 MICROCOMPUTERS
MICROCOMPUTERS

MICROCOMPUTERS

PROGRAMMING MANUAL

Publication Number 6500-50A

MCS6500

MICROCOMPUTER FAMILY

PROGRAMMING MANUAL

. JANUARY 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

Second Edition
©MOS TECHNOLOGY, INC. 1976
“All Rights Reserved”’

MOS TECHNOLOGY, INC.
950 Rittenhouse Road
Norristown, PA 19401

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTORY REMARKS

1.0 Manual Introduction. .
1.1 Microprocessor Archltecture

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 The Data Bus .

2.1 The Accumulator. .

2.1.1 LDA--Load Accumulator w1th Memory

2.1.2 STA--Store Accumulator in Memory .

2.2 The Arithmetic Unit. .

2.2.1 ADC--Add Memory with Carry to Accumulator

2.2.1.0 Multiple Precision Addition.

2.2.1.1 Signed Arithmetic.

2.2.1.2 Decimal Addition .

2,2.1.3 Add Summary. . .
2.2,2 SBC--Subtract Memory from Accumulator w1th Borrow.
2.2.2.0 Multiple Precision Subtraction .

2.2.2.1 Signed Arithmetic.

2.2.2.2 Decimal Subtract . . .

2.2.3 Carry and Overflow During Arlthmetlc Operatlons
2.2.4 Logical Operands . . .

2.2.4.1 AND--"AND" Memory w1th Accumulator .

2.2.4.2 ORA--"OR" Memory with Accumulator.

2.2.4.3 EOR--"Exclusive OR'" Memory with Accumulator

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER

Carry Flag (C)
.1 SEC--Set Carry Flag.
.2 CLC--Clear Carry Flag.
Zero Flag (Z). .
Interrupt Disable (I).
.1 SEI--Set Interrupt Disable .
.2 CLI--Clear Interrupt Disable .

WWwWwwwww
e e o o s o o
NMNNNNMNEHEOOO

ii

’_l
N~ wWw

13
14
14
16
18
19
20
20
20
21
21

24
24
25
25
25
26
26

B e g |

3.3
3.3.
3.3.
3.4
3.5
3.6
3.0.
3.6.
3.7
3.8

Decimal Mode Flag (D).
SED--Set Decimal Mode.
CLD--Clear Decimal Mode.

Break Command (B).

Expansion Bit.

Overflow (V) . e . .
CLV--Clear Overflow Flag .
Determination of Overflow.

Negative Flag (N).

Flag Summary .

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

abakalabababababababababalababalalaltala
N e el el el el

FHRHMRHREOOO

1
.2
2.

Concepts of Program Sequence . o« s
.1 Use of Program Counter to Fetch an Instructlon .
.2 JMP--Jump to New Location.
Branching. . .
.1 Basic Concept of Relatlve Addre551ng .
.2 Branch Instructions. .
2.1 BMI--Branch on Result Mlnus
2.2 BPL--Branch on Result Plus .
2.3 BCC-~Branch on Carry Clear .
2.4 BCS--Branch on Carry Set .
2.5 BEQ--Branch on Result Zero . e e e e
2.6 BNE--Branch on Result Not Zero
2.7 BVS—--Branch on Overflow Set. . . .
2.8 BVC~~Branch on Overflow Clear.
.3 Branch Summary . o .
.4 Solution to Branch Out of Range ..

Test Instructions. . . . o o
CMP--Compare Memory and Accumulator
Bit Testing. . .

1 BIT--Test Bits in Memory w1th Accumulator. .

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

Luuumuuuuuunwn

~NouvpwNrNNDEO

N =

Addressing Techniques.
Concepts of Pipelining and Program Sequence. .
Memory Utilization . e e e e e e e e e e e
I/O Controle « v v & v v ¢ o & o o o & o s o »
Memory Allocation. . « ¢« + ¢ ¢ « ¢« ¢ ¢« o ¢ o .
Implied Addressing . . . « + « ¢ ¢« ¢« ¢ ¢ . .
Immediate Addressing . . .« « + ¢« ¢« ¢ + ¢ ¢ o o
Absolute Addressing.« ¢« « ¢ . ¢ 0 . .0 .
Zero Page Addressing . . « ¢« ¢« « o o ¢ 0 0 .0
Relative Addressing. . « ¢ &« ¢« ¢« « o ¢ ¢ o o &

iii

. 26
. 26
. 27
. 27
. 27
. 27
. 28
. 28
. 29
. 30

. 31
. 33
. 36
. 37
. 38
. 40
. 40
. 40
. 40
. 40
. 41
. 41
. 41
. 41
. 42
. 42
. 45
. 45
. 47

47

. 50
. 52
. 56
. 56
. 57

57

. 59

59
61
63

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

General Concept of Indexing.
Absolute Indexed .

Zero Page Indexed.

Indirect Addressing. .

Indexed Indirect Addressing.

Indirect Indexed Addressing.

Indirect Absolute.

Application of Indexes

ooonononovnOvOoN ON
~Novor B w N+ O

CHAPTER 7 INDEX REGISTER INSTRUCTIONS

LDX--Load Index Register X from Memory .

LDY--Load Index FRegister Y from Memory .

STX~-Store Index Register X in Memory. . .

STY--Store Index Register Y in Memory. . .
INX--Increment Index Register X by One . .
INY--Increment Index Register Y by One . .
DEX~-Decrement Index Register X by One .
DEY~-Decrement Index Register Y by One . .
CPX~-Compare Index Register X to Memory. .

.9 CPY--Compare Index Register Y to Memory. .
.10 Transfers Between the Index Registers and Accumulator
.11 TAX--Transfer Accumulatcr to Index X .

.12 TXA--Transfer Index X to Accumulator . . .

.13 TAY--Transfer Accumulator to Index Y . . .

.14 TYA--Transfer Index Y to Accumulator . . .

