently
executed code.

6.8 Summary
The hardware/software design procedure is something that you only learn
by practice. You must gain first hand experience in the real world. It

is a process which becomes more than designing the hardware and then de-
signing the software. It is an integrated proceedure which will allow you
to implement some of the most creative digital systems ever imagined. We
have only scratched the surface of what is available, and what is avail-
able is just the beginning.

6-27

REPRESENTING BINARY DATA

REPRESENTING BINARY DATA

When working with digital computers it is necessary to work with binary
data, Computer components are built up from electronic devices which can
only represent data as 0's and 1's. This means you will have to use
binary to represent numbers. In spite of this, it is impossible to
escape from the fact that binary data is not overly convenient to use.
We have all used base 10 numbers for years and the base 2 number System
seems quite inefficient by comparison. It takes 6 binary digits to rep-
resent the number 5010 (1100102), and it gets worse. In this section we
will discuss how the individual binary data elements are represented and
how they can be grouped together for more convenient use. Binary arith-
matic and logic are discussed in the following supplementary section.

7.1 - Binary Data Elements
A computer data element of arbitrary length N is shown below.

The right most bit (bit 0) is considered to be the least significant bit.
Bit N, at the left most position, is considered to be the most signifi-
cant bit. Thus a computer with a 16-bit data element would have data in
bit positions 0-15:

15|14 | 13112 | 11| 10| 9|8|7|6|5|4|3]2]|1}0

16-Bit Data Word

Similarly, an 8-bit microcomputer would have data in bit positions 0-7:

8-Bit Data Word

Thus when we speak of loading one's into bits five and seven of an eight-
bit register, we will be loading the following pattern.

7-1

7' &8 5 & 3 2 1 0 Bit Position

References to the bit positions of a register or memory location rather
than to the binary number in a register or memory location are common in
control and logic applications.

7.2 - Binary Numbers
A1l number systems (including binary) represent numbers as a function of
the radix (number base) and the position of the individual digits. Any
number composed of digits AN-AO in a radix R can be represented as
follows:

Noa xjM1. .+ AR + A xRD

A A oo ARG T AR+ AL - : i

N'N-1 ° 10 N
where A is any digft in the range 0 to R-1 and N is the digit position.
For example, consider the number 136 in base 10. We have digits in posi-
tions 0, 1 and 2. In this case, all values of A must be in the range
0-9, and R = 10. We thus have a number represented as

2 0

136, = 1 x R® + 3 x R! + 6 x R
W subscript to identify number base.)
1 x (10)% + 3 x (10) + 6 x 1

100 + 30 + 6

13610

Binary numbers can be similarly represented. The difference is that where
in decimal we have ten possible numbers (0-9), in binary we only have two
(0 and 1). This means that representing a given number in binary will re-
quire more digit positions than representing the same number in decimal.
Thus the binary number 10110 is represented as

10110, = 1 x ¥ +ox 22+ 1x 22 + 1 x 21 + 1 x 2°
o =1x16+0+4+2+0

=22,

7-2

NUMBER SYSTEM CONVERSIONS

NUMBER SYSTEM CCNVERSIONS

DECIMAL TO BINARY

To convert any decimal number to a binary number, take the decimal
number and successively divide by "2" and write down the remainder (1

or 0) as you continue dividing until the number becomes "OM,

EXAMPLE s

Convert h3210 to a binary number.

2) L32
) 216 so
) 108 /0
) sh__ /o0
) 21 /0
VI s |
) 6 /1
) 3 /0
1 A
) O /l_l
o, = 22282222

BINARY TO DECIMAL

As in the decimal number system, the least significant digit is on
the right and the most significant digit is on the left and each digit

is a multiple of a certain power of 10.

32, = L x 20° + 3 x 108 + 2 x 10°

8-1

This is also true for a binary number, except that it is a multiple

of a certain power of "2".

10112-1x23+0x22+1x21+lx20

So to convert a binary number to a decimal number, take each power
of "2" and change it to its respective decimal number .
20

2l = 2

n
(%)
]
o

N

16
32

]
w

216 - 65,536

etc.
EXAPLE :
Take the number 101101
01101, = 1x5s0xPerxderxbeoxdterxd
= 1x32+0x16+1x8+1xL+0x2+¢+1xl
= 32+40+8+4+0+1
1011912 "’*510

CONVERTING DECIMAL TO OCTAL

Use the same method as to coavert decimal to binary except divide

by the base of "8" instead of "2".
EXAMPLE ¢

Convert 13110 to Octal

8)1
) 16 /3
Yin 7@ /0
) 0 _ /2""j1'b
By, - 203,

CONVERTING OCTAL TO DECIMAL

To convert from octal to decimal use the same method as for

binary to decimal conversion, except use the powers of "g" instead of "2".

EXAMPLE :
€ = 1
gt - 8
82 = &
8 = s12
& = 4096
85 = 32768
86 = 2621
etc.

8-3

EXAMPLE:

Convert 2038 to decimal

0

203 2x82+0x81+3x8

8
= 2x68, +0x8+3x1

128 + 0 + 3
= 131

CONVERTING DECIMAL TO HEXADECIMAL

Again, use the same method for decimal to binary conversion, except
use the base "16" instead and replace the remainders of "107" to "15" by

the letters A to F respectively.

10 = A
11 = B
2= ¢
13 = D
1 = E
15 = F

Convert 919210 to hexadecimal

16 9192
) 57L / 8

) 35 71k
} _2/3

) 0/2

|

[]
=1

L}
LV

]
[

u
Ot

16
8-L

CONVERTING HEXADECIMAL TO DECIMAL
Again, use the same method far binary to decimal conversion,

except use the powers of 16 instead, and convert the letters A through

F to 10 through 15 respectively.

12 = i
% o« 15

2
16 = 256
168 = 1,096
16 - 65536

EXAMPLE :

Convert 23E816 to decimal

23E8;, = 2x 163+ 3 x 162 + & x 161 + 8 x 16°
= 2 x 163 + 3 x 162 + 1L x 16l + 8 x 160
= 2 x 4096 + 3 x256+ 1 x16+8x1
= 8192 + 768 + 22, + 8

23E816 = 919210

CONVERTING OCTAL TO BINARY, HRXADECIMAL TO BINARY,

OCTAL TO HEXADECIMAL; AND BACK

Convert to binary first, then 1f needed, regroup the binary numbers
into the desired groups of three or four binary digits, (three for octal
or four for hexadecimal). These translate directly to the desired number

system. Always start the regrouping with the LSB.

8-5

Binary Octal Binary Hexadecimal
000 0 0000 0
001 1 0001 1
010 2 0010 2
o1l 3 0011 3
100 L 0100 L
101 5 0101 5
110 6 0110 6
11 7 0111 7
1000 8
1001 9
1010 A
1011 B
1100 c
1101 D
1110 E
nu F
EXAMPLE s
1) Convert L4A2BC., to Octal

16

LA2BC,, = 0100 1010 0010 1011 1100
= 01/00 1/010 /001/0 10/11 1/100
= 01 001 010 001 010 111 100
= 1121217k

LA2BC,, = 1121274

2) Comvert 1i35g to Hexadscimal
1354 = 001 100 011 101
= 001 1/00 01/1 101
= 0011 0001 1101
= 310D

U355 = 31D

16

8-7

BCD NUMBERS

B3CD NUMBERS

In some applications it is desirable to be able to directly rep-
resent decimal numbers in the binary computer. This is dons using

Binary Coded Decimal, BCD. When using BCD we do not use all possible

data values that the binary data element can represent. Instead, we

limit ourselves to the following four bit patterns:

Decimal BCD
0 0000
1 0001
2 0010
3 0011
L 0100
5 0101
é 0110
7 0111
8 1000
9 1001

The other six four bit combinations (1010-1111) are not used in BCD.

An eight-bit data element can hold two BCD digits. This means it can
represent decimal numbers from 0-99. BCD is very commonly encountered in
control and instrument interface applications. As a result, many computers

provide instructions to allow direzt arithmetic with BCD nunbers.

BINARY FRACTIONS

Binary numbers are generally ccnsiaerea as whole integers (i.e., 1,
2, 35 +es). However, it often becomes necessary to represent numbers

other than whole numbers. Binary fraction representation is analagous to

decimal fraction representation. In decimal numbers a fraction consists
of digits to the right of a decimal point; in binary, we consider the bits
to the right of the binary point to be a fraction. In a binary fraction
the bits represent 2'“, where N = the bit position to the right of the
binary point. The powers of 2-N are shown in the number tables. Con-
sider the following binary number:

Binary Point

1.201 %1301

This binary number representation means
Be2e0slel,r2.o, 23
=8¢l +1+ .54+ .25+ .0625
= 13.8125

Numbers can be converted to and from binary fractions using the
techniques already shown for converting whole binary numbers. Unfortunately,
not all fractions are as well behaved as the above example. Consider the

decimal number 3 1/3. When we try to convert it we end up with =

3 1/310 . 3'3333""”310
3 1/310 = 11.01010101......012

The fraction repeats and there is obviously no exact result. We
will have to choose a bit position where we truncate the value. For

example, if we choose bit position six, we end up with an approximation.

3 l/310 N11.010101

10-1

The rounding error introduced by this truncation can be computed by

converting the truncated fraction.

11.01010101=24+1¢ .25 ¢ ,0625 + .015625
' =3.328125

The error is about .1%. The possibility of this type of rounding
error must always be taken into consideration when using binary fractioms,
particularly in division operations. Very few numbers result in exact
binary fractions, so the posdibility of error will be ever preseat.

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS

All computers provide a number of instructions which are used
to perform arithmetic and logic operations on data. As discussed
elsewhere, computer data consists of patterns of bits in registers
and memory locations. However, there is a fundamental difference
between the way the arithmetic instructions and the logic instruc-
tions treat this binary data. The arithmetic instructions

interpret the data as numbers. The logic instructions, on the

other hand, interpret the data as a collection of individual

bits.

11.1 Computer Arithmetic Instructions

The most basic computer arithmetic instruction is addition. This

instruction and the logic complement instruction can be used to
to implement any known mathematical function. As a result, many
computers offer addition as their only arithmetic instruction.

After addition, the next most common arithmetic instruction is

subtraction. This is because subtraction can be performed using

the same basic hardware as addition. After addition and subtraction

you have to go to a considerably more complex computer to get
multiplication and division as built-in functions. The hardware
required for these operations is considerably more complex than
that used for addition and subtraction. As of this writing

(July 1976) there are neo microprocessors with built-in multiply
and divide hardware. This will certainly change. All of these

operations use the contents of the computer's accumulator (s) and

11=1

11.1.2 Binary Arithmetic

Binary Arithmetic is performed using the ALU and two ope ands.

The operation can be performed using either unsigned numbers or

signed twos complement numbers, depending upon the operation

being perfommed. Most computers perform addition and subtraction
as unsigned operations. They do provide flags to indicate the
result in signed twos complement, but it 1s up to you to keep

track of the sign and magnitude.

Addition is performed by adding the contents of an operand to
the contents of the accumulator. If the result is greater tnan
the largest number which can be represented in the accumulator,
a flag will be set to indicate a carry out has occurred. For
example, consider the operation of adding the n:mber 1570 to an
8-bit accumulator which contains 25;9. The operation woulic

be performed as follows.

Accumulator 00011001
+ Operand 00001111

Result 00101000 = 4010

Now consider the addition of lll10 to 14510 in the accumulstor.

Accumulator 10010001
+ Operand 01101111

1/ 00000000
carry out

11-4

The result of this operation is 25610. It causes a carry out to

indicate that the accumulator overflowed.

Subtraction is perfommed by taking the twos complement of the
subtrahend and adding it to the minuend in the accumulator.
Thus to subtract 1010 from 25709 we would perform the following

operation.

Subtrahend 00001010
Form Twos Complement 11110110
Add to Accumulator 00011001

1/ 00001111 = 1539
carry out

Ignoring the carry out, we have a result of 1575. Now consider

the subtraction of 35 from 15.

Subtrahend 00100011
Form Twos Complement 11011101
Add to Accumulator 00001111

0/ 11101100
no carry

No carry indicates a negative result. If we convert the number

using our twos complement rules, we obtain the correct result, =-20.

Result 11101100
Complement 00010011
Add 1 00010100 = 2010

dd=5

il-6

Notice that the sense of a carry after subtraction is reversed
from that of addition. A carry out indicates that the subtrahend
was smaller than the minuend and the result of the subtraction
was positive. No carry out indicates that the subtrahend was
larger than the minuend and that the result was negative. This

is called a borrow condition, and it is analagous to overflow in

an addition operation. To avoid confusion about the reversal

of the state of the carry flag, many computer ALU's automatically
complement the carry flag after a subtraction. This makes its
state after a subtraction match more closely its state after an
addition (i.e. carry set if result caused a borrow, clear if the

result did not cause a borrow).

11.1.3 Qverflow and Underflow with Signed Arithmetic

For the purpose at hand we will use a 3-bit binary adder which
will accept a pair of 3-bit inputs (the addends) tc form a 4-bit
output by the rules of straight ("unsigned") binary addition.

In addition to the 10 bits making up the inputs and the output,
we will define one more signal, which is the carry into the

leftmost bit position of the addends:

—2%=_16(| +23=+8| | +22=44 ~22=-4| | +21=42|| +20=+1

Cin

+22=+4

-22=-4 | |+21=42 +2%=41

BO By B2

—22=-4|| +21=42| | +29=+1

+
Ml Nz . So Sy Sy
out

To keep a running count of overflow and underflow events, we

will need one more register, here also shown as 3 bits wide.
Because spill-out from the adder may have a weight of +4 or

-4 (overflow or underflow), it will be convenient to assign a
weight of 4 to My, and to treat the contents of M as another
signed number which may be incremented or decremented by the same
add/subtract strategy we will develop for A, B, and S. The bit
weights for all bits are shown in the diagram; they correspond to
the standard convention for two's complement signed integers. 1In
the examples below, the bit locations and formats will be as

shown above, but the bit weights will not be shown.

Two factors may be held accountable for most of the confusion around
signed arithmetic:

1l. The term MSB (most significant bit) is often used with
an implicit convention which may assign the name MSB
to either bit O or bit 1 of a word. 1In recognition of
this, we will not use the term MSB here.

2. The signals in the O column may have either a positive
weight (Cin) or a negative weight (Ab' Bo)' The adder
makes no such distinction; the interpretation of bits
as weighted numbers is strictly ours. Having recognized
the sources of confusion, let us attempt to create some
order by inspecting all possible combinations of sign

bits and carry-in signals:

11+7

010 +2 Addition of two small positive

001 +1 numbers.

000000 011 +3 No overflow, no underflow

= 0; Ao =00 By =il (or A, = 1; B, = 0)
0
010 +2 Addition of a positive and a
101 -3 negative number, result negative.

000 O i s i | -1 No overflow, no underflow

01 -3 Addition of two negative numbers.

1.1 0 -2 Underflow

000 1 1 15 1 | -5 C0 has a weight of 2 x -4, which

111 is redistributed to M, and SO.
111 1. .k & -4 + -1
Cin = 1; A, = 0; Bou= 0

1.1 +3 Addition of two positive numbers.

00 +4 S_ as formed has a weight of +4,

o

¢

0

001 +1 Overflow
000 0 1
0

001 00 +4 + 0 which is moved to M2

11=8

In

1.

in ©
1

010 +2

1.10 =2

000 1 000 0

F. C;,=1; AO = 1; Bo =1

1

110 -2

111 =]

000 1 101 “3

summary :

(or Ao =.1; B, = 0)

Addition of a positive and a
negative number.

No overflow, no underflow

Note that the weight of C0 is
zero; C, is produced by "addition"

of C;, -with weight +4 and B,

with weight -4.

Addition of two small negative
numbers.

No underflow, no overflow

Again C;, neutralizes one of the
sign bits. The other sign bit

reappears as S,

If carry-in is produced, but no carry-out is generated, then

overflow has occurred.

If a carry-out is produced without help from a carry-in, then

underflow occurred.

If no carries are generated, neither overflow nor underflow

occurred.

11=9

4. 1If a carry-in produces a carry-out, this amounts to neutraiir
tion of the positive weight of the carry-in by the negative
weight of one of the sign bits. Neither overflow nor under-
flow has occurred.

5. Whenever overflow or underflow occurs, So must be complemented,
to make S suitable as input to the adder for further arithmetic

operations. If cout = 1, M must be decremented; if Cout = 0,
M must be incremented.

In logical terms, spill-out can be detected as Cin] Cout' The

sign of the spill-out is given by Cout

When all additions have been made, we should combine the spill-
out counter with the S register to make a double-length bit
string representing the end result in two's complement format.
Now there are two bit positions with an absolute weight of 4:

the low-order sign bit, So, and the LSB of the spill-out counter,
M,. These two bits must be combined, and then the vacated bit
position must be eliminated to shift the high order bits into

positions corresponding to their assigned weight.

11.2 Computer Logic Instructions

In contrast to the arithmetic instructions, the logic instructions
perform their operations with no regard to the number representa-
tion being used. The numbers being operated upon are simply

treated as strings of bits. That is why these operations are

11-10

often referred to as bit by bit operations. The operation performed

on one bit in no way affects the operation upon adjacent bits.

The four most common computer logic instructions are Complement,
AND, OR, and Exclusive OR. These operations (except complement)
use the contents of the accumulator and another data source as

operands, with the result ending up in the accumulator.