.15 Summary of Index Register Applications and ManlpulatLons

o~V WO

N I N B R B N B N B N Y

CHAPTER 8 STACK PROCESSING

Introduction to Stack and to Push Down Stack Concept
JSR-~Jump to Subroutine.
RTS-~Return from Subroutine. .
Implementation of Stack in MCS6501 Through MCS6505
Summary of Stack Implementation.
Use of the Stack by the Programmer
PHA--Push Accumulator on Stack

00 00 00 00 00 0O 00 CO OO
~N oo e WwWLwbhdEHEO
-

PLA--Pull Accumulator from Stack
Use of Pushes and Pulls to Communicate Varlables Between
Subroutine Operations e e e e e e

8.8 TXS--Transfer Index X to Stack Pointer e e e e e e
8.9 TSX--Transfer Stack Pointer to Index X .
8.10 Saving of the Processor Status mR W/l .
8.11 PHP--Push Processor Status on Stack.
8.12 PLP--Pull Processor Status from Stack.
8.13 Summary on the Stack . « « + ¢« ¢« ¢« ¢ 4 & 4 @ o e e e

iv

. 100
. 100
. 100
. 101
. 101
. 102

69
79
81
83
85
87
92
92

96
96
97
97
97
97
98
98
99
99

. 103
. 104
. 108
. 112
. 115
. 116
. 117

118

. 119
. 120
. 122

122

. 122
. 123

123

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS

9.0 Vectors. . . . e vt
9.1 Reset or Restart P Vs
9.2 Start Function e .. 126
9.3 Programmer Cons1deratlons for In1tia11zatlon Sequences . . 127
9.4 Restart. T VA
9.5 Interrupt Considerations P
9.6 RTI--Return from Interrupt e K
9.7 Software Polling for Interrupt Causes e e e e e e s .o 137
9.8 Fully Vectored InterruptsS. . . . « « « « « + « o« « + o o« « 140
9.8.1 JMP Indirect + &+ & 4 &+ & & o & 4 o o & o w o« o« . . 141
9.9 Interrupt SUMMATY. . « . « & & o & « o « o o « o o « « « . 142
9.10 Non-Maskable Interrupt . . . « . .« « + = « &+ « « « « « o« o 142
9.11 BRK--Break Command « & ¢ & « « + &« « « « « . 144
9.12 MemoTry Map . « +v +v v « 4 « « o 4« « 4 4 4 e o o o+ 4 . . . 146

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.0 Definition of Shift and Rotate « + « ¢« « « « o . . 147
10.1 LSR--Logical Shift Right « « . . 148
10.2 ASL--Arithmetic Shift Left 149
i 10.3 ROL--Rotate Left v ¢ ¢ & ¢ ¢« &« « v o o & « « « « « 149
% 10.4 ROR--Rotate Right. e e+ s 4 e e e e e« e« a . . 150
| 10.5 Accumulator Mode Address1ng O 1)
‘ 10.6 Read/Modify/Write Instructions « . « « . . . 151
}' 10.7 INC--Increment Memory by One « ¢« ¢« « ¢ ¢« « « + « o« 154
10.8 DEC--Decrement Memory by One . . . « o« o« . . 155
10.9 General Note on Read/Modify/Write Instructlons e <« « < . 155

CHAPTER 11 PERIPHERAL PROGRAMMING

11.0 Review of MCS6520 for I/0 Operations 156
11.1 MCS6520 Interrupt Control. . . . 158
11.2 Implementation Tricks for Use of the MCS6520 Perlpheral
Interface Devices . . .+ « v v v ¢ 4 ¢ ¢« « « « & » + . . 161
11.2.1 Shortcut Polling Sequences . . . + « « +« ¢« ¢« « + » « . . 161
11.2.2 Bit Organization on MCS6520s« . 162
11.2.,3 Use of READ/MODIFY/WRITE Instructlon for Keyboard
Encoding. . . + ¢ ¢« & ¢« ¢ ¢ ¢« ¢ ¢ 4 4« e o o o+ « . . 163
11.3 MCS6530 Programming. e e e s s s e s <« w e < . 166
11.3.1 Reading of the Counter Reglster e e e s e s e « a2 s . . 166
11.4 How to Organize to Implement Coding. 166
11.4.1 TLabel Standards. . . &+ ¢« ¢« ¢« « & &+ &+ « « o« o « « + « - . 168
11.5 Comprehensive I/O Program. . « . « « &+ « o« o« o o « « + « » 170

APPENDICES

Instruction List, Alphabetic by Mnemonic, Definition
of Instruction Groups. .

MCS6501 - MCS6505 Microprocessor Instruction Set--

Alphabetic Sequence.0 0w ..
A.l Introduction. . . e e e e e
A.2 Group One Instructlons e e e e e e e e e e e e
A.3 Group Two Instructions.
ALb Group Three Instructions.

Instruction List, Alphabetic by Mnemonic, with OP CODEs,
Execution Cycles and Memory Requirements.

Instruction Addressing Modes and Related Execution Times.

Operation Code Instruction Listing Hexidecimal Sequence
Summary of Addressing Modes

Implied Addressing. . .

Immediate Addressing.

Absolute Addressing

Zero Page Addressing.

Relative Addressing

Absolute Indexed Addre331ng

Zero Page Indexed Addressing.

Indexed Indirect Addressing

Indirect Indexed Addressing

(oo I o Il o Bl e I 2 B o Bl <o i
(VolNo BN I WU, N oS OURY

MCS650X Programming Model
Discussion--Indirect Addressing

Review of Binary and Binary Coded Decimal Arithmetic.

vi

mmmmrﬁrﬂmmm
o~ bW

1

[{

i
=

?
=

i
=

s

ot

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

3%
-

NN NDNDNMNDNNDNDN
o

HHEWoo~Nouwm Wb

)]
'_l
N

2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

LIST OF EXAMPLES

Add 2 Numbers with Carry; No Carry Generation.

Add 2 Numbers with Carry; Carry Generation .

Adding Two 16-Bit Numbers.

Add Two 16-Bit Numbers, No Carry from Low Order Add

Add Two 16-Bit Numbers, with Carry from Low Order Add.

Add 2 Positive Numbers with No Overflow.
Add 2 Positive Numbers with Overflow .

Add Positive and Negative Number with P031t1ve Result.
Add Positive and Negative Number with Negative Result.

Add 2 Negative Numbers without Overflow.
Add 2 Negative Numbers with Overflow .

-Decimal Addition e

Subtract 2 Numbers with Borrow Posltlve Result
Subtract 2 Numbers with Borrow; Negative Result.
Subtracting Two 16-Bit Numbers e e e e e e
Subtract in Double Precision Format; Positive Result
Subtract in Double Precision Format; Negative Result
Decimal Subtraction.

Clearing a Bit with "AND”

Setting a Bit with ''OR". .

Complementing a Byte with "EOR"

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

Ea I S I S S S S
o~V BN

Accessing Instructions with the P-Counter Value.
Accessing Data Addressing with P-Counter Value .
Use of JMP Instruction .

Illustration of "Branch on Carry Set

Sequencing Two Branch Instructions

Use of JMP to Branch Out of Range.

Using the CMP Instruction.

Sample Program Using the BIT Test.

vii

. 12

. 18
. 19
.21

. 34

. 39
. 43
. 46
. 48

O 0~

10
11
12
12

12
13
13
15
16
16
17

21

33

36
38

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

5.1 Using Absolute Addressing. . . -
5.2 Demonstration of "Pipelining" Effect e e e e e e e e .. 54
5.3 Illustration of Implied Addressing 58
5.4 Illustration of Immediate Addressing 59
5.5 Illustration of Absolute Addressing. 60
5.6 Illustration of Zero Page Addressing 62
5.7 Illustration of Relative Addressing; Branch Not Taken . . 63
5.8 Illustration of Relative Addressing; Branch Positive

Taken, No Crossing of Page Boundaries 64
5.9 Illustration of Relative Addressing; Branch Negatlve

Taken, Crossing of Page Boundaries. 65

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

: 6.1 Moving Five Bytes of Data with Straight Line Code. 70
: 6.2 Moving Five Bytes of Data with Loop. 72
6.3 Coded Detail of Moving Fields with Loop. 73
6.4 Moving Five Bytes of Data with Index Register. 76

6.5 Moving Five Bytes of Data by Decrementing the Index
Register. . . . B Y
6.6 Absolute Indexed; w1th No Page Cr0351ng Y A
: 6.7 Absolute Indexed; with Page Crossing 80
§~ 6.8 Illustration of Zero Page Indexing 82
; 6.9 Demonstrating the Wrap-Around. e+ e e« o« . 83
6.10 TIllustration of Indexed Indirect Addre331ng . - . . .« . . 86
6.11 Indirect Indexed Addressing (No Page Crossing) 88
6.12 Indirect Indexed Addressing (with Page Crossing) 89
6.13 Absolute Indexed Add--Sample Program 90
6.14 Indexed Indirect Add--Sample Program 90
6.15 Move N Bytes (N < 256) & v v v v v v « 4 o o v v o s v o« o 94
6.16 Move N Bytes (N > 256) . . . + v v v v v v v v o o o « o+ 95

CHAPTER 8 STACK PROCESSING

8.1 Basic Stack Map for 3-Deep JMP to Subroutine 104
8.2 Basic Stack Operation. . . e L0
8.3 Illustration of JSR Instructlon e e e e e e e e e e .. . 106
8.4 Illustration of RTS Imstruction. 109
8.5 Memory Map for RTS Instruction « . « 111
8.6 Expansion of RTS Memory Map. A . 111
8.7 Call-a-Move Subroutine Using Preassigned Memory Locatlons. 116
8.8 Operation of PHA, Assuming Stack at OFF 118
8.9 Operation of PLA Stack from Example 8.8. 119
8.10 Call-a-Move Subroutine Using the Stack to Communlcate . . 119
8.11 Jump to Subroutine (JSR) Followed by Parameters. 121

viii

! Ei%

il

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS

9.1 Illustration of Start Cycle. « . « « « « « « . . 127
9.2 Interrupt Sequence . . « « « & o « « « + + & ¢ &« 131
9.3 Return from Interrupt.« .+ < . . 133
, 9.4 Illustration of Save and Restore for Interrupts e+ . . . 133
9.5 Interrupt Polling. . . B R ¥
9.6 Illustration of JMP Indlrect e KN §
9.7 Break-Interrupt Processing . . S K755
9.8 Patching with a Break UtlllZlng PROMs e e e e e e e ... 146

' CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.1 General Shift and Rotate ¢« v ¢« v « « « « « « . 147
10.2 Rotate Accumulator Left. ¢ ¢ ¢ ¢« « « « . . . 150
10.3 Rotate Memory Left Absolute,X. 151
10.4 Move a New BCD Number into Field 154

CHAPTER 11 PERIPHERAL PROGRAMMING

: 11.1 The MCS6520 Register Map « « + <« ¢« « « « « . . 156
: 11.2 General PIA Initialization « 157
: 11.3 Interrupt Mode Setup . + « « « « « o & « « « « o « « . . . 159
L 11.4 CA2; CB2 Qutput Control. . . . « 159
: 11.5 Routine to Change CBl1 or CB2 U51ng Blt 3 Control .« . . . 160
! 11.6 Polling the MCS6520. . . . R £ |
. 11.7 Coding for Strobing an 8 x 8 Keyboard e Y 14
) 11.8 Polling for Active Signal. « v « v « « v « o . 172

LIST OF FIGURES

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.1 Partial Block Diagram of MCS650X. .

2.2 Partial Block Diagram Includlng Arlthmetlc Ioglc Un1t
of MCS650X . e

2.3 Byte Orientation with Slgn P031t10n .

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER
3.1 Partial Block Diagram of MCS650X Including P-Register .
3.2 Processor Status Register, "P".

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

4.1 Partial Block Diagram of MCS650X Including Program
Counter and Internal Address Bus .

4.2 Use of Conditional Test .

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES
5.1 Address Bus and Relation to Memory Field.
5.2 Example of Timing--MCS650X Family .