11.2.1 Logic Complement

The complement instruction replaces each bit in the accumulator
with its logic complement. Thus if the accumuiator contains
10101101, the complement operation yields the following
result.
Accumulator 10101101
Complement 00X 01L0O0O1DO

11.2.2 Logic AND

The Logic AND operations (Symbol A) operates upon the bits of
the accumulator and an operand according to the following truth
table.

Accumulator Bit o S D

Operand Bit 0 .10 1

Result Bit 0001
Thus only those bit positions which are logic ones in both the
accumulator and the operand will be logic ones in the accumulator
after a Logic AND operation has been performed. For example,

consider the following Logic AND operation.

11-11

Accumulator 6 110 ¥ 101

A Operand X 101 3 6.1

Result 01001001

Only those bits which were ones in both operands are in the result.

11.2.3 Logic OR

The Logic OR operation (Symbol V) operates upon the bits of

the accumulator and an operand according to the following truth

table. !

Accumulator Bit E 0.9.1 .4
é

Operand Bit 0101

Result Bit 0.k 1,4

Bit positions which are logic ones in either the accumulator or
the operand will be Logic ones in the accumulator after a Logic OR
operation has been performed. For example, consider the fol-
lowing Logic OR operation. Bit positions which are Logic ones in
either the accumulator or the operand will be Logic ones in the
accumulator after a Logic OR operation has been performed. For
example, consider the following Logic OR operation.

Accumulator 10110110

V Operand 0.0 1.1 00 1 1

Result I el L X L A

All bits which were ones in both operands are ones in the results.

11.2.4 Logic XOR

The Logic Exclusive OR operation (Symbol A, o-ten called XOR) is
not found in all computers. It operates upon the bits of the

accumulator and an operand according to the following truth table

Accumulator Bit 0 011
Operand Bit 0101
Result Bit 0110

Ll=12

Bit positions which afe a Logic one in either the accumulator
or the operand but not both will be Logic ones in the accumulator
after a logic XOR operation has been performed. For example,
consider the following Exclusive OR operation.

Accumulator 01100101

¥ Operand 10110110

Result 110110011
Those bits which were ones in only one of the operands are ones

in the result.

11=13

APPENDIX A
Sym/650X Information Sources

6500 MICROPROCESSOR SUPPLIERS

Commodore Business Machines
901 California Avenue
Palo Alto, CA. 94304 415-326-4000

Rockwell Microelectronic Devices
P.O. Box 3669
Anaheim, CA. 92803 714-632-3729

Synertek Inc.
3001 Stender Way
Santa Clara, CA. 95051 408-988-5600

6500 BASED MICROCOMPUTER SUPPLIERS

AB Computers
P.O. Box 104
Perkasic, PA. 18944 215-257-8195

Apple Computer Inc.

20863 Stevens Creek Blvd.

Bldg. B3-C

Cupertino, CA. 95014 408-996-1010

Carnegic Electronics
100 Kings Road
Madison, N.J. 07940 201-822-1236

Commodore Business Machines
901 California Avenue

Palo Alto, CA. 94304 415-326-4000
The Computerist Inc.

P.O. Box 3

So. Chelmsford, MA. 01824 617-256-3649

Ohio Scientific
11679 Hayden
Hiram, OH. 44234

Riverside Electronics Design Inc.
1700 Niagara St.
Buffalo, N.Y. 14207 716-875-7070

RNB Enterprises, Inc.
2967 West Fairmont Ave.
Phoenix, AZ. 85017 602-265-7564

Seawell Marketing Inc.
315 N.W. 85th
Seattle, WA. 98117 206-782-9480

650X SOFTWARE SOURCES

650X USER NOTES
109 Centre Avenue
West Norristown, PA. 19401

ARESCO
314 Second Avenue
Haddon Heights, N.J. 08035

6502 PROGRAM EXCHANGE
2920 Moana
Reno, Nevada 89509

THE COMPUTERIST
P.0O. Box 3
So. Chelmsford, MA. 01824

PYRAMID DATA SYSTEMS
6 Terrace Avenue
New Egypt, N.J. 08533

MICRO-WARE, LTD.

27 Firstbrooke Road
Toronto, Ontario
Canada M4E 2L2

KENNETH W. ENSELE
1337 Foster Road
Napa, CA. 94558

JOHNSON COMPUTER
P.0O. Box 523
Medina, Ohio 44258

SEAWELL MARKETING INC.
315 N.W. 85th
Seattle, WA. 98117

SYNERTEK SYSTEMS CORP.
3001 Stender Way

Santa Clara, CA. 95052

A-2

APPENDIX B

TTL REFERENCE SHEETS

TTL REFEKZENCE SHEET #1

7400 7402 1474
LR N, . Sgg v o W B3
Tiu;_m el Mol | hd SHLE! ' r.i.'ﬂ:l_‘..;:@m:alﬁla.;; FUNCTION TABLE
; ‘ ir | ! 1i ! ik [i l INPUTS QUTPUTS
! i) __LIZ),_ j' 1 Tl I o = I PRESET CLEAR CLOCK O | @ @
”' | II L H X X | H L
i - _ i i FG-.—! H L X x| L H
1l — 1 e | [~ | —~ !] L B x x | H* He
J‘TJL,T_-L.{J‘:‘L._I |"ka‘I—'|LI‘J e] 1 ‘mruywi H H ¥ “ H L
A . " in i Y GND "w O w il n 8 GO H H] L L H
H H L X | qg Qg

7490 DECADE COUNTER
et
a ne 0. Qo GND 04 Qe
" In " 1 Ile L]]
—Cp b
—cb B
1 1 . || i)
NPT RO ECH ne Vee R¥(1) L]
]
BCD COUNT SEQUENCE
(Sea Nots A) RESET/COUNT TRUTH TABLE
T 1
OUTPUT RESET INPUTS] OQUTFUT |
COUNT - '
Op Q¢ Qg G, ROITI ROI2} A9 RZI| O Ce Qg Oa
A L K
Ve (] a6 '8 a5 s a4 AL g - L t = o 4 - E "
I 1 L A 3L N H H x £, IO WY R ©
15 5 13 11 It: ,n ||u ’s 2 L L H L X x H] H L L H
] l 3 L L H H x L x L COUNT
I 4 L H L L L x L X COUNT
5 L H L L x X L COUNT
6 L W ML X L L x COUNT
7 L H H H
") 8 H L L L
9 H L L H
| 1
| L]
Il l: ‘1 ‘l Is Ii]: lu 74138 1-0F-8 DECODER
(4] Al 1 Al Y2 a1 1 GAD DATA QUTFUTE
vee '{vﬂ ¥ vl L) va vy '?
7475 QUAD LATCH w s Hufjupjufjnij]
ENARLE 1’ I i ! :] i 1
I N 7 12 oAt A 10 40 A A A o A & !
SninSnininininin s |
18 151 |18 i 13 12 L l[l 10 L) r.| E
H | 1 i i - e
- I 1
! | R | c|Le € ga e g1 vt
! 1 I: : {) | | ¥ e :r ?
—[u o'—lr-c o H'-'c a'—‘ ~no af oo | : o
T
i r{ n n [-
rL—o—J—a 5 G G hTT!:z”IH”FTHS. § ! !
! i 1 | a s C nCis L8 G\, vI GNO
[i S A5 ‘——v-""/aut'ut
S J' af-4 o i e SELECT ENABLE
[l o
i | Y
7 ' N INPUTS ST
1= UTPUTS
[1 [2 l 4 5 § 7] ENABLE SELECT
10 10 20 ENABLE vce 0 40 [Gl G2*|C B8 A | YD Y1 Y2 Y3 Y4 Y5 Y6 Y7
34
X HIXx X X|H H H H H H H H
FUNCTION TABLE L X |x X X|]H H H H H H H H
{Each Latch) H L L L L L H H H H H H H
| nPUTS | outeuTs HoL L L MM L M H WM H WM
I'o gl a a H G L H L H H L H M 4 W H
L H L H H L L H H H H H L H H H H
H H H L H L H L L H H i-! H L H H H
x Lt | g QG H oL iM L HlH H W H H L H H
1 oL MWL H H H » H W L B
o= migh level, L = low lavel X = irreievant B- H L H H H H H H H - H H L

Qg = the level of Q before the hiyh-1o-low tramition of G

*G2 = GIA + G2B

74153 MULTIPLEXER

STROBE 4
TG SELECT *

Vg

DATA IKPUTS

ouTrPUT
Fad

TTL REFERENCE SHEET #2

STROBE

8
1G SELECT

DATA INPUTS

FUNCTION TABLE

SELECT
INPUTS DATA INPUTS STROBE | OUTPUT
8 A co c1 c2 c3 G Y
x X X x X X H L
L L L X X X L L
L L H X b X L H
L H X L X X L L
L H X H X X L H
H L X X L x L L
H L X X H X L H
H H X X X L L L
H H X X X H L H

Select 1nputs A and B are common 1o both sectians.
H = high lavel, L = low level, X = irrelevant

74148 PRIORITY ENCODER

DUAL PERIPHERAL DRIVERS 300 ma, 20 V

RELAY DRIVERS

75451
+V
Ve BN u
| E EI O O
.III. lIl' III, ‘.:
DS3686

—i
£

E

AL

11}

75452

Ve
e

-V

l:

n

s

)

5]

'I

(1]

ror
n L1}
Tor View

DS3687

|

ouTPUTE IWPUTE
- - — OUTAT
Vee 1] 1] 1 1 1 '] 1]
Ilc Iu' Iu ||I Ill Iu In ||
S R OO Gl
)] L} r 1] A2 Al [17]
WPuTE ouTPUTE
54148/74148
INPUTS QUTPUTS
El ;2 1 2 1 a 5 6 7| A2 A1 AD | UGS EO
H x X x X X X X X H H H H H
L H H H H H H H H H H H H L
L X X X X x x X L L L L L H
L X X X X X X L H L L H L H
L X X X X X L H H L L] L L H
L x x X X L H H L L H H L H
L x x X L H H H H H L L L H
L x X L H H H H H H L H L H
L X L H H H H H H H H L L H
L L " H H H H H H L] H L] L H
Ve u "
L 'l] |O
—
] T)
|
" " (L]
Torwin

RS-232C - TTL CONVERTERS

‘Il' iII ‘.‘
75453

be fo Jo Ll

APPENDIX C

MICROCOMPUTER BIBLIOGRAPHY

AN INTRODUCTION TO MICROCOMPUTERS:
by Adam Osborne
Volume I: Basic Concepts #2001
Volume II: Some Real Products #3001
Osborne & Associates, Inc.
P.0O. Box 2036
Berkley, CA. 94702

MICROCOMPUTER AND MICROPROCESSOR
by Hilburn and Julick
Prentice-Hall, Inc.

1976
pp.: 375

The book is intended for all persons involved in
the design, use, or maintenance of digital systems using
microcomputers. The book is written at a level which
can be understood by persons with little previous
exXperience.

Topics include: digital logic, number systems and
codes, microcomputer architecture, software, interfacing
and peripheral devices, microcomputer systems (4040, 8080,
8008, 6800, IMP-4, PPS4, COSMAC, PPS-8, PACE) design
methodology and applications.

MICROPROCESSORS AND MICROCOMPUTERS
by Branko Soucek
Wiley-Interscience
1976
pp. 607
A general introduction to digital systems and
microcomputers with detailed descriptions of popular
4, 8, 12, and 16 bit microprocessors including the 6800,
8080, and LSI-11.

PROGRAMMING MICROPROCESSORS
William Barden Jr.
Radio Shack Inc.

TTL COOKBOOK
By Don Lancaster
1974
pp. 335
Howard W. Sams, Inc.

SOFTWARE DESIGN FOR MICROPROCESSORS

CMOS

by John G. Wester and William D. Simpson
Texas Instruments, Inc.
1976
pp. 3172
order from: Texas Instruments
P.0. Box 3640, M/S-84
Dallas, TX. 75283

Book was written to assist technical and non-
technical people in taking their first steps toward
designing microprocessors and related software. Topics
range from basic binary numbers to complex examples of
microcomputer applications. Book was written primarily
for those with little or no programming experience,
but it contains excellent application examples which
should be of interest even to seasoned programmers.

COOKBOOK

BY Don Lancaster
1977

Howard W. Sams, Inc.

TV TYPEWRITER COOKBOOK

by Don Lancaster
1976
Howard W. Sams Inc.

SOFTWARE DESIGN FOR MICROCOMPUTERS

by Carol Anne Ogden
1978

Prentice-Hall Inc.
Englewood Cliffs, N.J.

MICROCOMPUTER DESIGN

by Carol Anne Ogden
1978

Prentice-Hall Inc.
Englewood Cliffs, N.J.

MICROCOMPUTER SYSTEMS PRINCIPLES

by R. C. Camp, T. A. Smay, C. J. Triska
1978
Matrix Publishing, 30 N.W. 23rd Pl., Portland, OR. 97210

FUNDAMENTALS OF MICROCOMPUTER ARCHITECTURE

by Keith L. Doty
1979
Matrix Publishing, 30 N.W. 23rd Pl., Portland, OR. 97210

c-2

B. PERIODICALS

AMERICAN LABORATORY

BYTE
published monthly by Byte Publications, Inc.
70 Main Street

Peterborough, N.H. 03458

COMPUTER DESIGN
published monthly by Computer Design Publishing Co.
P.0. Box A
Winchester, MA 01890

free to qualified persons

CONTROL ENGINEERING
published monthly by Control Engineering
666 Fifth Avenue
New York, N.Y. 10019
free to qualified persons
Contains useful articles on applications of micro-
computers to industrial control.

DIGITAL DESIGN
published monthly by Benwill Publishing Corp.
Circulation Director
DIGITAL DESIGN
167 Corey Road
Brookline, MA 02146

free to qualified persons

Dr. Dobbs Journal of COMPUTER CALISTHENICS & ORTHODONTIA
published 10 times peryear by Peoples Computer Company
Box E
Menlo Park, CA 94025

Devoted to publication of microcomputer oriented
software such as TINY BASIC.

ELECTRONIC DESIGN

published biweekly by Hayden Publishing Company, Inc.
50 Essex Street
Rochelle Park, NJ 07662

free to qualified persons
ELECTRONIC DESIGN NEWS

published monthly by Cahners Publishing Co.
free to qualified persons, very hard to get

C-3

ELECTRONIC ENGINEERING TIMES
published biweekly by CMP Publications
280 Community Drive
Great Neck, NY 11021
free to qualified persons
useful for news and announcements of new micro-
processor products. Has bingo card for new product

ads,

ELECTRONICS
published biweekly by McGraw-Hill, Inc.
McGraw-Hill Building

1221 Avenue of the Americas
New York, NY 10020

INTERFACE
published monthly by Southern California Computer Society

free with membership to SCCS.

INTERFACE AGE (new magazine by publishers of original INTERFACE)
published monthly by McPheters, Wolfe & Jones
6515 Sunset Blvd.
Suite 202
Hollywood, CA 90028

INSTRUMENTS AND CONTROL SYSTEMS
published monthly by Chilton Company
Chilton Way
P.O. Box 2025
Radnor, PA 19089
Att'n: Circualtion Dept.

free to qualified persons

KILOBAUD
' published monthly by Publisher of 73
Kilobaud Magazine
Peterborough, N.H. 03458

Computexr Hobby Magazine

MINI-MICRO SYSTEMS (formerly Modern Data)
published monthly by Modern Data .Services, Inc.
5 Kane Industrial Lane
Hudson, MA 01749

free to qualified persons

POPULAR ELECTRONICS
published monthly by Ziff-Davis Publishing Co.
One Park Avenue
New York, N.Y. 10016
electronics hobby magazine '

RADIO-ELECTRONICS
published monthly by Gernsback Publications, Inc.

Subscription Services
Box 2520
Boulder, Colorado 80302

Hobby Magazine

73 MAGAZINE
published monthly by 73, Inc.
Peterborough, NH 03458

applications of microcomputers to radio communications

PEOPLE'S COMPUTERS
Published bimonthly by People's Computer Company
1263 E1 Camino Real
Box E
Menlo Park, CA 94025

ELECTRONIC NEWS
published biweekly by Fairchild Publishing Company
7 East 12th Street
New York, NY 10003

MANUALS:

The Bell & Howell. Pressure Transducer Handbook. Pasadena,
Calif.: CEC/Instruments Division, 1974.

EDN. Microprocessor Design Series.

Foxboro. Process-Control Instrumentation. Foxboro, Massachusetts.
The Foxboro Company.

Honeywell. An Evolutionary Look at Process Control/1.
Minneapolis, MINN.: Honeywell, 1975.

Coden: Avinap. Advances in Instrumentation. Pittsburg,
Pennsylvania. Instrument Society of America, 1978.

Instrument Society of America. Binary Logic Diagrams for
Process Operations. Pittsburg, PA.: 1976.

Instrument Society of America. Instrumentation Symbols and
Identification. Pittsburgh, PA.:

Jordan Controls. Remote Positioning Controls for Industry.
Milwaukee, WI.: Jordan Controls Inc., 1972.

MOS. KIM Assembler Manual (Preliminary), Norristown, PA.:
MOS Technology, Inc. 1976.

Powers Regulator Company. Fundamentals of Control. Skokie, ILL.:
Powers Regulator Company, 1970.

Synertek Systems Corporation. SyYM Reference Manual. Santa Clara,
CA.: Synertek Systems Corporation, 1978.

National Semiconductor. Pressure Transducer Handbook.
Santa Clara, CA.: National Semiconductor Corporation, 1977.