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS
Moving Five Bytes of Data with Loop .

Moving Five Bytes of Data with Counter.

Partial Block Diagram of MCS650X Including Index Reglster
Indirect Addressing--Pictorial Drawing.

Indexed Indirect Addressing .

Indirect Indexed Addressing .

HAPTER 8 STACK PROCESSING

.1 Partial Block Diagram of MCS650X Including Stack
Pointer, S .

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.1 Flow Chart for Moving in a New BCD Number .

CHAPTER 11 PERIPHERAL PROGRAMMING

11.1 Keyboard Encoding Matrix Program.

11.2 Keyboard Strobe Sequence. .

11.3 Program Flow-Polling for Active Slgnal

oo(j oo O
oUW

. 23
. 24

. 31
. 37

. 54
. 55

. 712
. 75

78

. 84
. 85
. 87

113

153

163
165
171

CHAPTER 1

INTRODUCTORY REMARKS

1.0 MANUAL INTRODUCTION

Welcome to the MCS650X product family. This manual is designed to
work in conjunction with the Hardware Manual which describes the basic
hardware considerations when using the MOS Technology, Inc. microcomputer
family.

Before reading this manual, it is suggested that the reader acquaint
himself with the Hardware Manual in order to understand the components
available in this system, how these components are interconnected, and
their basic architecture. Developed in this manual is the concept of
microprocessor internal architecture and how it is used, with attention
given to input/output considerations. Familiarity with the hardware will
facilitate easier understanding of these important concepts.

In order to best serve the total customer base, this manual is written
in two levels. The first is a very basic introduction to the MCS650X fam-
ily, and the second level is for the user who has to refer to the manual
on more than an occasional basis and who wants to rapidly scan and find
specific sections. For the user who is quite familiar with programming
and the MCS650X instruction set, the appendices are the best reference in
the sense that all the data which is discussed in detail in the manual is
summarized in a series of tables for convenience.

It is recommended that the user who is an experienced programmer and
familiar with microprocessors still take the time to read through the
manual in detail. Some of the architectural concepts are different from
those found in second generation machines and this manual instructs the
user how to optimize the utilization of the microprocessor while providing

an introduction of its basic concepts.

Criticism of this manual is welcomed at all times. Of particular
interest are cases where one could not, by use of the index and appendix,
rapidly find the answer to a question which developed in the course of
designing a microprocessor system. Welcomed are any comments which will
enhance the content and format of this manual in future editions or adden-

dums.

1.1 MICROPROCESSOR ARCHITECTURE

The MCS6501, MCS6502, MCS6503, MCS6504, and MCS6505 are all 8-bit
microprocessors. That means that 8 bits of data are transferred or oper-
ated upon during each instruction cycle or operation cycle.

All devices in the MCS650X family operate on data 8 bits at a time,
although some of the operations will look like serial or 16-bit wide oper-
ations. In a future section, discussed will be the use of sequential
operations on an 8-bit basis and how one can accomplish 16-bit effective
operands and addressing.

The computer industry, for some time, has been treating 8-bit combina-
tions of data by a term known as a "byte." In many large computers which
operate simultaneously on multiple bytes of data, the number of bytes which
are transferred and operated on by the machine in parallel are called a
"word.'" Because these microprocessors are 8-bit microprocessors, the words
and bytes are of equal length. Therefore, for convenience through the dis-
cussion of the basic 8-bit processors, ''byte" and "word" will be used
synonymously although in some of the expanded versions there will exist a

1l6-bit word composed of two 8-bit bytes.

CHAPTER 2

THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 THE DATA BUS

Although most of the following discussion will consider how one
operates with a general purpose register called the accumulator, it must
be understood that data has to transfer between the accumulator and out-
side sources by means of passing through the microprocessor to 8 lines
called the data bus. The outside sources include the program which con-
trols the microprocessor, the memory which will be used as interim stor-
age for internal registers when they are to be used in a current opera-
tion, and the actual communications to the world through input/output
ports. Later in this document performance of transfers to and from each
of these devices will be discussed. However, at present, discussion

will center on the microprocessor itself.

[DATA BUS (8 BIT PARALLEL) |
ACCUMULATOR MEMORY
A M

Partial Block Diagram of MCS650X
FIGURE 2.1

The only operation of the data bus is to transfer data between mem-
ory and the processor's internal registers such as the accumulator. Fig-
ure 2.1 displays the basic communication between the accumulator, A, and
the memory, M, through the use of 8 bi-directional data lines called the

data bus.

2.1 THE ACCUMULATOR

The accumulator is a register in which data is kept on which opera-
tions are performed. All operations between memory lbcations must be
communicated through the accumulator or one of the auxiliary index reg-
isters. The accumulator is used as a temporary storage in moving data
from one memory location to another. Therefore, the first use for the
accumulator (A) is just in transferring data from memory to the accumu-
lator or from the accumulator to memory. One can bring data into the
accumulator, perform operations such as AND/OR on it, test the results
of those operations, set new bits into it, or tramnsfer it back out to
the outside world. It serves as an interim storage for a series of oper-
ations such as adding 2 values together; where one of them is loaded into
the accumulator, the second one added to it, and the results stored in
the accumulator. The accumulator really acts as two functions: 1) It
is one of the primary storage points for the machine; 2) It is the point

at which intermediate results are normally stored.

2.1.1 LDA--Load Accumulator with Memory

When instruction LDA is executed by the microprocessor, data
is transferred from memory to the accumulator and stored in the
accumulator.

Rather than continuing to give a word picture of the opera-
tion, introduced will be the symbolic representation M -+ A, where

the arrow means "transfer to." Therefore the LDA instruction sym-

bolic representation is read, ''memory transferred to the accumulator.

LDA affects the contents of the accumulator, does not affect
the carry or overflow flags; sets the zero flag if the accumulator
is zero as a result of the LDA, otherwise resets the zero flag;
sets the negative flag if bit 7 of the accumulator is a 1, other-
wise resets the negative flag.

Although yet to be developed is the concept of addressing
modes, for reference purpose, LDA is a "Group One' instruction and
has all of the major addressing modes of the machine available to
it as stated in Appendix A. These addressing modes include Immed-
iate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;

Indexed Indirect; and Indirect Indexed.

4

2.1.2 STA--Store Accumulator in Memory

This instruction transfers the contents of the accumulator to
memory.

The symbolic representation for this instruction is A > M.

This instruction affects none of the flags in the processor
status register and does not affect the accumulator.

It is a "Group One" instruction and has the following address-
ing modes available to it: Absolute; Zero Page; Absolute,X; Abso-

lute,Y; Zero Page,X; Indexed Indirect; and Indirect Indexed.

2.2 THE ARITHMETIC UNIT

One of the functions to be expected from any computer is the ability
i to compute or perform arithmetic operations. Even in a simple control
problem, one often finds it useful to add 2 numbers in order to determine

that a value has been reached, or subtract 2 numbers to calculate a new

value which must be obtained. In addition, many problems involve some
rudimentary form of decimal or binary arithmetic; certainly many applica-
tions of the microprocessor will involve both. The MCS650X has an 8-bit

arithmetic unit which interfaces to the accumulator as shown in Figure 2.2.

| DATA BUS |
ARITHMETIC
LOGIC : N ACCUMULATOR MEMORY
UNIT A M
ALU

Partial Block Diagram including Arithmetic Logic Unit of MCS650X
FIGURE 2.2

The arithmetic unit is composed of several major parts. The most
important of these is the circuitry necessary to perform a two's comple-
ment add of 8-bit parallel values and generate an 8 parallel bit binary
result plus a carry. A review of binary and binary coded decimal (BCD)
arithmetic is presented in Appendix H. However, a quick review of the
concept of "carry" is in order. The largest range than can be repre-
sented in an 8-bit number is 256 with values ranging between 0 and 255.
| If we add any 2 numbers which result in a sum which is greater thamn 255,
| we represent the result with a ninth bit plus the 8 bits of the excess

over 255. The ninth bit is called "carry.”

2.2.1 ADC--Add Memory to Accumulator with Carry

This instruction adds the value of memory and carry from the
previous operation to the value of the accumulator and stores the
result in the accumulator.

The symbolic representation for this instruction is
A+M+ C > A,

This instruction affects the accumulator; sets the carry flag
when the sum of a binary add exceeds 255 or when the sum of a decimal
add exceeds 99, otherwise carry is reset. The overflow flag is set
when the sign or bit 7 is changed due to the result exceeding +127
or -128, otherwise overflow is reset. The negative flag is set if
the accumulator result contains bit 7 on, otherwise the negative
flag is reset. The zero flag is set if the accumulator result is O,
otherwise the zero flag is reset.

It is a "Group One" instruction and has the following address-
ing modes: Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y;
Zero Page,X; Indexed Indirect; and Indirect Indexed.

The ninth bit of the result is stored in the carry flag and
the remaining 8 bits reside in the accumulator. The carry flag can
be thought of as a flag bit which is remote from the accumulator it-
self but which is directly affected by accumulator operations as
though it were a ninth bit in the accumulator. The primary reason
for not viewing the carry bit as merely a ninth bit in the accumu-
lator is that one has program control over its state by being able
to set (to "1") or clear (to "0'") the bit and, of course, it is not
part of the 8-bit accumulator in data transfer operations. Examples

employing the Add with Carry operation follow.

Example 2.1: Add 2 numbers with carry; no carry generation

0000 1101 13 = (A)*
1101 0011 211 = (M)*
1 1 = CARRY
: Carry = /0o/ 1110 0001 225 = (A)

*(A) and (M) refer to the "contents' of the accumulator and
"contents'" of memory respectively.

i R DR IO T
~J

Example 2.2: Add 2 numbers with carry; carry generation

1111 1110 254 = (A)

0000 0110 6 = (M)
| . 1 1 = CARRY
L Carry = /1 0000 0101 5= (4)

While the accumulator contains "5," the carry flag signals
the user that the result exceeded 255 and, therefore, the result can

be properly interpreted as 256 + 5 = 261.

2.2.1.0 Multiple Precision Addition

To perform the addition of 2 numbers, one issues to the
microprocessor an ADC instruction which adds the memory and the accu-
mulator and stores the results in the accumulator with the carry bit
going set if the results exceeded 255.

To add numbers which had significantly higher value than
255, it would be necessary to represent these numbers by a series of
serial 8-bit numbers. With the 16 bits in 2 serial 8-bit numbers,
it is possible to represent binary numbers of greater than 65,000 in
value. In order to add two 16-bit numbers together and thus accomplish
double precision addition, one first loads the lowest byte of one
number into the accumulator, clears the carry flag and then adds the
second number to the first number in the accumulator using the ADC
command. One would then store this result into another memory loca~
tion using the STA command. The carry flag would now represent the .
carry from the lowest byte to the highest byte. One could then load
the high order byte of the first number, add with carry again to the
high value of the second number, and store the result in the high
order byte of the result. Thus, it can be seen that the carry allows
us to perform as much precision afithmetic as is necessary. The
example listing below displays the commands used to execute the addi-

tion of two 16-bit numbers.

Example 2.3: Adding two 16-bit numbers

High Order Byte Low Order Byte

First Number Hl Ll

Second Number H2 L2

Result of Addition H3 L3

LDA Ll Load low order byte, first number

CLC Clear carry flag (carry = 0)

ADC L2 Add L1 to low order byte, second num-

s ber

STA L3 Store result in memory, carry flag is
still set if set in ADC operation

LDA Hl Load high order byte, first number

ADC H2 Add Hl and carry value from first ADC
operation to high order byte, second
number

STA H3 Store result in memory

In this example it was necessary to clear the carry flag
before starting the add instruction. This, of course, means that
commands exist that set and clear the carry flag allowing for addi-
tion without values generated from the prior operation. One could
also, at the end of the program, check to see if the result exceeded
16 bits by testing the carry flag. Exactly how one alters and tests
flags will be discussed in the Flag and Branches Section. The
examples below display the concept of carry from the addition of the

low order bytes.