APPENDIX D

GLOSSARY OF COMMONLY USED TERMS

ABSCLUTE ADDRESSING - SEE DIRECT ADDRESSING

ABSOLUTE INDEXED ADDRESSING - The effective address is formed by adding the
index register (X or Y) to the second and third byte of the instructiaon.

ACCUMULATOR - A register that holds one of the operands and the result of
arithmetic and logic operations that are performed by the central pro-
cessing unit. Also commonly used to hold data transferred to or fram
I/0 devices.

ACCUMULATOR ADDRESSING - One byte instruction operating on the accumulator.

ACIA - Is an Asynchronous Communications Interface Adapter. This is an
NMOS LSI device produced by Motorola for interfacing Serial ASCII
devices to a micro-processor system.

ADDRESS - A number that designates a memory or I/0 location.

ADDRESS BUS - A multiple-bit output Bus for transmitting an address fram the
CPU to the rest of the system.

ALGORITHM - The sequence of operations which defines the solution to a problem.

ALPHANUMERIC - Pertaining to a character set that contains both letters and
numerals and usually other characters.

ALU (ARITHMETIC/LOGIC UNIT) - The unit of a camputing system that performs
arithmetic and logic operations.

ARRAY - An organized group of data stored in a block of memory. By convention,
the location of the array is specified as the location of the first data
item in the array.

ASCII CODE - The American Standard Code for Information Interchange. A seven-
bit character code without the parity bit, or an eight-bit character code
with the parity bit.

ASSEMBLER - A program that translates symbolic operation codes into machine
language, symbolic addresses to memory addresses and assigns values to
all program symbols. It translates source programs to object programs.

ASSEMBLY DIRECTIVE - A mnemonic that modifies the assembler operation but
does not produce an cbject code (e.g., a pseudo instruction).

ASSEMBLY LANGUAGE - A collection of symbolic labels, mnemonics, and data
which are to be translated into binary machine codes by the assembler.

ASYNCHRONOUS - Not occurring at the same time, or not exhibiting a constant
repetition rate; irregular.

BASE - SEE RADIX

BCD (BINARY QODED DECIMAL) = A means by which decimal numbers are represented
as binary values, where digits fram @ - 9 are represented by the four-
bit binary codes fram @@@g-1001.

BIDIRECTIONAL DATA BUS - A data bus in which digital information can be
transferred in either direction.

BINARY - The base-two number system. All numbers in this system are presented
by bit strings, in which each bit indicates the presence or absence of an
integral power of two. The power of two represented by each bit is called
the weight of that bit; it is defined by the position of the bit in the
bit string.

BIT - The smallest unit of information which can be represented. A bit may be
in one of two states, represented by the binary digits @ and 1.

BIOCK DIAGRAM — A diagram in which the essential units of any system are drawn
in the form of blocks, and their relationship to each other is indicated
by appropriate connecting lines.

BRANCH INSTRUCTION - An instruction that causes a program jump to a specified
address and execution of the instruction at that address. During the
execution of the branch instruction, the central processor replaces the
contents of the program counter with the specified address.

BREAKPOINT - Pertaining to a type of instruction, instruction digit, or other
candition used to interrupt or stop a computer at a particular place in
a program. A place in a program where such an interruption occurs or
can be made to occur.

BUFFER - A noninverting digital circuit element that may be used to handle a
large fan-out or to invert input and output levels.

- A storage device used to campensate for é difference in rate
flow of data, or time of occurrence of events, during transmission of
data from one device to another.

BYTE - A sequence of eight adjacent binary digits treated as a wunit.

CALL - A special type of jump in which the central processor is logically re-
quired to "remember" the contents of the program counter at the time that
the jump occurs. This allows the processor later to resume execution of
the main program, when it is finished with the last instruction of the
subroutine.

CARRY - The overflow value that results from the addition of two bits or digits
in an addition column.

CARRY (2)
- A single bit register that receives and holds the overflow information
resulting fraom an addition. The same register often is also used to
receive underflow information (BORROW) generated during a subtraction.

CASCADE - An arrangement of two or more similar circuits in which the output
of one circuit provides the input of the next.

CLOCK = A device or a part of a device that generates all the timing pulses
for the coordination of a digital system. System clocks usually generate
two or more clock phases. Each phase is a separate square wave pulse
train output.

QODING -~ The process of preparing a program fram the flow chart defining an
algorithm.

COMPILER - A language translator which converts individual source statements
into multiple machine instructions. A compiler translates the entire
program before it is executed.

COMPLEMENT - Reverse all binary bit values (ones became zeros, zeros became
ones) .

QONDITIONAL - In a computer, subject to the result of a camparison made
during camputation.

CONDITICNAL BREAKPOINT INSTRUCTION - A conditional jump instxruction that
causes a computer to stop if a specified bit is set. The routine then
may be allowed to proceed as coded, or a jump may be forced.

OONDITIONAL JUMP - Also called conditional transfer of control. An instruction
to a camputer which will cause the proper ane of two (or more) addresses
to be used in obtaining the next instruction, depending on same property
of one or more numerical expressions or other conditions.

CONTACT BOUNCE - The uncontrolled making and breaking of a contact when the
switch or relay contacts are closed. An important problem in digital
circuits, where bounces can act as clock pulses.

CPU (CENTRAL PROCESSING UNIT) - The unit of a computing system that controls
the interpretation and execution of instructions; includes the ALU.

DATA BUS - A multi-line parallel path carrying information between a number
of data sources and destinations. At any time, only a single data word
may travel on the bus. This means that only a single device may act as
a data source at any time, and generally only a single device will be
allowed to accept data from the bus at any moment.

DEBUG - Detect, locate, and correct prablems in a program or hardware.

D-3

EFFECTIVE ADDRESS - The actual address of the desired location in memory,
usually derived by same form of calculation.

EMULATOR - A hardware system (with associated software) that can replace the
processor in a micro-processor system. The emulator accepts and generates
all signals that the processor would handle, preferably at the same speed.
Inside the emulator, features are available to detect specific address
and data patterns, etc.; this makes the emulator a powerful debugging
tool, particularly for system hardware. Emulators are typically connected
to a system under development by means of a plug and multi-lead cable that
is inserted in place of the processor.

EVENT-TRIGGERED - A device, circuit, or program that responds to an event,
rather than to the presence (or absence) of a conditiaon.

FAN-OUT - The number of parallel loads within a given logic family that can be
driven fram one output node of a logic circuit.

FETCH - The operation by which a processor obtains a new op-code defining the
next instruction to be executed. The term FETCH may also be used more
loosely to describe the retrieval of an entire instruction fram memory.
The use of FETCH as a synonym for READ, e.g., to retrieve data from
memory, is not recammended.

FIELD - An area of an instruction mnemonic.

FIILE - A linearly organized string of data. Although FILE may refer to a
string of data in memory, the name is usually reserved for data stored on
magnetic tape, disc, or other storage media.

FIFO - A memory system organized in such a way that information can be stored
and retrieved sequentially in such a way that the order is preserved:
First-In-First-Out.

FLAG - A status bit which indicates that a certain condition has arisen during
the course of arithmetic or logical manipulations or data transmission
between a pair of digital electronic devices. Same flags may be tested
and thus be used to determine subsequent actions.

FLAG REGISTER - A register consisting of a group of flag flipflops.

FLOPPY DISC - A flexible disc, usually made of mylar, and coated with magnetic
oxide. Information may be stored on circular TRACKS on the disc, which
are subdivided into SECTORS. The recording mechanism is similar to that
used for magnetic tape. Because the read/write head can be positioned
rapidly over any track on the disc, the disc can be used as a randam—
access storage device. In contrast, information held on tape can only
be accessed sequentially.

D-4

DEBOUNCED - Refers to a switch or relay that no loic zr exhibits contact bounce.

DECODER/DRIVER - A code conversion device that can also have sufficient voltage
or current output to drive an external device such as a display or a lamp
monitor.

DEMULTIPLEXER - A digital device that directs information fraom a single input
to one of several outputs. Information for output-channel selection
usually is presented to the device in binary weighted form and is decoded
internally. The device also acts as a single-pole multiposition switch
that passes digital information in a direction opposite to that of a
multiplexer.

DESTINATION - Register, memory location or I/O device which can be used to
receive data during instruction execution.

DEVICE SELECT PULSE - A software-generated porsitive or negative clock pulse
fram a camputer that is used to strobe the operation of one or more
I/0 devices, including individual integrated circuit chips.

DIRECT ADDRESSING - The second and third byte of the instruction contain the
address of the operand to be used.

DMA (DIRECT MEMORY ACCESS) - Suspension of prucesscr operation to allow
peripheral units external to the CPU to exercise control of memory for
both READ and WRITE without altering the internal state of the processor.

DYNAMIC RAM - A random access memory that uses a capacitive element for storing
a data bit. They require REFRESH. A type of memory in which information
is stored in the form of charge on tiny capacitors. Because the capacitors
are not perfect, they tend to discharge with time. To avoid loss of infor-
mation, the capacitors must be periodically read and restored to their
original state. The read/restore operation is called REFRESH.

EBCDIC - The Extended Binary Coded Decimal Interchange Code, a digita’ code
primarily used by IBM. It closely resembles the half-ASCII code.

EDGE ~ The transition from logic @ to logic 1, or from logic 1 to logic @, in
a clock pulse.

EDGE TRIGGERED - A device which respcnds to a transition from one logic lewvel
to the other on one of its input leads is called an edge-triggered device.
The device only responds to the transition, but not to either the high cr
the low level of the input signal.

EDITOR - A program used for preparing and modifying a source program or other
file by addition, deletion or change.

D-5

FLOW CHART - A symbolic representation of the algorithm required to solve a
prablem.

FREQUENCY - The number of recurrences of a periodic phenomenon in a unit of
time. Electrical frequency is specified as cycles per second, or Hertz.
(Hz)

FULL DUPLEX - A data transmission mode which provides simultaneous and in-
dependent transmission and reception.

HALF-ASCII - A 64-character ASCII code that contains the code words for
nureric digits, alphabetic characters, and symbols but not keyboard
operations.

HALF DUPLEX - A data transmission and reception mode which provides both
transmission and reception but not simultaneously.

HANDSHAKE - Interactive cammunication between two systems or system components,
such as between the CPU and a peripheral; required whenever the camuni-
cating systems operate on independent time scales.

HARDWARE - Physical equipment: mechanical, electrical, or electronic devices.

HEXADECIMAL - A number system based upon the radix-16, in which the decimal
nurbers 0 through 9 and the letters A through F represent the sixteen
distinct states in the code.

HIGH ADDRESS BYTE - The eight most significant bits in the 16-bit memory
address word. Abbreviated H or HI.

IC (INTEGRATED CIRCUIT) - (1) A cambination of interconnected circuit elements
inseparably associated on or within a continuous substrate. (2) Any
electronic device in which both active and passive elements are contained
in a single package. In digital electronics, the term chiefly applies to
circuits containing semiconductor elements.

IMMEDIATE ADDRESSING - An addressing mode in which the data are imbedded as
part of the instruction.

IMPLIED ADDRESSING = A one-byte instruction that stipulates an operation in-
ternal to the processor. DOES NOT require any additional operand.

INCREMENT - To increase the value of a binary word by one.
INDEXED ADDRESS - An indexed address is a memory address formed by adding

immediate data included with the instruction to the contents of same
register or memory location.

D-6

INDEXED INDIRECT ADDRESSING - The instruction contains the address of an
array. An item is selected fram the array according to the value held
in an index register. The selected array item is then used as the
address of the data. If the array storage locations cannot hold a cam-
plete address, then same form of addressing econamy, such as zero-page
addressing, may have to be inwvoked.

INDIRECT ABSOLUTE ADDRESSING = The second and third bytes of the instruction
contain the address of the first of two bytes in memory that contain the
effective address.

INDIRECT INDEXED ADDRESSING - The instruction contains the address of a pointer.
The pointer in turn points to an array of data words (or bytes). A single
item is selected fram the array according to the value held in an index
register. If the array address cannot be held in a single storage loca-
tion, the pointer may be held in a pair of adjacent locations, with the
instruction pointing at the first of these locatiaons.

INDIRECT ADDRESS - An address used with an instruction that indicates a
memory location or a register that in turn contains the actual address of
an operand. The indirect address may be included with the instruction,
contained in a register (register indirect address) or contained in memory
location (memory directed indirect address).

INSTRUCTION -~ A statement that specifies an operation and the values or loca-
tions of its operands.

INSTRUCTION CODE - A unique binary number that defines an operation that a
camputer can perform.

INSTRUCTION CYCLE - A successive group of machine cycles, as few as one or as
many as seven, which together perform a single microprocessor instruction
within the microprocessor chips.

INSTRUCTION DECODER - A decoder within a CPU that decodes the instruction code
into a series of actions that the camputer performs.]

INSTRUCTION REGISTER - A register that contains the instruction code.
INTERPRETER - A language translator which converts individual source statements
into multiple machine instructions by translating and executing each

statement as it is encountered. Can not be used to generated adbject code.

INTERRUPT - In a camputer a break in the normal flow of a system or routine
such that the flow can be resumed fram that point at a later time. The
source of the interrupt may be internal or external.

I/0 DEVICE (INPUT/OUTPUT L[EVICE) - Any digital device, including a single
intergrated circuit chip, that transmits data or strobe pulses to a

D-7

camputer or receives data or straobe pulses fram a camputer.

JUMP - (1) To cause the next instruction to be selected fram a specified
storage location in a camputer. (2) A deviation from the nommal sequence
of execution of instructions in a camputer.

LABEL - One or more characters that serve to define an item of data or the
location of an instruction or subroutine. A character is one symbol of
a set of elementary symbols, such as those corresponding to typewriter
keys.

LATCH - A simple logic storage element. A feedback loop used in a symmetrical
digital circuit, such as a flipflop, to retain a state.

LEADING EDGE - The transition of a pulse that occurs first.

IED (LIGHT-EMITTING-DIODE) = A pn junction that emits light when biased in
the forward direction.

LEVEL-TRIGGERED - The state of the clock input, being either logic @ or logic
1 carries out a transfer of information or campletes an action.

LIFO (LAST IN, FIRST OUT) - The latest data entered is the first data obtain-
able fram a LIFO stack or memory section.

LSB (LEAST SIGNIFICANT BIT) - The digit with the lowest weighing in a binary
number.

LISTING - An assembler output containing a listing of program mnemonics,
the machine code produced, and diagnostics, if any. A program which is
printed in a format that includes a location colum and a contents colum
side by side with the corresponding program source statements. A listing,
or listing file, is one of the output files that may be obtained fram an
assempler program. Listings are intended primarily as a diagnostic aid,
but they are often supplied as part of the documentation for a program.

LOGIC = (1) The science dealing with the basic principles and applications of
truth tables, switching, gating, etc. (2) See Logical Design. (3) Also
called symbolic logic, a mathematical approach to the solution of complex
situations by the use of symbols to define basic concepts. The three
basic logic symbols are AND (+), OR (+), and NOT (% or x1). Although
the symbols - and + are used in the two disciplines, there is no relation-
ship between the logical OR and the algebraic ADD, even though the jargon,
and the printed literature, abound with questionable terms such as
"sun-of-products." (4) In computers and information- processing networks,
the systematic method that governs the operations performed on information,
usually with each step influencing the one that follows. (5) The sys-
tematic plan that defines the interactions of signals in the design of a
system for autamatic data processing.

LOGICAL DECISICN - The ability of a camputer to make a choice between two
alternatives; basically, the ability to answer yes or no to certain
fundamental questions concerning equality and relative magnitude.

LOGICAL DESIGN - The synthesizing of a network of logical elements to perform
a specified function. In digital electronics, these logical elements
are digital electronic devices, such as gates, flipflops, decoders, coun-
ters, etc.

LOGICAL ELEMENT - In a camwputer or data-processing system, the smallest build-
ing blocks which operators can represent in an appropriate system of
symbolic logic. Typical logical elements are the AND gate and the
"flipflop."

LOOP - A sequence of instructions that is repeated until a conditional exit
situation is met.

LOW ADDRESS BYTE - The eight least significant bits in the 16-bit memory
address word. Abbreviated L or 1O.

LSI (LARGE SCALE INTERGRATION) - Integrated circuits that perform cmfple.k
functions. Such chips usually contain 1@ to 2,990 gates.

MACHINE CODE - A binary code that a camwputer decodes to execute a specific
functian.

MACHINE CYCLE - A subdivision of an instruction cycle during which time a
related set of actions occur within the microprocessor chip. All
instructions are cambinations of one or more of these machine cycles.

MACRO ASSEMBLER - An assembler routine capable of assembling programs which
contain and reference macro instructions.

MACRO INSTRUCTION - A symbol that is used to represent a specified sequence
of source instructions.

MAGNETIC CORE - A type of camputer storage which employs a core of magnetic
material with wires threaded through it. The core can be magnetized
to represent a binary 1 or #.

MAGNETIC DRUM - A storage device consisting of a rapidly rotating cylinder,
the surface of which will retain the data. Information is stored in the
form of magnetized spots on the drum surface.

MAGNETIC DISC - A flat circular plate with a magnetic surface on which data
can be stared by selective magnetization of portions of the flat surface.

MAGNETIC TAPE - A storage system based on the use of magnetic spots (bits) on

metal or coated-plastic tape. The spots are arranged so that the desired
code is read out as the tape travels past the read-write head.

D-9

MASKING - A process that uses a bit pattern to select bits fram a data byte
for use in a subsequent operation.