Example 2.4: Add two 16-bit numbers, no carry from low
order add

0000 0001 0000 0010 258
0001 0000 0001 0000 4112

Add low order bytes: (clear carry)

0000 0010 (&)
0001 0000 (M)

Carry = /0/ 0001 0010 (A)
Add high order bytes (carry = 0):
0000 0001 (A)
0001 0000 (M)
. 0 CARRY
Carry = /0/ 0001 0001 (A)

Result = 0001 0001 0001 0010 = 4370

e

Example 2.5:

Add two 16-bit numbers, with carry from low

order add
0000 0001 1000 0000 384
0000 0000 1000 0000 128
Add low order bytes: (clear carry)
1000 0000 (A)
. 1000 0000 (M)
Carry = /1/ 0000 0000 (A)
Add high order bytes: (carry = 1)
0000 0001 (A)
0000 0000 W)
. 1 CARRY
Carry = /0/ 0000 0010 (A)
Result = 0000 0010 0000 0000 = 512

2.2.1.1

Signed Arithmetic

It is possible to look at

data is represented in memory in a different way.

the add operation and the way

If, in the 16-bit

problem (Examplés 2.4 and 2.5), one were working with 15 bits of pre-

cision (in other words, 15 bits of wvalid data) plus 1 bit of sign (O

for positive and 1 for negative), it would be possible to perform

signed binary arithmetic without changing the adder, but by merely

changing the way the results are interpreted.

In order to facili-

tate this concept, the microprocessor has the ability to represent

positive or negative numbers by means of a sign flag which will be

discussed at length in Section 3.7.

the sign position bit.

series of bytes should have the sign in the eighth position.

In the MCS650X family, bit 7 is
This means that the highest order byte in a
1f,

for simplicity, one talks about signed 8-bit numbers, it would mean

that one was allowed only 128 combinations of each sign because that

is the most that can be represented in 7 bits, with the eighth bit or

the highest bit reserved for the sign position.

10

7 6 5 4 3 2 1 0 < BIT POSITION

L‘l k2l -
L SIGN POSITION

“0” = POSITIVE

\f

NEGATIVE

Byte Orientation with Sign Position
FIGURE 2.3

In the following examples of signed arithmetic it should be
noted that operations are occurring on a 7-bit field of numbers and
that any carry generated out of that field will reside in the eighth
bit--not in the carry flag discussed during the add operations. The
generation of a carry out of the field is the same as when adding
two 8-bit numbers, except for the fact that the normal carry flag
does not correctly represent the fact that the field has been ex-
ceeded. This is because the true carry from adding the two 7-bit
numbers resides in the sign bit position. Therefore, the carry flag

has no real meaning. Instead, there is a separate flag, the over-

flow flag, used to indicate when a carry from 7 bits has occurred
and allows the user to write correction programs.

In each example, the negative numbers are in two's comple-
ment form. Also included in each result will be the status of the
carry and overflow flags. The overflow flag is set whenever the

sign bit (bit 7) is changed as a result of the operation.

Example 2.6: Add 2 positive numbers with no overflow

0000 0101 +5 (A)
0000 0111 47 ()
Carry = /0/ 0000 1100 +12 (A)

Overflow = /0 "0" in bit 7 indicates positive result.
Note that both the carry and overflow
flag remain cleared.

11

Example 2.7: Add 2 positive numbers with overflow

0111 1111 +127 (A)
0000 0010 + 2 (M)
Carry = /0/ 1000 0001 '=127" (A)

Overflow = /1/ "1" in bit 7 indicates negative result and
the two's complement of the result is 127;
however, the overflow flag is set indicat-
ing the allowable range was exceeded in the
addition.

Therefore, examination of the overflow indicated that the result was

in fact not negative but that the bit 7 position represented an over-
flow beyond the value of 127. Hence the user is flagged of an incor-
rect result and a correction routine (program) must follow.

Example 2.8: Add positive and negative number with posi-
tive result

0000 0101 +5 (A)
1111 1101 -3 (M)
Carry = /1/ 0000 0010 +2 (A)

Overflow = /0/ "0" in bit 7 indicates positive result.
(Recall that though the carry flag is set,
it has no meaning in signed operations.)

Example 2.9: Add positive and negative number with negative
result

0000 0101 +5 (A)
1111 1001 -7 (M)
Carry = /0/ 1111 1110 -2 (A)

Overflow = /0/ "1" in bit 7 indicates negative result.

Example 2.10: Add 2 negative numbers without overflow

1111 1011 -5 (A)
1111 1001 -7 (M)
Carry = /I/ 1111 0100 -12 (A)

Overflow = /0/ "1" in bit 7 indicates negative result.

12

ﬁ‘mmwmnvmlﬂ

Example 2.11: Add 2 negative numbers with overflow

1011 1110 -66 (A)
1011 1111 -65 (M)
Carry = /1 0111 1101 "+125" (A)

Overflow = /1 "0" indicates positive result, but the
overflow flag is set indicating that the
allowable range was exceeded in the opera-
tion. Without the overflow indication, the
result would be interpreted as +125. The
overflow, however, indicated that the result
was negative and exceeded the value -128.
Hence the user is flagged of an incorrect
result, indicating the need for a correc-
tion routine.

2.2.1.2 Decimal Addition

There is a way for the user to organize data for decimal
operations. The MOS Technology, Inc. MCS650X microprocessors have
a modified adder which allows the user to represent his numbers as
two 4-bit binary coded decimals (BCD) numbers packed into a single
byte. This is a unique feature of the MCS650X family in that the

operation in the following example can be performed.

Example 2.12: Decimal addition

CLC Clear Carry Flag

SED Set Decimal Mode

1bA 0111 1001 79

ADC 0001 0100 +14

STA 1001 0011 93

The microprocessor adder has the unique capability of per-
forming real time correction to the normal expected binary result
without any direct interference from the programmer. Other popular
microprocessors require a separate instruction (Decimal Adjust)
which corrects the direct binary result of the arithmetic unit to
obtain the same final results as are available on this microprocessor
directly.