MEMORY - Any device that can store logic 1 and logic @ bits in such a manner
that a single bit or group of bits can be accessed and retrieved.

MEMORY ADDRESS - If n bits are available to define memory locations, then 27
locations are available. Each possible pattern of n bits correspands to
one memory location. A bit pattern used to define a memory location
may be called a memory address; it is generally handled as a binary or
hex number. '

MEMORY CELL - A single storage element of memory, capable of storing one bit
of digital information.

MICROOOMPUTER - A camputer system based on a microprocessor and containing all
the memory and interface hardware necessary to perform calculations and
specified information transformations.

MICROPROCESSOR - A central processing unit fabricated as one integrated circuit.

MICROPROGRAM -~ A computer program written in the most basic instructions or
subcammands that can be executed by the camputer. Frequently, it is
stored in a read-only memory.

MNEMONIC - Symbols representing machine instructions designed to allow easy
identification of the functions represented.

MODULUS - (1) The number of possible states of a counter or similar circuit.
A decimal counter will count with a modulus of 1@, or "modulo 19".
Hence a decimal counter may also be called a "modulo 1@" counter.
(2) If a large number is counted with a modulo "n" counter, the final
count displayed by the counter will be equal to the remainder that would
be obtained if the large number is divided by the modulus, n. For example,
"17 modulo 5" = 2, because the remainder or 17 divided by 5 equals 2.

MONITOR - Software or hardware that cbserves, supervises, controls, or verifies
system operation.

MONOSTABLE MULTIVIBRATOR - Also called one-shot multivibrator, single-shot
multi-vibrator, or start-stop multivibrator. A circuit having only cne
stable state, from which it can be triggered to change the state, but
only for a predetermined interval, after which it returns to the original
state.

MSI (MEDIUM SCALE INTEGRATION) - Integrated circuits that perform sinple,
self-contained logic operations, such as counters and flipflops.

D-10

MSB (MOST SIGNIFICANT BIT) - The digit with the highest weighting in a binary
number.

MULTIPLEXER - A digital device that can select one of a nuwber of inputs and
pass the logic level of that input on to the output. Information for
input-channel selection usually is presented to the device in binary
weighted form and decoded internally. The device acts as a single-pole
multiposition switch that passes digital information in one direction anly.

NEGATIVE EDGE - The transition from logic 1 to logic @ in a clock pulse.

NEGATIVE - EDGE TRIGGERED - Transfer of information occurs on the negative edge
of the clock pulse.

NEGATIVE LOGIC - A form of logic in which the more positive voltage level
represents logic @ and the more negative lewvel represents logic 1.

NESTING - A program structure in which subroutines may call other subroutines.
Also, a program structure which allows interruption of interrupt service
routines by other interrupting devices.)

NYBBLE - A sequence of four adjacent bits, or half a byte, is a nybble. A
hexadecimal or BCD digit can be represented in a nybble.

NON-OVERLAPPING TWO-PHASE CLOCK - A two phase clock in which the clock pulses
of the individual phases do not overlap.

NON-VOLATILE MEMORY - A semiconductor memory device in which the stored digital
information is not lost when the power is removed.

OCTAL - A number system based upaon the radix 8, in which the decimal numbers
@ through 7 represent the eight distinct states.

ONE-BYTE-INSTRUCTION - A instruction that consists of eight contiguous bits
occupying one memory locatian.

OPCODE - The bit pattermn defining the operation that a processor must perform.
It is always the first part of each instruction. Depending on the type
of operation, the instruction may contain additional bytes of information,
e.g., datz or address information.

OPEN-QOLLECTOR OUTPUT - An output fram an integrated circuit device in which
the final "pull-up" resistor in the output transistor for the device is
missing and must be provided by the user befaore the circuit is campleted.

OPERAND - Data which will be operated upon by an arithmetic/logic instruction;
usually identified by the address portion of an instruction, explicity
or implicity.

OPERATION - Moving or manipulating data in the CPU or between the CPU and
peripherals.

D-11

PAGE - A page cansists of all the locations that can be addressed by 8-bits
(a total of 256 locations) starting at @ and going through 255. The
address within a page is determined by the lower 8-bits of the address
and the page number (@ through 255) is determined by the higher 8-bits
of a 16-bit address.

PARITY - A method of checking the accuracy of bit strings. If even parity
is used, the sum of all the 1's in a string and its corresponding parity
bit is always even. If odd parity is used, the sum of all the 1's in
the string, including the parity bit is always odd.

PARTITIONING - The process of assigning specified portions of a system's
responsibility to perform specified functions.

PC - SEE PROGRAM QOUNTER

PIA - PERIPHERAL INTERFACE ADAPTOR (MOS Technology's MPS 6520)

PERIPHERAL - A device or subsystem that is not part of a processor or its
memory, but that is caonnected in such a way that it can cammunicate with
the processor as the need arises. Greek for "on-the-outside-edge."

POLLING - Periodic interrogation of each of the devices that share a commmica-
tions line to determine whether it requires servicing. The multiplexer
or control station sends a poll that has the effect of asking the selected
device, "Do you have anything to transmit?"

POP - Retrieving data from a stack.

PORT - A device or network through which data may be transferred or where
device or network variables may be ocbserved or measured.

POSITIVE EDGE - The transition fram logic @ to logic 1 in a clock pulse.

POSITIVE-EDGE TRIGGERED - Transfer of information occurs on the positive edge
of the clock pulse.

POSITIVE LOGIC - A form of logic in which the more positive woltage level
represents logic 1 and the more negative level represents logic #.

PRIORITY - A preferential rating. Pertains to operations that are given
preference over other system operations.

PROCESSOR - Shorthand word for microprocessor.

PROGRAM - A group of instructions which causes the camputer to perform a
specified function.

PROGRAM COUNTER - A register containing the address of the next instruction
to be executed. It is automatically incremented each time program
instructions are executed.

D-12

PROGRAM LABEL - A symbol which is used to represent a memory address.

PROM (PROGRAMMARLE READ-ONLY MEMORY) - A read—-only memory that is field
programmable by the user.

PROPAGATION DELAY - The time required for a logic signal to travel through
a logic device or a series of logic devices. It occurs as the result of
four types of circuit delays - storage, rise fall and turn-on delay -
and is the time between when the input signal crosses the threshold -
voltage point and when the responding voltage at the output crosses the
same voltage point.

PSEUDO-INSTRUCTION - A mnemonic that modifies the assembler operatior but does
not produce an object code.

PULL~UP RESISTOR - A resistor connected to the positive supply wvoltage from
the output collector of open-collector logic. Also used occasionally
with mechanical switches to insure the wvoltage of one or more switch
positions.

PULSE WIDTH - Also called pulse length. The time interval betwec. the points
at which the instantaneous value on the leading and trailing edges bears
a specified relationship to the peak pulse amplitude.

PUSH - Putting data into a stack.

RADIX - Also called the base. The total number of distinct marks or symbols
used in a numbering system. For exemple, since the decimal numbering
system uses ten symbols, the radix is 1§. In the binary nmbering system,
the radix is 2, because there are only two macks or symbol: (g and 1).

In the octal numbering system, the radix is 8, and in the hexadecimal
numbering system, the radix is 16.

RAM (RANDOM ACCESS MEMORY) - A semiconductor memory iato which logic @ 'nd
logic 1 states can be written (stored) and then read out again (retrieved).

READ - (1) Retrieval of information fram memory. (2) In general, infcmation
is "read" fram a source if the source supplies the information on the
initiative from a device or system that is not part of the source, i.e.,
when the source responds. If a source acts to supply information, the
source is said to write data. i

REFRESH - The process of restoring transient inromwaticn to its original
quality before it has degraded to a lewvel at which Zt can no longer be
retrieved reliably. (1) For dynamic RAM memory: the process of reading
the charge on the capacitive storage elements; Juring the read operation,
the information stored on each element is restored to its original quality.
(2) Scope displays: graphic information shown on the face of a cathode

D-13

ray screen must be rewritten periodically at least 25 times per second
to avoid flickering of the image.

REFRESH LOGIC - The Logic required to generate all the refresh signals and
timing for dynamic RAM.

RELATIVE ADDRESSING - An addressing mechanism in which the location of an
operand in memory is defined relative to the location of the instruction
that refers to the operand. The address information contained in the
instruction represents the "distance" in memory space between the in-
struction and the location of the operand. The processor then generates
the actual address of the operand by adding the distance information to
the content of the program counter.

RESET - A signal applied to a processor to force it into a pre-defined sequence
of operations without regard for its current state. Normally, a RESET
pulse will be applied on initial power-up, and when the processor has
gone out of control owing to a software or hardware error. The RESET
sequence should force all I/0 ports into a known innocuous state, and it
should load the program counter with a known address, so that the processor
can begin execution of a start-up program. For the 6502 processor, the
RESET sequence loads the program counter with the contents of memory
locations $FFFC and S$FFFD.

RETURN - A jump instruction for which the target address is not contained in
the instruction, but is retrieved from the stack. This means that the
target address must have been placed on the stack before the RETURN
instruction is executed, normally by a subroutine call (JSR in 6502
assembly language) .

RIPPLE QOUNTER - A counter consisting of a string of flipflops connected in
such a way that the output of each flipflop serwves as the clock signal
for its successor. A clock pulse applied to the first flipflop in the
string must "ripple through" all the flipflops before it can affect the
last one in the string.

RISE TIME - The time required for an output woltage of a digital circuit to
change fram a logic @ to a logic 1 state.

ROM - A memory system whose contents can be read, but not changed, by the
processor to which it is attached. The term is often used to describe
memory devices that do not lose the information stored in them when power
is disconnected. Strictly speaking, memory that is immme to loss of
power should be called nonvolatile.

ROUTINE - A group of instructions that causes the camwputer to perform a
specified function, e.g., a program.

D-14

SCRATCH PAD - The term applies to memory that is used temporarily by the CPU
to store intermediate results.

SEVEN-SEGMENT DISPLAY - An electronic display that contains seven lines or
segments spatially arranged in such a manner that the digits @ through
9 can be represented through the selective lighting of certain segments
to form the digit.

SEMICONDUCTOR MEMORY — A digital electronic memory device in which 1's and
@'s are stored, that is a product of semi-conductor manufacturing.

SHIFT REGISTER - A digital storage circuit in which information is shifted
fram one flipflop of a chain to the adjacent flipflop upon application
of each clock pulse. Data may be shifted several places to the right or
left, depending on additional gating and the number of clock pulses
applied to the register. Depending on the number of positions shifted,
the right-most bits are lost in a right shift, and the left-most bits are
lost in a left shift.

SIMULATOR - A program that makes cne camputer behave as if it were another
machine. Simulator programs are often used to test software written for
a micro-processor on a large machine. Good simulators contain extensive
diagnostic facilities; they allow insertion of multiple break points,
and can maintain records of the amount of time spent in specified program
loops, etc. Because each instruction must be decoded by software in the
simulator, rather than by hardware, the execution time of any given program
will generally be much slower on the simulator than on the machine for
which the program is actually designed.

SOFTWARE - The means by which any defined procedure is specified for computer
execution.

SOURCE - Register, memory location or I/0 device which can be used to supply
data.

SOURCE PROGRAM - A group of statements conforming to the syntax requirements
of a language processor.

SPLIT DATA BUS - Two data buses, one for incaming commmications and one for
outgoing canmmunications. An 8-bit data bus in a split data bus sytem
takes 16 lines.

STACK - A specified section of sequential memory locations used as a LIFO
(Last In, First Out) file. The last element entered is the first one
available for output. A stack is used to store program data, subroutine
return addresses, processor status, etc.

STACK POINTER (SP) - A register whieh contains the address of the system

D-15

read/write memory used as a stack. It is autamatically incremented or
decremented as instructions perform operations with the stack.

STATEMENT - An instruction in source language.

STATIC RAM - A random access memory that uses a flipflop for storing a binary
data bit. Does not require refresh.

STRING - A collection of data, (bits, bytes, words, characters, etc.) between
which a sequential relationship exists.

SUBROUTINE - A routine that causes the execution of a specified function and
which also provides for transfer of control back to the calling routine
upon campletion of the function.

SYMBOL - Any character string used to represent a label, mnemonic, or data
constant.

SYMBOLIC ADDRESSING - An addressing notation in which the location of variables,
entry points, etc., in a program are referred to by symbolic names rather
than by (numerical) memory addresses. When the assembler translates the
source program into machine language, it must assign the actual memory
address for each symbolic address defined in the source. Symbolic addres-
sing allows the programmer to revise a program without the need to update
the addresses to which the program refers.

SYMBOLIC CODE - A code by which programs are expressed in source language;
that is, storage locations and machine operations are referred to by
symbolic names and addresses that do not depend upon their hardware-
determined names and addresses.

SYMBOLIC CODING - In digital camputer programming, any coding system using
symbolic rather than actual computer addresses.

SYNCHRONOUS - Operation of a switching network by a clock pulse generator.
All circuits in the network switch simultaneously, and all actions take
place synchronously with the clock.

SYNTAX ERROR - An occurrence in the source program of a label expression or
condition that does not meet the format requirements of the assembler

program.

TABLE — A data structure used to contain sequences of instructions, addresses,
or data constants.

TRAILING EDGE - The transition of a pulse that occurs last, such as the high-
to-low transition of a positive.clock pulse.

D-16

TRANSITION - The instance of changing fram one state to a second state.

THREE-STATE DEVICE or TRI-STATE ®DEVICE: - A semiconductor logic device in
which there are three possible output states: (1) a "logic g" state,
(2) a "logic 1" state, or (3) a state in which the output is, in effect,
disconnected from the rest of the circuit and has no influence upon it.

THREE-BYTE INSTRUCTION - An instruction that consists of twenty-four contiguous
bits occupying three successive memory locations.

TREE - A group of gates connected to canbine a number of parallel input signals
into a single output signal.

TRUTH TABLE - A tabulation that shows the relation of all output logic levels
of a digital circuit to all possible cambinations of input logic levels
in such a way as to characterize the circuit functions completely.

TWO-BYTE INSTRUCTION - An instruction that consists of sixteen contiguous bits
occupying two successive memory locations.

TWO-PHASE CLOCK - A timing circuit that generates a pair of pulse strings, so
that the true state fram one output coincides with the false state fram
the other output. If the timing is controlled so the two outputs are
never simultaneously true, then the pulse strings are called non-over-
lapping. The pulse strings are often referred to as phase 1 and phase 2.

UNCONDITIONAL - Not subject to conditions external to the specific camputer
instruction.

UNOONDITICNAL CALL - A call instruction that is unconditicnal.

UNCONDITIONAL JUMP - A camputer instruction that interrupts the normal process

of dbtaining the instructions in an ordered sequence and specifies the
address fram which the next instruction must be taken.

UNCONDITIONAL RETURN - A return instruction that is unconditional.

VLSI (VERY LARGE-SCALE INTEGRATION) - Monolithic digital integrated circuit
chips with a typical camplexity of two thousand or more gates or gate-
equivalent circuits.

VOLATILE MEMORY - A semiconductor memory device in which the stored digital
information is lost when the power is removed.

WEIGHTING - If the numerical meaning of each bit in a bit string is defined
uniquely by the position of the bit in the string, the string represents
nurerical information in a weighted code. The most cammon weighted codes
are binary and BCD code.

D-17

WIRED-OR CIRCUIT - A circuit consisting of two or more semi-conductor devices
with open collector outputs in which the outputs are wired together. The
output fram the circuit is at a logic @ if device A or device C or
ceeees 1S at a logic @ state.

WORD - The group of bits that can travel in parallel on the data bus of a
camputer system. For the 6502, a word is one byte or 8 bits wide. For
large camputers, a word may be up to 8 bytes wide.

WRITE - In semiconductors and other types of memory devices - to transmit data
into a memory device fram same other digital electronic device. To WRITE
is to STORE.

ZERO-PAGE - The lowest 256 address locations in memory. Where the highest
8-bits of address are always @'s and the lower 8-bits identify any
location fraom @ to 255. Therefore, only a single byte is needed to ad-
dress a location in zero-page.

ZERO-PAGE ADDRESSING - The address portion of the instruction contains a zero—
page address.

ZERO-PAGE INDEXED ADDRESSING - The second byte of the instruction is added

to an index register (X or Y) to form a zero-page effective address.
The carry (if any) is ignored.

D-18

SYM TAPE USAGE GUIDE

D

0l

02

03

04

05

06

08

09

TAPE USAGE GUIDE

BER PR NAME MEMORY ADDRESS

Hunt the Wumpus
Real Time Clock
Black Jack

One Armed Bandit
Lunar Lander
Stop Watch
Music Box

Tunes for Music Box
(Works only with Music Box)

0006~03FF
0200-02BC
0200-03EC
0200-02DB
0200-0310
0000-00CB
0200-028B

0000-00CO

AMERICAN INSTITUTE FOR PROFESSIONAL EDUCATION

CARNEGIE BUILDING . HILLCREST ROAD

B MADISON, N.J. 07940

START

0200

0200

0200

0200

0200

0000

0200

HU THE WUMPUS

Wumpus lives in a cavern with 16 rooms labeled O-F.

The program starts at $0200. You and Wumpus are placed at
random in the rooms. Also 2 bottomless pits and two rooms
with superbats. If you enter a bat's room you will be picked
up and placed at random in another room. You will be warned
when bats, pits, or Wumpus are nearby. If you enter the

room with the Wumpus, he wakes and may move to an adjacent
room or eat you (you lose).

To catch the beast you are given 3 cans of mood change
gas. When thrown into a room containing the Wumpus, the gas
changes him from a beast to a lovable creature. He'll give
you a hug (you win).

However, once you throw the can of gas, the room is
contaminated and will turn you into a beast if you enter (lose).
0l1ld gas doesn't bother Wumpus.

In addition, whenever you throw the gas, the Wumpus
may move. He might even charge if you're in an adjacent room
and each you. It's all so sudden you'll never know what
hit you. (You lose.)

To throw a can of gas, press "MEM." The display will
ask "room"? Enter an adjacent room.

When entering a room with a pit or bat you will be
informed of the surrounding hazards before you either fall to
your doom or are moved by the bats. Take note of the informa-

tion as it may be helpful to you.

AMERICAN INSTITUTE FOR PROFESSIONAL EDUCATION
CARNEGIE BUILDING . HILLCREST ROAD . MADISON, N.J. 07940

Hunt the Wumpus - Page 2

If you wish to change the speed of the display, change
the data in $00E9 and enter the program at $0206.

If you wish to try again leaving everything else the
Same, enter at $0218. The program uses almost all of Page 0,

2, and 3.

Credit: Gregory Yob from The Best of Creative Computing.

and

Stan Ockers from The First Book of KIM.

AMERICAN INSTITUTE FOR PROFESSIONAL EDUCATION
CARNEGIE BUILDING . HILLCREST ROAD . MADISON, N.J. 07940

WUMPUS. ...+ PAGE 0001

TINE # LOC CoDE LINE

vwd2 0000 tHUNT THE WUMPUS GAME

0003 0000 MSGTAB=80304

0004 0000 TICL=$A004

0005 0000 ASCNIB=$8275

0006 0000 POINT=$00FE

0007 0000 INCCMP=$82B2

0008 0000 GETSGS=$89EA

0009 0000 SEGSM1=$8C28

0010 0000 SCAND=$8906

0011 0000 RMB=$00ES

0012 0000 SAVER=$8188

0013 0000 MESSID=$S00E4

0014 0000 SPEED=$00E9

0015 0000 RESALL=$81C4

0016 0000 WPRM=S00F2

0017 0000 CANS=$00EA

0018 0000 YOURM=$00F 3

0019 0000 GETKEY=$ 88AF

0020 0000 ACCESS=$8B86

0021 0000 *=$0200

Nn022 0200 A9 10 LDA #810

0023 0202 8% E9 STA SPEED

0024 0204 A9 03 LDA #$03

002% 0206 85 EA STA $00EA
"6 0208 20 86 8B JSR ACCESS

u.<7 020B A9 PP LDA §$FF

0028 020D A2 OC LDX #80C

0029 020F 95 EB INIT STA $O00EB,X

0030 0211 CA DEX

0031 0212 10 ¥B BPL INIT

0032 n214 no 05 LDY $#$05

0033 1216 10 02 BPL GETN

0034 .218 a0 00 BATENT LDY #$00

0035 021A A2 05 CETN LDX #$05

0036 021C 20 51 00 JSR RAND

0037 O021F 29 OF AND #$0F

0038 0221 DS EE CKNO CMP $00EE,X

0039 0223 FO FS BEQ GETN

0040 0225 CA DEX

0041 0226 10 P9 BPL- CKNO

0042 0228 99 EE 00 STA $O00EE,Y

0043 022B 8% DEY

n044 022C 10 EC BPL GETN

0045 O022E 20 El 02 BEGIN JSR ADJRMS

0046 0231 A0 04 HAZARD LDY #4 -

0047 0233 12 07 NEXT1 LDX #7

0048 023% B9 F3 00 LDA $0OF3,Y

0049 0238 D5 EB NEXT CMP SOOEB,X

NN50 023A DO 03 BNE FINISH

"Rl 023C 20 %0 02 JSR 1ZD

.2 023Fr CA FINISH DEX

0053 0240 10 Fé6 BPIL, NEXT

0054 0242 88 DEY

0055 0243 10 EE BPL NEXT1

0056 0245 A9 08 PROMPT LDA #$08

SET DISPLAY SPEED
;GIVE 3 CANS OF GAS

;OPEN SYS PRAM
;s INITIALIZE ROOMS TO S$FF

;GET RANDOM VARIABLES

1 SUBERBATS ENTRYPOINT

sMAKE SURE ALL ARE DIFF.

;STORE IN $00EE-$00F3

; SET UP ADJACENT ROOM LIST
sCHECK FOR HAZARDS

;TOUND HAZARD TAKE ACTIOW

WUMPUS+ «PAGE 0002

LINE

Uus7
0058
0059
0060
no6l
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0072
0074
0075
0076
0077
0078
0079
0080
n~g1
32
0083
0084
0085
0086
0087
008!
0oL
00eo
0091
0092
Nno93
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
n105
0106
(7
0108
0109
0110
0111

CODE

00
AP
4D
09
8A

_EF

r3
Dé&
09
00
A¥
8A
r3
EA
EA
EA
r2

08"

OA
00

F8
0B
00
EA
08
ocC
00

F@
éD

SE
88
03
02
00
07
02
01
03
02
02
03
02
03
00
04

00
E4

00
gt

00

00

00

00

00

81

00

LINE

TRWCAN

WIN

NOWIN

LOSE

NOLOSE

HZD
COMPES

NO

NO1l

NO2

NO3

NO4

JSR
JSR
CMP
BEQ
JSR
BCS
STA
BCC
LDA
JSR
JSR
JSR
BCS
LDX
STA
DEC
CMP
BNE
LDA
JSR
CLC
BCC
LDA
JSR
LDA
BNE
LDA
JSR
CLC
BCC
JSR
CLC
BCC
JSR
CPX
BCS
LDX
CPX
BCC
LDX
CPX
BCC
LDX
CPX
BCC
LDX
CPY
BNE
INX
INX
INX
INX

JSR
LDX

MESS
GETKEY
' L] bil
TRWCAN
VALID
PROMPT
YOURM
BEGIN
#$09
MESS
GETKEY
VALID
TRWCAN
CANS
CANS ,X
CANS
WPRM
NOWIN
#§s$0A
MESS

WIN
$$0B
MESS
CANS
NOLOSE
#s0C
MESS

LOSE
WPMOVE

BEGIN
SAVER
#3
NO

#0

#7
NOl
#l

#5
NO2
#2

#3
NO3
#3

#0
NO4

MESS
MESSID

s ROOM NUMBER ?
s UPDATE YOUR ROOM

sPITCH A CAN

;USED ANOTHER CAN
:GET WUMPUS ?

:NO

;YES

+MOVE THE WUMPUS
;CONTINUE GAME

;ACT ON IHAZARD

; GENERATE HAZARD CODE

;GAS

s WUMPUS

;BATS

;CIIECK IF YOUR ROOM

;s PRINT MESSAGE

thPUS-....-PAGE OW3

"“NE § LOC CODE LINE
0112 02B9 EO 04 CPX #4 ; GASSED
0113 O02BE DO 02 BNE NOPE
0114 O02BD FO C3 BEQ LOSE
0115 02BF EO 07 NOPE CPX #7 ; PITFALL
0116 ©€2C1 DO 02 BNE NOPE1
0117 02C3 FO BD BEQ LOSE
0118 02C5 EO 06 NOPEl CPX #6 ; SUPERBATS
0119 02C7 DO OE BNE NOPE2
0120 02C9 20 51 00 JSR RAND
0121 02¢cC 2% OFr AND $#$0F
0122 O02CE 85 F3 STA YOURM
0123 02D0 68 PULL PLA
0124 02D1 CA DEX
012% 02D2 DO FC BNE PULL
0126 02D4 4C 18 02 JMP BATENT
0127 02D7 EO 05 NOPE2 CPX #5 ; BUMPED WUMPUS
0128 02D9 DO 03 BNE OUTY
0129 02DB 20 6D 00 JSR WPMOVE
0130 O02DE 4C C4 81 OUTY JMP RESALL
0131 02El1 AS F3 ADJRMS LDA YOURM
0132 02E3 4A ADJAC LSR A
0133 02E4 AA TAX
0134 02E5 6A ROR A
NM135 O02E6 85 ES STA RMB
6 02ES A0 03 LDY #3
0137 02EA BS5 9C AGN LDA TABLE,X
0138 02EC 24 E5 BIT RMB
0139 O02EE 10 04 BPL *+6
0140 02F0 29 OF AND #S$OF
0141 O02F2 10 04 BPL *+6
0142 2F4 4A LSR A
0143)2F5 4A LSR A
0144 02F6 4A LSR A
0145 02r7 4Aa LSR A
0146 O02F8 99 F4 00 STA $O0F4,Y
0147 O02FB 8A TXA
0148 02FC 18 cLC
0149 O02FD 69 08 ADC $8$08
0150 O02FF AA TAX
0151 0300 88 DEY
0152 0301 10 E7 BPL AGN
0153 0303 60 RTS
0154 0304 sMESSAGE TABLE
0155 0304 80 .BYT $80,$00
0155 0305 00 ‘
0156 0306 ;WUMPUS CLOSE MESSAGE
n157 0306 80 .BYT $80,$01,$00,$3E,$1C,$37,$73,8%1C,$6D

0157 0307 01
0157 0308 00

7 0309 3E
.57 O030A 1C
0157 030B 37
0157 030C 73
0157 030D 1C
0157 O030E 6D

WUMPUS. ...

LINE

\..1.58
0158
0158
015%
0158
0158
0158
0159
0160
0160
0160
0160
01690
0160
0160
0160
0160
0161
0161
0161
0161
0161
0162
0163
ni63
.63
0163
0163
0163
0163
0167
016
016..
0164
0164
0164
D164
0165
0166
0166
0166
0166
0166
0166
0166
0166
0166
N167
0168
0169
59
0169
0169
0169
0169

LOC

030F
0310
0311
€312
0313
0314
0318
0316
0316
0317
0318
0319
031A
031B
031C
031D
031E
031F
0320
0321
0322
0323
0324
0324
0325
0326
0327
0328
0329
032A
032B
032C
032D
032E
032F
0330
0331
0332
0332
0333
0334
0335
0336
0337
0338
0339
033a
033B
033C
033C
033D
033E
033F
0340
0341

00

38
3F
6D
79
00

80
00

77
78
6D
00
39
38
3F
€D
7%
00

80
03
00
73
06

78

éD
00
39
38
3F
6D
79

80
04

3D
77
6D
6D
9
SE

80
05
00
3r
3F
73

. «PAGE 0004

CODE

LINE
-BYT $00,$39,838,$3F,$6D,$79,$00

; BATS CLOSE MESSAGE
.BYT $80,$02,$00,$7C,$77,$78,S6D,$00,$39
.BYT $38,8$3F,$6D,$79,$00

yPITS CLOSE MESSAGE
.BYT $80,$03,$00,$73,$06,5$78,$6D,$00,$39
.BYT $38,$3F,$6D,$79,500

;: GASSED MESSAGE

.BYT $80,$04,500,$3D,$77,$6D,$6D,$79,$5E

-BYT $00
sBUMPED WUMPUS MESSAGE
.BYT $80,$05,$00,$3F,$3F,$73,$6D,$00,$7C

{qUMPUS. LI N .PAGE ooos

"NE ¢ LOC CODE LINE

0169 0342 6D
0169 0343 00
0169 0344 7C
0170 0345 1C .BYT $1C,$37,$73,879,$5E,$00,$77,$00
0170 0346 37
0170 0347 73
0170 0348 79
0170 0349 SE
0170 034a 00
0170 034B 77
0170 034C 00
0171 034D 3E -BYT $3E,$1C,$37,$73,$1C,$6D,$00
0171 O034E 1C
0171 034r 37
0171 0350 73
0171 0351 A1c
0171 0352 6D
0171 03%3 00 .
0172 0354 ;SUPERBATS SNATCIIED YOU MESSAGE
0173 0354 80 .BYT $80,%$06,$00,$6D,$1C,$73,$79,$50,87C
0173 0335 06
0173 03% 00
0173 0357 6D
“1'73 0358 1cC
23 0359 I3
0173 035A 79
0173 035B 50
0173 035¢c 7cC
0174 035D 77 «BYT $77,$78,$6D,$00,$6D,$54,$77,878
0174 O035E 78
0174 035F 6D
N174 0360 00
0174 0361 6D
D174 0362 54
0174 0363 77
0174 0364 78
0175 0365 58 +BYT $58,$76,$79,$5E,$00,$6E,$3F,$1C
0175 0366 76
0175 0367 79
0175 0368 5SE
0175 0369 00
0175 036A 6E
0175 036B 3F
0175 036C 1C

0176 036D 00 .BYT $00
0177 036E {FELL IN PIT MESSAGE
0178 036E 80 .BYT $80,8$07,$00,$6E,504,$79,$79,$79,$00

0178 036F 07
~'78 0370 00

'8 0371 6E
0178 0372 04
0178 0373 79
0178 0374 79
0178 0375 79
0178 0376 00

WOMPUS......PAGE 0006

LINE ¢

vd79
0179
0179
0179
0179
0179
0179
0179
0180
0180
0180
0180
0181
0182
0182
0182
0182
0182
0182
0182
0182
0182
0183
0183
.“83
.83
0183
0183
0183
0183
0184
0184
0184
0184
0184
0184
0184
0184
0185
0185
N185
0185
0185
0185
0185
0186
0186
0186
0186
Nn1B6
37
0188
0188
0188
0188

ioc

0377
0378
0379
037A
0378
037C
037D
037E
037F
0380
0381
0382
0383
0383
0384
0385
0386
0387
0388
0389
038A
038B
038C
038D
038E
038F
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
039%A
039B
039C
039D
039E
039F
03A0
03Al
03a2
03A3
03n4
03A5
03A6
03A7
O3A8
03A8
03A9
03AA
03AB

cope

LINE
«BYT $71,$79,$38,$38,500,504,$54,500

+BYT $73,$04,$78,$00

$YOU ARE IN ... MESSAGE
-BYT $80,$08,$00,$6E,$3F,$1C,$00,$77,$50

-BYT $79,800,504,$54,$00,$CB,$00,$78

-BYT $1C,$54,$54,$79,$38,$6D,$00,$38

«BYT $79,$77,$5E,$00,$78,$3F,$00

«BYT $CC,$CD,SCE,SCF,$00

tROOM ? MESSAGE
-BYT $80,$09,$00,$50,$3F,$3F,$37,$53

‘qUHpUS. a0 8w .PAGE 0007

LINE

.88
188
0188
olse
0189
0190
0190
0199
0190
0190
0190
0190
0190
0190
0191
0191
0191
0191
0191
0191
0191
0191
0192
0192
0192
192
92
0192
0192
0192
0193
0193
0193
0193
0193
0193
0193
0193
0194
0194
0195
0196
0196
0196
0196
0196
0196
0196
0196
0196
"197
37
0197
0197
0197

¢ LOC

03AC
03AD
03AE
03AF
03B0
03B0
03B1
03B2
03B3
03B4
03B5
03B6
03B7
03B8
03B9
03BA
03BB
03BC
03BD
03BE
03BF
03C0
03C1
03C2
03C3
03C4
03C5
03C6
03c?
03Cs8
03Co
03CcAa
03CB
03cc
03CD
03CE
03CF
03D0
03D1
03D2
03p3
03D3
03D4
03D5
03D6
03D7
03D8

. 03D9
03DA.