In order to make the same arithmetic unit perform either as

a binary adder or as a decimal adder, the user chooses the mode in

which he is going to operate (either decimal or binary) by setting

13

another flip-flop in the microprocessor called the decimal flag. As
shown in this example, one not only initializes the adder by clearing
the carry flag, but also puts the precessor into decimal mode with
the SED instruction. Even though this also requires 1 instruction,
it is possible to put the machine in decimal mode once and perform
many long strings of decimal numbers without further user interven-
tion. The '"Decimal Adjust" feature on other microprocessors requires

programming subsequent to each binary operation.

2.2.1.3 Add Summary

In summary, the basic arithmetic unit is a binary adder
which, under control of the ADC command, performs binary arithmetic
on the accumulator and data, storing the result in the accumulator.
Depending on the way the user looks at the data which is presented to
the adder and the results which are obtained from it, the user can
determine whether or not the result exceeds 255 binary or 99 decimal;
he can perform precision arithmetic by use of the ninth bit or carry
flag; he can control whether or not the microprocessor is a decimal
adder by setting the decimal mode; and he can represent his numbers
as signed binary numbers by analyzing other flags that are set in the

machine.

2.2.2 SBC Subtract Memory from Accumulator with Borrow

This instruction subtracts the value of memory and borrow from
the value of the accumulator, using two's complement arithmetic, and
stores the result in the accumulator. Borrow is defined as the carry
flag complemented; therefore, a resultant carry flag indicates that a
borrow has not occurred.

The symbolic representation for this instruction is
A-M-C A,

This instruction affects the accumulator. The carry flag is
set if the result is greater than or equal tc 0. The carry flag is
reset when the result is less than O, indicating a borrow. The over-

flow flag is set when the result exceeds +127 or -127, otherwise it

14

]

H
4

L

is reset. The negative flag is set if the result in the accumulator
has bit 7 on, otherwise it is reset. The Z flag is set if the result
in the accumulator is 0, otherwise it is reset.

It is a "Group One'" instruction. It has addressing modes
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

In a binary machine, the classical way to perform arithmetic
is by using two's complement notation. In using two's complement
notation, any subtraction operation becomes a sequence of bit comple-
mentations and additions. This reduces the complexity of the circuits
required to perform a subtraction.

When the SBC instruction is used in single precision subtrac-
tion, there will normally be no borrow; therefore, the programmer
must set the carry flag, by using the SEC (Set carry to 1) instruc-
tion, before using the SBC instruction. The microprocessor adds the
carry flag to the complemented memory data, resulting in a true twc's

complement form of the memory value with its sign inverted.

Example 2.13: Subtract 2 numbers with borrow; positive result

Assume a single precision subtraction where A contains 5 and M con-
tains 3. The carry flag must be set to a 1 using the SEC instruc-

tion, thereby representing the mno-borrow condition.

The adder changes the sign of M by taking the two's complement

of M. 'This involves complementing M and adding the carry bit.

M=3 0000 0011
Complemented M 1111 1100
Add C =1 1

-M = -3 1111 1101

The adder adds A and the two's complement -M together. This
operation occurs simultaneously with the complement operation.

A=5 0000 0101

Add -M = -3 1111 1101
Carry = /1/ 0000 0010 = +2

The presence of the carry flag after this operation indicates

that No Borrow was required, therefore the result is +2.

15

Example 2.14: Subtract 2 numbers with borrow; negative result

Assume a single precision subtraction where A contains 5 and M con-

tains 6. Set the carry flag to a 1 with SEC to indicate No Borrow.

M=26 0000 0110 (
Complemented M 1111 1001 (s tomr
Add Cc =1 1 ,
-M = -6 1111 1010 2§ Cap.~

A =5 0000 0101
Add -M = -6 1111 1010
Carry = /0/ 1111 1111 = -1
The absence of the carry flag after this operation indicates
that a borrow was required, therefore the result is a -1 in two's
complement form. The absolute (unsigned) result in straight binary

could be obtained by taking the two's complement of this number.

2.2.2.0 Multiple Precision Subtraction

Double precision subtraction is implemented in a fashion
similar tec addition. An example for subtracting a 16-bit number and

storing the result follows:

Example 2.15: Subtracting two 16-bit numbers

High Order Byte Low Order Byte

First Number H1 L1
Second Number H2 L2
Result of Subtraction H3 L3
SEC Set Carry

LDA L1 Load Low Order Byte, First Number

SBC L2 Subtract with Borrow, Low Order Byte of Second
Number from L1

STA L3 Store Result in Memory
LDA H1 Load High Order Byte, First Number

SBC H2 Subtract with Borrow, High Order Byte of Second
Number from H1

STA H3 Store Result in Memory

16

Example 2.16: Subtract in double precision format; positive

result

Assume a double precision subtraction where 255 is to be

subtracted from 512 for an example. Since there has been no borrow

coming into this subtraction operation, the carry flag must be set.

Following are the 2 numbers in binary form:

High Order Byte Low Order Byte

A field = 512 0000 0010 0000 0000
M field = 255 0000 0000 1111 1111

Since the adder can only operate on single byte numbers, the

programmer must operate on the low order bytes first.

M= 1111 1111
Complemented M = 0000 0000
' Add C =1 1

-M 0000 0001

A = 0000 0000
Add -M = 0000 0001
Carry = /0/ 0000 0001

The carry is brought over to the subtract operation on the

i T

‘high order bytes.

M = 0000 0000
Complemented M = 1111 1111
Add C =0 0

-M 1111 1111

A = 0000 0010
Add -M = 1111 _ 1111
Carry = /1/ 0000 0001

The result in binary form follows:

Carry = /1 0000 0001 0000 0001 = +257

: The presence of the carry flag after the highest order byte
subtraction indicates that the entire number required No Borrow,

therefore it is a positive number in straight binary form.