03DB
03DpC
03DD
03DE
03DF
03E0

CODE

LINE

}YOU WIN MESSAGE

-BYT $80,$0A,$00,$3D,$50,$79,$77,$78,$00

-BYT $6E,$3F,$1C,$00,$3D,$79,5$78,$00

-BYT $3F,$37,$00,$3E,$1C,$37,$73,$1C

«BYT $6D,$00

7?2 CANS LEFT MESSAGE

-BYT $80,$0B,$00,$37,$04,$6D,$6D,$79,S5E

WUMPUS, ..., PAGE 0008

LINE % 1LOC CODE LINE

A197 03E1 00
197 03E2 C2

0197 03E3 00

0198 O03E4 39 .BYT $39,$77,$54,$6D,$00,5$38,579,$71

0198 03ES 77

0198 O03E6 54

0198 03E7 6D

0198 03E8 00

0198 O03E9 38

0198 O03EA 79

0198 03EB 71

0199 O03EC 78 .BYT $78,500

0199 O03ED 00

0200 O03EE 1YOU LOSE MESSAGE

0201 O3EE 80 .BYT $80,$0C,$6E,$3r,$1C,$00,8$38,$3F

0201 O3EF OC
0201 O03F0 6E
0201 O0O3Fl1 3F
0201 03r2 1C
0201 O3F3 00
0201 O03r4 38
0201 O3F5 3F
0202 O03Fé 6D «BYT $6D,$79,500
0202 O03F7 79
0202 03r8 00

0203 03r9 80 .BYT $80
0205 O3FA *=$0000
020/ 0000 tMESSAGE DISPLAY ROUTINE
0209 0000 85 E4 MESS STA MESSID
0210 0002 A9 03 IDA #,MSGTAB-1
0211 0004 85 FE STA $OOFE
0212 0006 A9 03 LDA #.MSGTAB
0213 0008 85 FF STA $00FF
0214 000A 20 47 00 BACK JSR GTNXT
021% 000D DO FB BNE BACK
0216 000F 20 47 00 JSR GTNXT
0217 0012 CS E4 CMP MESSID
0218 0014 DO Fr4 BNE BACK
0219 0016 20 47 00 BACK1 JSR GTNXT
0220 0019 DO 01 BNE OVR3
0221 001B 60 RTS
0222 001C 90 09 OVR3 BCC OUT4
0223 O0OlE 29 3F AND #33F
0224 0020 AA TAX

25 0021 BS5 ES LDA $O00OES8,X
v226 0023 AA TAX
0227 0024 BD 29 &C LDA SEGSM1+1,X

0228 0027 20 41 00 ouT4 JSR OUTVAR

LINE

0229
1230
4231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246

0248
0249
0250
0251
0252

1254

0256
0257
0258
0259
026C
026

0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273

0275

277

- v278

0279

¢ LOC

002A
0o02c
002E
oo2r
0030
0031
0032
0035
0036
0037
0038
0039
003a
003C
003D
003F
0041
0044

0047
004A
004cC
004E
0050

0051

0051
0052
0053
0054
0055
0057
0059
005B
005D
005F
0061
0063
0064
0066
ooé6e
0069
006A
006C

006D

006D
006F
0072

BA
48
D8
38
AS
65
65
85
A2
BS
95

10
85
68
AA
AS
60

AS

AD

CODE

E9
20

06

F2

ED
D5
88
Fl

B2
00

8o

El
E2

04
DE
DF

F9
DD

DD

F2
E3

89

8l
89

82

02

04 AO

LINE

LDY
OUTDLY LDX
INDELY TXA
PHA
TYA
PHA
JSR
PLA
TAY
PLA
TAX
DEX
BNE
DEY
BNE
BEQ
OUTVAR JSR
JMP

GTNXT JSR
LDY
LDA
Crp
RTS

SPEED
#$20

SCAND

INDELY

OUTDLY
BACK1
SAVER
GETSGS+7

INCCMP

#0
(POINT) ,Y
#3880

sGET A RANDOM NUMBER

RAND TXA
PHA

CLD

. SEC

LDA

ADC
ADC
STA
LDX
NXTN LDA
STA
DEX
BPL
STA
PLA
TAX
LDA
RTS

$OODF
$00E1
S00E2
$00DE
#804
$OODE , X
$00DF,X

NXTN
$00DD

$00DD

tMOVE THE WUMPUS

WPMOVE LDA
JSR
LDA

WPRM
ADJAC
T1CL

HUFIPUS. KRN tpnon ’010

LINE # LOC CODE LINE

7280 0075 29 07 AND #$07

J281 0077 4A LSR A

0282 0078 69 00 ADC #0

0283 007A AA TAX

0284 007B BS Fr3 LDA $00F3,X

0285 007D 83 P2 STA WPRM

0286 OO7F CS F3 CMP YOURM

0287 0081 DO 03 BNE OPS

0288 0083 20 82 02 JSR LOSE

0289 0086 20 El1 62 oPS JSR ADJRMS

0290 0089 660 RTS

0292 008A s RETUN BINARY VALIDITY IN CARRY
0293 008A ;CHECK TO SEE IF KEY WAS VALID
0295 008A 20 75 82 VALID JSR ASCNIB

N296 008D BO 0B BCS OUTZ

0297 008F A2 03 IDX #3

0298 0091 DS Fr4 NX CMP $SOOF4,X

0299 0093 DO 02 BNE OVR1

0300 0095 18 CLC

0301 009¢é 60 RTS

0302 0097 CA OVR1 DEX

7303 0098 10 F7 BPL NX

J304 009A 38 OUTZ SEC

0305 009B 60 RTS

0307 009C ;TABLE OF ADJACENT ROOMS USED BY
0308 009C s ADJRMS AND ADJAC

030 009C TABLE=*

0311 009C 22 .BYT $22,501,810,$34,506,$70,$9A,514

0311 009D 01

0311 O009E 10

0311 009F 34

0311 OOAO0 06

0311 o00Al 70

0311 O0OA2 9A

0311 OOA3 14 .
0312 00OA4 53 .BYT $53,8$12,$32,$56,$58,$98,$BC,$B7
0312 00AS5 12

0312 o00A6 32

0312 O0OA7 56

0312 00A8 58

0312 O00OA9 98

0312 O0OAA BC

0312 O0OAB B7

N313 O00OAC 84 .BYT $84,$34,$76,$7A,$9A,$FC,S$SDE, $SCA
)313 O00AD 34

0313 O00AE 76

0313 O0OAF 7A

0313 00BO 9A

WUMPUS..... .PAGE 0011

LINE #§

0313
0313
0313
0314
0314
0314
0314
0314
0314
0314
0314
0315

ERRORS

LOC

00B1l
00B2
00B3
00B4
00BS5
0086
0087
00B8
0089
00BA
OOBB
008C

= 0000

CODE

»0000.

LINE

.BYT $BE,$56,$F8,89F,$BC, $DE, $SEF, $DD

.END

SYMBOL TABLE

SYMBOL

ACCESS
ASCNIB
BEGIN
FINISH
GTNXT
INDELY
MESSID
NO

NO4
NOPE2
OPS
ouTY
POINT
RESALL
SEGSM1
TRWCAN
WPRM

END OF ASSEMBLY

VALUE

8B 86
8275
022E
023r
0047
002E
00E4
0299
02B3
02D7
0086
02DE
OOFE
81C4
8cas
025A
00F2

ADJAC
BACK
CANS
GETKEY
HAZARD
INIT
MSGTAB
NOl
NOLOSE
NOWIN
ouUT4
oUTZ

. PROMPT

B

SPEED
VALID
YOURM

02E3
000A
00EA
SSAF
0231
oaor
0304
o29r
028A
0279
0027
009A
0245
00ES
00E9Y
008A
oorl

ADJRMS
BACK1
CKNO
GETN
HZD
LOSE
NEXT
NO2
WOPE

ouUTDLY
OVR1
PULL
SAVER
TICL
WIN

02E1l
0016
0221
021A
0290
0282
0238
02A5
02BF
0091
002C
0097
02D0
glse
A004
0271

AGN
BATENT
COMPES
GETSGS
INCCMP
MESS
NEXT1
NO3
NOPE1l
NXTN
OUTVAR
OVR3
RAND
SCAND
TABLE
WPMOVE

02EA
0218
0293
89EA
82B2
0000
0233
02AB
02C5
005F
0041
001C
0051
8906
009C
006D

Real Time Clock

by Gene Zumchak

The Real Time Clock program on your demo tape is an ex-
cellent example of an application taking advantage of Timer 1
in the 6522 VIA., For the RTC, Timer 1 is used in the free
running mode, and enabled to give an interrupt (IRQ). 1In this
mode, the timer is automatically reloaded with the sixteen bit
number held in the latches as soon as timeout occurs, and in-
dependently of any response from the 6502. Consequently, the
timeout is consistently accurate to the microsecond and con-
tains no "slop" for interrupt response. The maximum period
of the counter is 2 to the sixteenth power, or 65,536 micro-
seconds. The largest convenient fraction of a second that
we can use is 50,000 microseconds (50 milliseconds) or one-
twentieth of a second. Thus we can preload the Timer 1 latches
to give us an interrupt every 1/20 of a second. We then in-
crement seconds every twenty interrupts, increment minutes
every 60 seconds, and increment hours every sixty minutes. We
could extend the program to keep track of days and months as
well, which might be useful in a controller application where
we had to log the time and date when some event occurred.

Using the Clock The program loads in with ID #02,.
Start the program at 200 and see hours, minutes, and seconds
displayed. All are initially zero. To set the time, enter
the minutes with the keyboard and then press the "A" on the
keyboard. The moment "A" is pressed, the entered minutes will
be displayed and the seconds zeroed. Thus seconds can be syn-
chronized with another clock by waiting for a precise time to
press "A"., To set the hours, enter the number with the key-
board and then press "B". Let your clock run overnight and
see if it looses or gains any seconds. If your 1 MHz crystal
clock were off by one part in a million, which is a lot better
than we can expect, we would gain or lose one microsecond per
second. Since it's probably worse than that, we can expect to
lose or gain a few seconds a day. This points out how incred-
ably accurate the crystals for electronic watches must be ground.
We can fine tune our clock by changing the value in location
$0206 which is intially $4E. This is the number loaded into the
lower eight bits of Timer one. Changing this by just one will
add or subtract 20 microseconds per second or about 1.7 million
microseconds per day. Of course, that'sraimost 2 seconds.

BLACKJACK, BANDIT, and LANDER

by Jim Butterfield
adapted for SYM
by Gene Zumchak

Blackjack, One Armed Bandit, and Lunar Lander are
three of the most popular games from the First Book of KIM,
all of them authored by Jim Butterfield. It is not simply
a matter of changing a few subroutine addresses to convert
KIM programs, which used the KIM keyboard and display into
SYM programs. Well commented listings for all three programs
can be found in the "First Book of KIM". By comparing the
listings given to the original KIM listings, it should be
possible to figure out how to translate other programs.

BLACKJACK

Blackjack loads with ID #03 and starts at $0200. The
SYM uses a real deck, and shuffles when the deck gets low.
You will have twenty dollars when you start the game. After
a brief "SHUFFL" message, the SYM prompts with "bEt?20. You
may now bet from 1 to 9 dollars of your money by pushing the
appropriate numbered keys. (SYM will not allow you to ever
bet more than you have left.) After indicating your bet,
you'll be given two cards, and you'll see one of the houses
cards. Face cards and tens are worth ten and are shown as
a "F" on the display. Press"0" when you want no more cards.
To get a third card press "3", press "4" for a fourth etc.
Your total is displayed when you press "0". Aces (A) count
one or eleven. You automatically win if you take five cards
without going over.

BANDIT

Start the program at $0200. (It loads with ID #04.)
Hit any key and start the wheels spinning. You'll start with
$25 dollars and risk $1 with each pull. The biggest jackpot,
three bars across pays $15. Other combinations pay off. A
"cherry" pays $2 whenever it appear is the left had window.

Lunarx Landexr

Lander loads with ID #05. When the program is started
at $0200, you will find yourself at 4,500 feet and falling.
You'll pick up spped due to the force of gravity. You have
800 pounds of fuel to start. You can see how much is left by
pushing "F". Pushing "A" restores altitude to the display.

Set your thrust by using buttons "1" thru "9". (Careful, "0"
shuts the engine down.) Minimum thrust, "1" uses the least
fuel, but you'll continue to accellerate. A thrust of "5" will
counterbalance gravity and you'll fall at constant speed. A
thrust of "9" overcomes gravity and you'll decellerate quickly.
It also uses up fuel fastest. Too much thrust, and you'll
slow to zero and then start climbing. A safe landing is a
descent rate of 05 or less. Note that the rate is always dis-
played in the right two digits. After you land, you can press
"F" to see how much fuel you have left. Press Carriage Return
to get another flight. Several strategies are possible. You
might try to land safely and have as much fuel as possible left.
You might try to land safely with as little fuel as possible.
When you run out of fuel you'll start falling like a rock.
You might see how high you can go and still land safely.

CLOGCK

QOOLO2
QOL0O3
QO2G 2
w40 L
Q0503
QUAHO 3
D0703
DOH0
GOWQ
D100z
Q111G
Q01202
01302
014082
D1L503
Q1608
01703
01801
OLY0O:
Q2008
02100
02208
O30
02402
02503
D603
0202
02808
D2902
0300:
OR1L0:
ORACIOIA
03303
05403
03503
DBbs03
ODA70%8
OAeQ 3
QAY03
R INTS B
D410
04203
04303
04403
Q4003
Dah 0
Q47012
04802
Q490 ¢
QOu:
OHLOR
OGS
QLA
Q5402
QRGO
O5A03

MICKO-WARE ASSEMELER

0200

Q200
0200
D200
Q200
0200
0200
0200
0200
Q200
0200
0200
0200
0200
0200
0200
0200
Q200
0200

0200
0202
0205
0207
0204
0200
Q20F
0212
Q214
0217
0218
0218
0211
0220
0222
Q225
0227
0229
QR2R
0220
022E
031
0233
0236
0238

AY
8n
A9
s
A
an
an
AY
80
58
20
AP
80
AP
=31
AP
A2
P25
CA
10
20
FO
20
ce
RO

40
Oon
A
04
C3
03
07
0
OF:

8é
02
79
b av]
71
00
03
00

[21¢]

A

A
AO

(219)

B

Ab

Aé

Y

88

CLOCK

kAl

BY GENE

3

CoOryY

15 s

HR

MIN
SEfG

= X

NUM
ALCESS
LITRQVL.
LUITRQAVH
TER
ACK
TONEILL.
TONELH
TONECH
TONECI.
SEAND
HEGE
OISRUF
GETKEY

MATN

Uity

SR -1 oG Pk

PO

Taoml CLOCK

ALLS7Y

WRITE

LUMCHAR

1979

LUMCHAK

;I X A F IR H ¥ W AE XX ¥ XXX

L0 LM
S5TA

ST
LKy L
STé
516
L LM
STH
GEY
JER
LI
S1A
L LM
S1Vé
LIy
LIOX1TM
STAZX
0 x
B,
g
BE
JBR
CHMF LM
RS

HO0O00
Fea)0]
BOO0Y
$O004
$0VO8
BEREE
$06 74
BB 7Y

HAGOR
A0
FAO0T
A0V
HBAOOA
FEP0&
PELIY
BG40
FBEAF

$4C
Ak
P
TONELL
43
TONECH
TONELH
B0
LER

ALCE B
N
LRV H
TR
(RN IV
HOG
H03
$O0

i
BN
Ly
G
$36A
LETVER

0

INTTIALTEE TIMER 1IN 63522
P = LgHT BITS (FINE TUNE)D

HEGH E1GHT BITS

INITIALLIZE SECsMINHOURS RAM

Mol FROGRAM RBEGTNS HERE

U TO NIS TF NQ KEY PRESSED
NUHERW (SE GET KEY YALUE
HUMEBER KEY?

(R R TP

D50 d
D0
ST TS I
Qa1 G
Q60
DeR0l
(adspd) 1
T RETA
Oae sl
AT
D60 L
0&Y0
0700
WA
DAN03
7308
Q7400
Q75038
O AA08
£ F A0
QF30 3
Q7903
QU002
08102
(R D0 I
ORAQS
O&H40 3
OB50¢
QE60 3
GE/03
ROISTE1D D
IVEE RO B
GYGOR
09108
Q%208
093048
DA
(92 VTG
UYAO L
QP28
9003
GYQ0R
10003
JOLs
1ORG3
1LOA02
104018
1LOHGS
104D
10703
Posod
10908
11003
11100
) e T

MICRO-WaRE ASHEMRLER &HXkK-

o) ,4(.
’f)&."lj.l
D243
Q2
Q24
Q248
0244
0240
24l
QR0
Q22
D254
QRE7

OREQ
ORGR
QR0
Q&K
0261

0263

0265
OR&7
0248
DREY
0264
0ROR
0240
ORe6N
0270
0273
OR74
027%
0227
0278
DR
02 7E
0280
0281
0283
OR8Y
0287

L 028n

0280C
028F
QR0
0291
Q293

QRS
D2PE
Q27
V29

QA
O

;06

QR
A
A
24
U
o
=
ce
no
A%
8%
(= 16]
839
40
cy
o
A%
88
A
24
Ab
]S
48
44
4
4/
4A
AR
BI
P9
ca
48
29
AA
N
vQ
Eé
o8
Go
no
(e

JRBI

Qv
on
Ca
Ca
10
30

48
(812
48
Fe

2 04

0%

A

17
41
Ok
(e1¢]
02
O
0l
S5F
q)
04
Q%
QU
OU
04
04
00

29
40

OF

29
40
04

0b
OE
03
40
B30
40

P9

O

oz
Ao

G
AS

(LT

Ao

ROLL

LG
ALETTER

HOUR

DISPLY

oL

TRQ

ﬁ i i~
|'l-_-_, i
Al
[

RO A

L.

R

BNE
REQ
CMi L
BN
LIS T
b)
F.TiA

i
M
Ot LM
BRNE
LI
H5T6
LAY L
a1y
.01
LOAZX
F -
L&GRH
iBRh
LSHA
TéX
LO@sx
STrdy
o NY
1.8
AN M
Terx
LIAasx
STaAY
INC
LNy
CRYIM
RiME
LI [M
(M ETeTE Py
ORAa1M
STAAX
DEX
DEX
BFL
BT

FHA
TXe
FHA
SED

befd T i

NLiM

CEN TN
T o
A
IR
$:0)

LB

Y ” N
i

Ol sy
b4.2
DISFLY
NI

e

HO0

¥

= X

MR

HOF

SEGS
L L
9 §

HOA

.

B3
LS
B
DY&ERL

LA
i LN

LT IR a SETS MINUTES
L EARS SECONDS

LETTER B SETS HOURS

NiEeLay CONVERTS HOURSy MINUTE:
HELCONDS INTO SEVEN SEGMENT FAT

LUEDE FATTERNS INTO THE DISFLA

FERLUY SEFARATORS ADDED HERE

INTERRUFT FPROGRAM BEINS HERE
HAMVE A ANT X REGISTERS

HEIINN

12803
1ROl
13003
12101
1E203
15302
1340
13508
Tl==

MR-

02Al
0203
O2A%N
0248
03.200
NG
Out i
2 AF
Qi
0203
Q2R
Q2RE
QR2R7
Q2018

021y
O2RA
Q2LR
O2REC

Al
(9
L
1

WARE ALGEMBLER

04 A

03
Q0

01
Q0
Ky
013
00
00

(BN
0l
Q0

Al

RET

TARLE

GHXX=1.,0 FAGE 04

LA
LIX T
LOAZX
CLE
ALCTM
STALX
CrlraX
AT
(AT]
GradX
DX
BFL
L.OATH
5T
L.

[R L 1}

TN
$03
HR

$01
HR
TARLE
RE
B
HiR

A
$01
HR

$13
60
6O
$20

THIS DPERATTON

TIME VARITARLES

(S I W1]

TARLE

A

LAk

NEXT YARIARLFE
ONLY IF TEFMI]NAL

QCEURS

Vit i

THTERRUE!

PRy SENTEN

s TNCKRE me
I 0™

BEAR I MICRO-WARE ASSEMBLER 65XX-~1.0 FAGE O1

QO1HL 0200 BLAKJIK ORG $ORO0
D020
D030 BLACKJACK

0G40 3 BY JIM BUTTERFIELD
OGHG T

D& ATAFTED FOR SYM
D00 WY BENE ZUMCHAK
D080 3101279
LOTO T
DOP0 3 COFYWRITE 197wy
D100 o ZUMCHARK
O110%E
Q1202
O A
O sl LINE X $ 003
D1L5Hos TWo * EAVIORA o
QL&O: NEGK X $0040
017048 BET * $O0 7Y
FakaM ok BOO P
i 0T X E LI TR
3200 AN % HOOQO77
1200 HLE X $OG7A
€300 FALISE X $O07RH
(00 LENTY X FO0YE
Q200 MIoT * FO0YA
L MACE X EOOLNR
YO ! 0200 UACE X HFOOYH
Gt Aus o UroT * O}
Q2805 0200 YSAY * $OO7F
2905 000 RN * $OOHO
DEO0T 0200 FUINTR % BOQ 74
Q103 0200 WINDOW K FAHAY)
QRA20L G200 MONT | KOOy
DRXQ B REFERENCES
Q34058 0200 TIiMER X BA41A
Q3H03 0200 SCAND X $HY04
DA60E 0200 GETREY X $RaF
D370 0200 FARLE X RNDY
QX80 0200 ACCESS % $8EB6

03901

0400: 0200 20 B6 8B START U8R ACLESS
04108 0203 A2 33 LOXIM $33
Q420: OZ0T 8A OKONE TXA

04302 0206 935 40 BTAZX DECK
D440 0208 Ch JEX

04503 0Z0? L0 FA Bl DKONE
DAA0LT OROR A2 02 LOXIM $02
04703 0200 BN BC 03 INLOF LDAAX INIT
V480 0210 95 75 STAZX FARAM
04908 0212 CA DEX

QHO0s 0213 10 F8 BFL INL.OF
VG108 0215 Al 14 "4 L.0é TIMER
OULRO: 0218 85 80 BTA RN
05308 G2lA D8 DEAl. CLI

05407 021R A6 76 10X nrT
Q%O 021D EO 09 CPX1IM $09

S AT TN

0603
QH708
OH5E02
QHY03
QaGoL
O4HT03
DE20T

OAH&H0]
0 08
a0l
OGP0
DGO
Q710%
Q7:20:
D730¢
GAA0
VG001
Q76073
Q700
A
/905
ISTETeTOIN
M LOE
R0l
DREGS
V4G
QUSH0
DEAQ]
A
IPRES TN
T 0
D0
I O
O,
DWAQS
W ey
il
O A
O At
QY]
09y
Lo
10162
0 k)'
1050.
1040
1O
10604
10703
LOROS
107201
11002
B

(3

MICKD~

U’Sé

GRay
Q249
Q241
Q240
a4l

Q200

()\. J:.-.
Q255
l()i.’.l.l(.‘:

V] ’f\\.‘
U n..l..'u..
ORé5
Quté
Uiy
Uthis
02610
s

D0
02
Waetd 4
Gl
0278
JRrR
W27
O 7E
Q280
G233
0284
Qe
0280
UE

21¢)
20
(219
£
I“U

i

AR

20
38
2]
(Y]
Ba)
80
I
RBE

b
e
19
2y
(567
RO
AA
By
444
B
AT,
&
P

838
16
0
,)

20
20
o
e
34
(e
B0
b 4
B
(2
R
2l
P8
CaA
10
20
20
20
20
Hé

20

WARE

F

40

40
40

40

iF
Uk
Al
Tk
A

OF

F8
6F

80
6F
5K
7A
Ak

92

919’

a3

9

T

e

03
0%
03
03

38

ASHEMBLER &UXX~1.0

[E1S 5

HHUFFILE DEGK

SHLF

MOV

NITGHLE

BETLN

Lok

L3 M
JHER
LYl
arTyY
LOAalM
ST
LI LM
JER
SEC
L.0OA
Al
aAnc
STA
LX LM
LIALX
STAZX
HE X
B
AN L
UiMF M
B
TEx
LUAAY
i
L.1f g x
BToaY
1L
584X
LEY
BFL.
LAY 1M
S8R
L. U0A
JER
JER
ANLDLM
TAX
G1X
DEX
Bl
GhX
BUS
LOXIM
LN THM
STMhaxX
STAZX
NEX
BRI
JHR
JBR
JHR
JER
5TX
JER

FALE 02

NOSHUFE

SHLIE
1)
%.5.5
e
HON
DINE:
$O 1
WLLTE G2

RN +01

RNTI + 0
RN +0%

RN
$04
Ry
NI +01
Ry
%4
hha
S

1ELK

DEUN
LRIZEH,

Kl

S

B il
AR
AMT
NLIMITD
GETREY
$OF

REET

RETInN
AMT
BETIN
$OKR
$00
WINDOW
BP0

(N P
You

ME

YOu
CARIL
HOiE
i YREY

IRYRET IO N

LG

I] .‘rr.':
T4
REGF

Llé&or
L1703
11803
b 1 B
120058
L2z
122018
12303
12408
1250¢:

1aads

13102
13201
L3303
13403
L3%0o:
136013
13702
13803
13903
14002
14103
14203
1430
1443
14503
LA4&HG S
L470:
L4803

15003
1510:
15203
15303
15401
15503
15603
15702
15803
1590:
16003
1ol10:
16202
16303
16400
16508
146601

[N E N

AR A
0295 N6
029G 1l
OuYh XD
1y
Oy
02 20

O020b
OMe
QAR
Qa0
ORAE
0211
02023
QriRs
021G
ORRY
QrpRr
ORRC
O BF

V200
ORCE
G200
0202
Q200G
Q2NY
D20y
Q208 A5
Q2
Q200 1
Okl

OLEY
O2EC
OREF
02F 1
0RF2
ORF 3
02F &
02F7 4C
02F A
02F 1
0300
0302
0303
0304
0306

Win kel

79

1A
40
35

77

79
(? (3)

A

1
0%
O3
03

0.3

03

03

0.3

03
03

MASEEMBLER &9XX--0 0 il

HQLD

HLOOF

FL.AY

OV

URUST

LTWIN

JLINK
XLLINK
ILRUST
UWIN
AL

ANIEEM
Tk
0k X
JaM L
CHX
BNE
JER
i1
RIS
UFXLM
BER
BN
(AT
I::- ” ﬁ
LOX 1M
JER
LK T M
LA™
STAAX
DEX
BIFL
1. é
51A
L LIX
SJER
JER
JER
(WAT:
B I
RS
AL
(YRR
BiNE
CMF LM
R
I.0a
CiHF I
RGHS
JER
EBNE
JOIR
JBIR
JEK
L.0A
SED
S5EC
SREC
STa
JMF
JSR
JSR
LDA
SED
GLE
ADC
LOYIM

W)

Ok

LD
LENT
TRY
YOU
$22
URBLIS T
B0
UWEN
TRY
WLINIOW +0%
$00
SHTO
$04
$00
WINIIW
HLOOF
WINDOW 405
HOL.E
CRES
MEX
WL 0 VE:
MTOT

: BES
TRUST
MACE
WINDOW
LWIN
22
OV
MTOT
$17
HOLLTLE
ME
FLAY
WLITE
RUST
WLITE
AMT

RET
AMT
DEAL
BUST
WLITE
AMT

BET
$9Y

LAk K

Léida s
1A
17003
LZ210%
172018
17302
174018
14503
176073
177038
1O
12903
1ROGT
18103
18208
183308
18402
18503
18602
La/0:2
1880
1EY0l
1900
19102
19202
L9303
1940
Lo
LRaG2
18703

j AR
RAVIVIVD
RV
PRI S
DR
BOAGE
LOSO G
HOaul
20703
ASTETO I
HOY0R
20008
21103
P L0 B4
S1LA03
S1a08
21503
21402
21703
21808
219038
22002
iR oD B

MLCRO-WARE

03508
O30A
QA0R
OAGN
G30F
0312
0314
0316
0318
DX1LA
Q310
OJ1E
Q3LF
0320
0322
Q324
0326
0328
QA2
0321
QA2
OBk
Q331
0332
0335
0337

339 2

Q330
33
0340

20342

0344
DR
0549
O34k
OBAL
034k
O30
0Bk
0354
0357
0358
03LA
OB B
OBH I
OB
0361
0342
0363
0Bh4
OB
0367
OB
WERST
OB
GRGF

O

44
3E
F9
3F
5
7F
04
7¥
E7
74
05
74
40
F8
74
76
40

o1

B
ce

aR

03

S92

9 03

03

ay

Aéd

03
Q3

03

ASSEMBLER 69XX-1.0 FAGE 04

N0
HOLXITUY

BHTOT

HHOVER

WLITE

WIA

LEGHT
FeET

BUST
FILL

FILLIT

CARD

CREC

NOTACE

YU

RCC
TYA
BNE
LIOXIM
JER
LA
CMF
BEQ
RCS
BCC
L.OAZX
SED
GLG
ANCZX
CMFIM
RS
STAZX
oL
L.IAZX
FHA
LY IM
JER
FLA
JER
LALLM
H5Th
SJHR
WEG
BNE
NEC
BNE
STY
JER

1. 10Y
RTS
LLOYIM
8TY
LOYIM
LOATLY
STAaAaY
DEY
BFL.
RTS
L.IX
HEC
LIOAZX
L.SRA
LLSRA
TAX
CLC
BNE
SEC
L.AAX
LOYAX
RTS
JBR

NOFL.0

JILINKR
$03

SHTOT
MTOT
uToT
XL INK
TWIN
AL

uTorT

UACE
$22
SHOVER
uror

uToT

TOTIL.
FILL

NUMDLS
$0A
TWO
LIGHT
ONI:
WA
T
WL
YSAY
SCAND
YSAY
BUSTED
FOINTR
$05
FOINTK
WINKOW

FILLIT
LFT
DET
DECK

NOTACE

VAL.UE
SEGS

CAR

LLAKJE MICKRD-WARE aSSEMBLER 65XX-1.0 FAGE 0%

22403 Q372 kb 96 ING UENT
2AB01 0374 AH Yé L.JaX UCNTY
A2A0T 08746 48 FHA

Q270 Q377 98 TYA

228080 0378 9N JF ab STAAX WINDOW -01
OA/R 68 Fl.A

Q37200 AO 10 LOYIM %10

O37E 90 Q2 RCC YOVER
0380 8B4 v8 5TY LACE

0382 18 YOVER CL.C

0383 F8 SED

2350 0384 45 97 AL uToT
23608 0386 BEO 97 5TA uTorT
23708 0388 N cL.I

23808 0389 460 RTS

2EQ01 0384 20 HE 03 ME JER CARID
24003 0380 Co6 99 MEX DEC MONT
24108 038F A6 99 LIX MCNT
24208 0391 48 FHA

24303 0392 98 TYA

24405 0393 9 46 Ab STAAX WINDUW +06
24508 03946 68 FL.A

24601 0397 A0 10 LLDYIM $10

247035 0399 20 02 BCC MOVER
24803 0398 84 98 STY MACE
24903 0390 18 MOVER CL.C

2REOOT 039 F8 SED

2H10E 039F AU YA ARC MTOT
2200 03AL 8BS 94 STA MTOT
26303 03A3 18 Ccln

25408 03A4 60 RTS

296503 0345 48 NUMDIS FHA

25608 0306 40 .SRA

2E703 03AT7 40 L.SRA

256808 0348 4A l.SRA

25901 0349 44 .5RA

246000 03A8 AB TAY

26105 03AR RBY 29 8C LLOAAY TAERLE
26201 03AE 8D 44 Ab STA WINDOW +04
26308 03B1 68 FLA

286401 03R2 29 OF ANDIIM $OF

26503 03R4 A8 TAY

26601 03RS RY 29 8C LDAAY TABLE
26708 03RG 8D 45 Ab STA WINDOW +08
266808 03RBE 60 RTSH

2690: O3BC 03 INIT
27008 038D 00

27102 03RE 20

27208 03RBF O1 VAL UE
272308 Q300 02

2740 03C1L 03

27508 03C2 04

2760t 0303 05

2770 03C4 06

27803 03CH 07

27908 03C6 08

$03
$00
$20
$01
$02
$03
$04
$05
$06
$07
$08

WO OB oHOHOHEODOWH B R H

BLAKJIK

28003
28103
28203
283013
28401
28503
28603
287018
28803
28903
29004
29102
29202
29303
29403
290503
29601
29703
29803
29903
30003
30103
30203
B0503
30403
BOG0 3
30602
30703
3080
30903
31002
31103
31202
31303
31402
31503
31603
31703
Ih=

MICKRO-WARE ASSEMBLER 65XX-=1.0 FALL

Q30C7
03C8
03CY
O3CA
O3CR
V3CE
03N
QACE
03CF
Q300
0301
0302
Q313
0304
Q305
0316
Q3n7
Q308
03N
030A
Q3NR
Q3NcC
Q300
O3NE

Q30F .
Q3EQ 7
O3E1L 7

O3ER

O3EZR
034 !
OIES

O3EH
Q3E7
03ES8
039
Q3EA
QO3ER
03EC

Q9
10
10
10
1o
77
7]
4l
bb
&1
71
Q7

HEGS

SHUF

TOTL

RUSTED

o noH oo

iod B oH o0 oWHH

Hodi oo @ # 6 % # 0 0# B OB OH OB W H B WRHE W OWH OO H

$09
$10
$10
$10
$10
%77
$51
$4F
$66
$61I
$ 71
$07
$7F
$6F
$71
$71
$71
$71
$61
$76
$3E
$71
$71
$38
$7C
$79
$78
$53
$78
$50
$78
$40
$70
$3E
$61
$07
$79
$5E

AT

BANDLT

QOO
D020
0303
G40
IPTORSTO
Q060
NDO703
D080
QOO
QLOG2
DLLO3
Q1203
01303
IO 5 R
0132
14013
(SN BT
DLAHOT
017012
D1LB03
D190
Q20012
Q21012
GRA03
2301
02403
D2501
D250
02702
2503
D90l
DAOO:
03103
Q4201
DA3014
Q34013
Q3501
O0X603%
03703
QA0
Q390
0400 ¢
0410
Qa0 z
Q43018
04403
Q450§
Q4403
047013
Q403
04903
Q5003
OH101
Q52013
0530¢
Q5403

MICRU-WARE ASSEMEBLER &5XX~1.0 FAGL

0200

0200
0200
0200
GR00
0200
0200
0200

Q200
0200
0200
0200

Q200
0203
Q208
0207
OL0A
Q200

020k
G2l
0213
0215
0218

Q2LA
0210
OR21E
O21F
0220

223
0224
0226
0229

Q22K
022E
0230
0232
0234

20
AY
85
20
A9
85
20
Fo
E &
20
no

AY
85
Fa
38
A
9
85
20
26

20
Cé
1o
Ab
AS

Hé ah
25

O
BoO2
00

DH
P21 02

09
91 02
9

03
06

OR
01
oR
BOO2
09

?1L 02
08
F9
0é
09

BRANDIT ORG $0200

RANDLT
BY JIM RUTTERFIELD

AUARPTED FOR SYM
BY GENE ZUMCHAK
31179

COFYWRITE 1979
E+ ZUMCHAK

0000
HOO0K
$0006
$0007
$0008
$000Y
$000A

WINDOW
AMT
ARROW
W
STALLA
TUMEL.E
TEMF

¥ X XK K X X X

$8906
$BC29
8RS
BALHAQ

HCAND
TARLE
ACCESS
NISBUF

* % % X

JER ACCESS
LIOATM 425
H5TA AMT
JER CUAMY
LALLM $00
HTe ARROW

L.FA JER DNISPLY
REQ L.FA

RUL.L INUC TURRLE
JHR DISPLY
BNE ROL.L

LOATM $03
5TA ARROW
SED

SEC

L.I'Aa AMT
HRCIM $01
STA AMT
JER CVAMT
ROL. TUMBLE

LFE JER DISFLY
DEC STALLA
BNE LFR
LIOX ARRDW
L0A TUMBL.E

01

BANDLT MICRO-WARE ASSEMRLER 6HXX-1.0 FAGL W

05508 OR34 29 0b ANITTM 506
054608 0238 09 40 ORATM $40

05708 0234 95 02 STAAX WINDOW +0:2
05808 023C 46 09 LSR TUMBLE
0590 023E 44 09 LGR TUMBLE
06003 0240 (4 06 DEC ARROW
06108 0242 DO E7 ENE LFE

06201

06308 0244 A% 05 LIA WINDOW 404
06403 0244 C%5 04 CMF WINDOW +04
06508 0248 [0 37 ENE — NOMAT
06601 024A C5 03 CMP WINDOW +03
06704 BNE NOMAT
06801 LOXIM $10

06901 CMFIM $40

0700% 0252 BEQ FAY

07101 0254 A2 08 LOXIM $08

07203 0256 €9 42 CHPIM $42

07301 0258 FO 07 BEQ PAY

0740% 0R25A A2 06 LIXTM $06

07503 025C C9 44 CMFIM $44

07603 025E FO 01 BEQ FAY

0770% 0260 CA DEX

0780

07901 0261 8& 07 FAY STX RWD

0BOO: 0263 A% 8O FaX LDAIM $80

0810¢ 0265 85 08 TA STALLA
08203 0267 20 91 02 LPC JSR DISPLY
O30 OR6A L6 08 DEC STALLA
0B40: 0R6C DO F9 ENE LFC

0850t OR6E Cé 07 VEC RWD

OH60 0270 FO QU BEQ LFA

0870% 0272 18 CLC

OHBOL 027F FB SED

QU0 0274 A% OR LDA AMT

09003 0276 69 01 ADCIM $01

0910¢ 0278 BO 94 BCS LFA

Y20 0274 85 O STA AMT

OV30: 0270 20 BI 02 JBR CVUAMT
09401 0R/F 1O ER ENE PAX

0940 3

0960F 0281 AR 03 NOMAT LOXIM $03

OY703 0283 C9 46 CMEIM $46

09B0E 0285 FO DA BEQ FAY

0990 0287 20 91 02 LOK JSR DISFLY
1000 028A A% OR LD AMT

10103 028C FO F9 BEQ LOK

10203 OH8E 4C OF 02 JMF LPA

10402
Jog0d

10508 0291 Abd O LDISPLY LOX ARROW
10608 0293 10 02 RPFL. INDIS
L0708 0295 Fé6 03 OVER INCAX WINDOW +03
1063 0297 CA INDIS DEX

10903 0298 10 FB BFL. OVER

11008 0294 A7 €4 LATM $04

BANDLT MICRO-WARE ASSEMRLER 69XX-1.0 FAGE 03

L1103 0290 85 0A 5TA TEMF
11208 Q22 AQ QO LLOYIM $00
112301 0200 A2 05 LOXIM %05
11403 0202 BE 00 SWITCH LDAAX WINDOW
115037 0204 29 7F ANDIM $7F
11608 0206 99 40 Aé STAAY DISRUK
11708 02409 08 INY

1180 O2a8 CA Nz X

Llvor O2AR 10 F5 BFL. SWITCH
1200 02480 A? 00 LUAIM $00
12101 02aF 8 43 Aé S5TA NISEUE +03
12200 02R2 20 086 89 Nl S JER SCAND
L2303 O2RE (Cé6 0A DEG TEMF
1208 0217 DO FY BNE LISl
128508 02BY 20 04 89 JHR SCAND
12603 0RRBE 60 RTS

12702

T80 O2RD A% OR CVUAMT L.DA AMT
L2900 O2BF 29 OF ANDIM $OF
L30G0Y 9201 AA TAX

13108 ORC2 BIO 29 8C LUAAX TARLE
13202 0205 8% 00 STh WINDOW
13302 0207 AS OR L.1A AMT
13403 0209 4A LSRA

13503 0204 40 L.SRA

13000 020CHE 44 L.SRA

137205 Q200 4A LSRA

1380: GRCDH AA TAX

153908 O20E RBD 29 8C L.DaaX TARBLE
14003 0210 85 01 SThA WINDOW +0O1L
141035 G213 60 RTS

1T

LNl L CRO-WakE ASBSEMBLER 65XX-1.0 Fabk vl

Galox

D00 L 0200 LoaNDAEIR ORG $O20Q
OuA0l
00402 LUNAR LANDER
D003 BY JIM RUTTERFITELD
QOGO
DO/OL ADARTED FOR SYM
OTOERT O BY GENE ZUMCHAK
D00 S/11779
D100:2
D112 COFYWRITE 1979
013203 s ZUMCHARK
D140
0140
OLGO:
G160 Q200 Ml T X HOONG
D170 0200 VI, * $00083
0102 0200 THTWO X% $O0NR
170 0200 THRUST % $000N
D00 9200 FLEL. * $OOLE
000 PO L H HOO0E 1
Q200 DOWN X $00k2
Q200 DECK X $O0E 3
0200 =X X $O0E4
OO SUANDS X $3Y04
200 KEYQR X PRYIS
Q200 L.RNKEY X $BY2C
QG Q200 DISBUF X $M6A40
DA00 0200 REEF X 8972
Qi1 0200 SEGHMI % $8029
Q308 0200 ALCESS X hBRES
DA40F 0200 FOINTH % $O00EF
Nra0: 0200 FOINTL X $00EE
O35H0: 0200 INH X $O0ED
Q3603
Q3703 0200 20 86 8R JER ACCESS
03308 0203 A2 Ol Go LOXIM 40D
0Ev0r 0205 BRI O3 03 LA LLDAaAX INIT
04003 0208 98 DS STAZX ALT
0410: 02048 CA DEX

04203
D430
04402

V20K

Q200

10

A2

Fe3

05

CAlL.C

BFL

LOXIM

I.FA

$05

DALO T Q20F A0 01 RECAL LIOYIM $01

0440, GALl F8 SED

24708 0212 18 cLC

Q40 0213 BI 05 DIGIT LDAZX ALT

Qavod 021G 725 D7 ADCZX ALT +02
D00 0217 95 DS STAZX ALT

Gio 0219 LA DEX

D503

O21A

88

nEY

05308 0218 10 Fé BFL. DIGIT
VL4038 Q210 BS D8 LDAZX ALT +id .

0HH%03
Q5403

Q2ILF
0221

10
AP

02
29

BFL
LDATIM

INCR
P9

(S TR TN S

O AU3
)il
QHYOl
Qb0
Oalay
Od 208
Gados
QG403
ST NTH I
Q&0
OH A0 :
Qono s
Qb
0 S00
Q7103
D A08
Q7507
A0
(SATIR
)60
QDA 00
0RO
Qr703
GO
Ol
LS SO0 I
A0
Ora0 3
ST T
D& d
DLFO 3
DEEO
DD HAE B
TOLB) B
Oy 103
(2203
0% 302
Q4 sy
QUi g
DY a0
(R
DO
GywOs
1003
101G
1020¢
10303
10403
LO%HOZ
Tid&E0 3
10701
108503
10902
110603
1i103
J1202

MICRO-WARE ASSEMBLER o95XX~1.0 FAGE OX

0236
0238
0239
OBR

230

GE4R

D&Y
D268
QA
Dbk
G270
G/ 2
0274
CR7é
GA78
OR27A
0R7C
Q27N
O /F
G2l
0283
0285
0287
0289
DA

W L

FO
A%
Aé
8%
86
A
"6

| ER

S (1

i XI5

QI
Q0

1)
o

JE
NE

5 OEQ
v T

EQ
Ol

o Dk

00
1k

7
(9118
Q0

2 03
S0

FE
F4

N Lk

=
0
El
20
QU

oy
O
Uk
a0
04
AL
1

o

%
Lié
EF
(BN
ne
e

02

INCR

Jy

UK

LR

LFG

TANK

GOLINK
L INK

G000

ST

AN EX
aTALX
NEX
B,
1.0
BF.
lLAIM
STA
LOXIM
STAZX
STAZX
NEX
R
SEC
L0A
SRE
8TA
LIXIM
L.OAZX
HRLCIM
STALX
X
L.
RS
LI ITM
LIXIM
STAZX
NEX
R
JER
I.NnA
11X
URATM
L0y
RERQ
REW®
BEQ
LOXTM
LOYIM
GG
LA
ANCIM
I J1A
A0 LM
RS
LUX M
LY LM
TYA
Loy
BEQ
L.1A
LIX
STé
8TX
L.IéA
LOX

ALT
ALT

RECAL
ALT
Ur
$00
DOWN
$0
ALT
THTWO
nn
FUEL. +02
THRUST
FUEL
$01
FUEL.

$00
FUEL.

+d

LFR
TANK
$00
$03
THRS

LFC
THRSET
FUEL
FUEL.
$FO
MONE
ST

G0
CALL
$FE
$50

101

VEL. +0 1
$05

VEL

$00

GO

$AL

$ 1k

LOWN
s

ALT
ALY
FOINTH
FOINTL.
VEL
VEL.

+0O1

+01

Lok

2L A0
R 1
(AT
R R
TaZ0%
P18
TL503
100
1L
La220s
RIS B
15403
|
!

150

L2FGs
Lartgerd
12903
12003
131018
AP0
13563
1AA02
FALGY
136013
13702
Tof0s
14903
L4L0x
14204
14203
T440:
Pl
14603
14703
1430¢
Taei?
LE00S
[0
150208
BEHAOY
185402
18602
15408
VA
(R
1ERO2
10
1a10id
e R
AR
&40
a0
LGSO
1A 70

Foridc }

MLOCRO

0=
O
0290
yRPR
0294
0294
0298
Q290
ORYR
257
Q29F
O2A1
0203
D205
Q2n7
O2AY
02044
Q2AR
OR2AC
Q2AN
O2AE
ORR1
QLR2
O2R4
Q2R
QO25A
O2BR
O2BRE
G20l
Q202
QRAG3
0206
6] -
ORCE
200
QR20F
Q202
Q2104
DS 1 b
9243 g
QLY
G
OR2NE
Q2O
Q22
Q2E4
Q24
Q268
O2EA
DRER
QRED
Q2
OMNQ

Q22

ORF 4

1.0
35
nYy
ES
3%
Y
[
A
8é
AQ
Cé
30
ate
RS
A48
46
44
404
40
20
&8
e
20
40
AA
B
-:;) {;;
8
450
20
FG
20
4%
20
20
1o
lf;)' 8
;Y
(6]
20
Lé
no
(B
[
Y0
49
&85
&0
29
AA
A%
Fo
né

(1]

WA RE

0%

00
ne
1T
Q4
k3

(SN
I 4
00
4
L
<4
e

B

OF
Bé
Al

2%

40

0b
14

20

72
23
K

Qo
9
(8]
&3
£3
b
40
0%
44
El

OF
il
&
0

Tl

O

02

3
s

81
Ad

8o

89

02

FLITE
FRESCN

FSLF

AR

HSCAN

i

NOKEY

DOKEY

RETRN
NUMEER

THRSET

ASBEMBLER 6&hix <

LI i
R s

S 1

L 4
LUy
DL,
Bivi L
lL.hx
b d X
R
LaRA
LGSR A
ILSRA
L&iRd
TN
1
ANIITM
JER
M
I'ivx

L difa
Siany
INY
KT
JGR
BEQ
R
D
Y
JER
RN
e
Gt M
RE
i
[T
BiNE.
B
(LTSRN
nwer
EDIRL T
a2Ta
RTS
AL
Tivx
AT
RIEQ
wTx

LI

1 Fanas A

#37)
WEL #i3
TN
$06
VECK

He1

b
Midid
b
SCAN
Fx
Tk

SUANIG
RN
LN Y

BE
KEY
il

HOL

RTR IS R
Bk y
| REAY
SiAN
NIRRT
B4
MEIPEE e
P
MO

FOF
THRAN
FE TR

THRLT

THELST

LR MICRO-WARE ASSEMRLER SSXe-0 00 Potl o4

Levod O2F&6 38 B
L2007 Q027 F8 Sk
LFI0 O2F8 E? 05 SRUEIM Bl

172080 Q2Fa 85 0 ST THYWD euld
17303 02FC A% 00 LI 00

1740% O2FE EY QO GROIM $00

17503 0300 85 Lk BTA THYWI
1¥a03 0302 40 RTS

14708

L7800 Q303 4% INITY
17901 0304 01

183001 0308 00

18102 0306 99 By
18203 0387 91 dig L
1303 0308 00 _ uz 00
18403 0309 99 z P
18508 0308 @7 2 $97
18608 O30R 02 i B2
187208 0300 08 i SO
18808 0300 QO = HO0)
LEYOS 0O30E 00 = LU0
192008 03CGF 01 oo B
191048 0310 01 & $0
Tl

i

Hedn
Byl
BCO

I

SYM STUOPWUATCH

S.E.Curd
319 Zoe Avenue
Buckna2r, MC 6L0O16

This program uses the 6522 #1 timer as a self-reloading, non-
interrupting 0.0100 second timer.

Stopwatch commands include:

'1' -- start time

'2' -- gtore current time in lap memory

'0' -~ stop time

'$' -- exchange displayed time with lap memory
'C' -- clear time and lap memnry to zero

It is very important to note two conseguences based on monitor
I/0 routines. First, the timer does not begin timing until

the relepase of the 'l' key, rather than its depression. Secondly,
the time value stored in lap memory is the value of the timer

at the release of the '2' key.

After beninning the execution of this program at $0000 and starting
the timer, you will see displayed
mm.ss,. ff

as minutes,seconds,and fractional seconds (tenths and hundredths),
You may then press and release the '2' key at any time to store a
lap, or intermediate time. After stopping the timer, you may
consequently examine cumulative or lap time by depressing ‘'9°,

0000 20 86 8B JSR access 001lF 90 3F A6 STA BAB3F x

0003 A9 40 LDA# 340 0022 95 C4 STRz 3C4,x
000s 8D 08 A0 STA $A00B 0024 CA DEX

oG08 A9 10 LDAY 310 0025 DO FO BNE 53F0 (=l1l6)
000A 2D 06 AD STA 8A006 0027 20 AF 8H JSR netkay
00on A9 27 LA 327 002A C9 43 CMpf [

0JOF 8D 07 AOD STA 3$A007 002C FO E7 BEQ SE7 (<25)
D012 80 05 AD STA 8A0DN5 0N02E 9 3E CMR# 1!

0015 A2 07 LOX¥ 807 0030 DO OfF BNE 30F (+15)
0017 A9 00 LA $00 D032 A2 06 LOX / 506

0019 95 8D STAz 380, x 0034 BC 3F A6 LDY $A63F,x
0618 29 3F LDA# B3F 0037 BS C4 LDAz 3*Ch,x

0D1D 15 86 ORAZz 3B6,x 0039 90 3F A6 STA BAG3F ,x

STOPWATCH, p.2

&

003C
003€
003F
0041
0043
0045
o048
004B
O0LE
0050
0052
0054
00S6
0058
0058
0050
005€ DO f8
0060 2C 00 AO
0063 S0 EO
0065 AD 0D AD
0068 80 0D AD
0068 38

006C A2 06

F3
3l
€2
06 89
23 89
2C 89

32
OA

3 A6
Cl

SHBREA383NN838RY

STYz $Ck,x

DEX

BNE $F3 (=13)
CHP# Ill

BNE $€2 (-30)
JSR scend

JSR keyq

JSR 1rnkey
mp# ID!

BEQ 805 (=43)
CMP4 '2'

BNE 80A (+10)
LOX# $06

LDA $AB3F,x
STAz $C4,x

DEX

BNE §$FB8 (-8)

BIT $AOOD

BVvC $EO0 (-32)

LOA $A0CD
$A00D

STA
SEC
LOX# $06

006E
0070
0072
0074
0076
0077
0079
0078
007C
007F
oosl
o084
0o8s
0os?

85
69
D5
D0
38
AS
95
A8
89
15
90
CA
no
FO

80
o0
AF
03

00
80

29
B6
3F

E7
BC

ac
nG

:DATA TABLES

LDAz $80,x
ADC# $00

CMPz $AF,x

BNE 803 (+3)
SEC

LDA# $00

STAz $80,x

TAY

LDA $BC29,y
ORAz 386, x

STA SAB3F,x
NEX

BNE BE7 (=25)
BEQ 38C (-68)

0080 06,0A,06,0A,0R,04,00

oos7 0o,80,00,80,00,00,00

ooste oo,00,00,00,00,00,00

oocs oo,00,00,00,00,00,00

ARs written, SYM STOPWATCH will display with 0.01 second resolution
up to 59 minutes, 59.99 seconds, and stores one lap time.

Note that the lap time stored cannot be read unless the timer 1is
stopped, and that the stored time reflects the time at the last
prassing of ths '2' key.

After stopping the timer, restarting it will cause it to resume
timing from the last timer value, sven if you have exchanned the

displayed value snd the lap memory.

However this exchanne will

put the last timer value into the lap memory and eliminate the
previous lap time.

V9
vi

L
9
91
pa
pe
pd
e
P6
86
Ve
V8
v
8v

8L
84
8¢

v8
98
c8
8¢
99
9z
9]
9%
V'S
9V
QY
94
Gh
90
%0
%4
%)
Vx4
9¢
44
G9

dZ

SAg
JAd
1d€
ANg
IRg
0dd
S04
004
VAL
SXL

XSL
AVL

I4ds
aias
Jds

28
a8
as
ad
49
az
ag
ay
ov
av

e
ay
a0
00
o
ao
ot
4g
az
as

99
gY
8¢
89
8¢
8%
vd
/14
oy
80
81
88
Vo
84
8¢
8d
8T
99

64

60
gV
v
6V
6%

@2
@4
60

6¢
69

i

tEd | ¢H 14 waaqay

SLNIWWOD aNvdddo OINOWIWN Tgv] SNOI LONHLSNT
41vd
FIWWYHDO0Ud 0¥6L0 Aosasp maN ‘'UOSTPERN
peoy 3SSIOTTTH ‘Burtpiingd atbsuaed
WY YDOoUd NOILVDNAdH

TYNOISSHTAOYd ¥Od HLALILSNI NVYOTYHARWY