Rt 2

17

Example 2.17:

Subtract in double precision format; negative

Now
subtracted fr
into this sub

Foll

A fi
M fi

Oper

The
The

tract operati

The
Carr
Carr
the number is

2.2.2.1 Sign

result

assume a double precision subtraction where 512 is to be
om 255. Again, since there has been no borrow coming

traction operation, the carry flag must be set.

owing are the two numbers in binary form:

High Order Byte Low Order Byte
e1d = 255 0000 0000 1111 1111
eld = 512 0000 0010 0000 0000
ating on the low order byte:

M = 0000 0000

M = 1111 1111
Add ¢ = 1 1
Carry = /1/ 0000 0000 = -M

A =1111 1111
dd -M = /1/ 0000 0000
Carry = /1/ 1111 1111

presence of the carry 1 indicates no borrow.

carry is now brought over to the high order byte sub-

on: _
M = 0000 0010

M = 1111 1101

Add C =1 1
1111 1110

A =0000 0000

M+ C = 1111 1110
Carry = /0/ 1111 1110

result in binary form is:
/0/ 1111 1110 1111
107

negative and is in two's complement form.

1111 = =257

¥y
Yy

indicates the presence of a borrow, therefore

ed Arithmetic

Sign
just as easil
numbers from

to the wvalue

ed numbers can be subtracted, using the SBC instruction,
v as they can be added. The microprocessor converts the
memory to its two's complemented form and then adds it

of the accumulator just as it does in an unsigned

18

i e

S = 4

Ry TIO N TT

e TR RN Rl 0, ARG, o o0

subtract described in Section 2.2.2. The addition operation is
identical to that described, and to the examples given in Section
2.2.1.1

It should be remembered that before using the SBC instruc-
tion, either signed or unsigned, the carry flag must be set to a 1 in
order to indicate a no borrow condition. The resultant carry flag

has no meaning after a signed arithmetic operation.

2.2.2.2 Decimal Subtract

As indicated in the Section 2.2.1.2, it is possible to repre-
sent numbers as packed 4-bit BCD numbers. In this case, which is
again unique to this microprocessor, it is possible to make the adder
act as though it is a decimal adder. 1In this case, the function of
the machine is one of correcting for the subtraction of positive num-
bers by complementing the number, setting the carry and performing
binary arithmetic with an automatic correction at the time the result
is stored in the accumulator. The unique capabilities of this adder

give the results as shown in the next example.

Example 2.18: Decimal Subtraction

SED Set Decimal Mode

SEC Set Carry Flag

LDA 0100 0100 44

SBC 0010 1001 29

STA 0001 0101 15
By setting the decimal mode and setting the carry flag, one can sub-
tract number 29 from number 44 with the results in the accumulator
automatically being 15.

As has been indicated, one can perform both addition and
subtraction when the machine is set in decimal mode, treating the
bytes to be added as unsigned, positive, binary coded digits. The
carry flag in addition represents the case when the result in the

number exceeded 99 and in subtraction the absence of the carry flag

represents a true borrow situation.

19

b
ki
(i
I
:
i
!
i
{
i
i
f

}
{
i
|
i
|
i

2.2.3 Carry and Overflow During Arithmetic Operations

It is necessary to set or reset the carry flag prior to the
beginning of any arithmetic instruction. Because the carry flag is
set or reset as a result of the arithmetic operation at the end of
the loop, one can test the flag to determine whether or not a carry
or a borrow occurred in the operation. v proper use of the overflow
flag one can treat the high order bit of any set of bytes as a sign
bit as long as the results of the negative numbers are carried in
two's complement form. The microprocessor also sets the overflow
flip-flop to indicate when a result larger than can be stored in a
7-bit field has occurred and when the resultant sign is incorrect.
In binary arithmetic the carry flag set indicates results in excess
of 256, and in decimal arithmetic indicates results in excess of 99.
Although the input carry is very important to these operations, a

simple rule is: set the carry flag prior to subtract; clear the

carry flag prior to add.

2.2.4 Logical Operands

In implementing a parallel binary adder there are several use-
ful logic functions which are subsets of a binary add operation. 1In
the MCS650X family, these subsets are used to implement the logical
operands "AND," 'OR," and "EOR" (Exclusive Or). These operations are

used to test and control bit manipulations.

2.2.4.1 AND--Memory with Accumulator
14

The AND instructions transfer the accumulator and memory to

the adder which performs a bit-by-bit AND operation and stores the
result back in the accumulator.

This instruction affects the accumulator; sets the zero flag
if the result in the accumulator is 0, otherwise resets the zero flag;
sets the negative flag if the result in the accumulator has bit 7 om,
otherwise resets the negative flag.

This is symbolically represented by A A M ~> A,

20

AND is a "Group Ome" instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses for the AND operation is that of resetting a

bit in memory. In the example below,

Example 2.19: Clearing a bit with AND

LDA 1100 X111, where X is 0 or 1
AND 1111 0111
STA 1100 0111

a byte is loaded into the accumulator and the AND instruction resets
the accumulator bit 3 to 0. The accumulator is then stored back into
memory, thereby resetting the bit.

2.2.4.2 ORA "OR" Memory with Accumulator

The ORA instruction transfers the mémory and the accumulator
to the adder which performs a binary "OR" on a bit-by-bit basis and
stores the result in the accumulator.

This is indicated symbolically by AV M > A,

This instruction affects the accumulator; sets the zero flag
if the result in the accumulator is 0, otherwise resets the zero flag;
sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag. ORA is a "Group One' instruction.
It has the addressing modes Immediate; Absolute; Zero Page; Absolute,X;
Absolute,Y; Zero Page,X; Indexed Indirect; and Indirect Indexed.

To set a bit, the OR instruction is used as shown below:

Example 2.20: Setting a bit with OR

LDA 1110 X111, where X is 0 or 1
ORA 0000 1000
STA 1110 1111

2.2.4.3 EOR--"Exclusive OR" Memory with Accumulator

The EOR instruction transfers the memory and the accumulator
to the adder which performs a binary "EXCLUSIVE OR" on a bit-by-bit

basis and stores the result in the accumulator.

21

This is indicated symbolically by AWM - A.
This instruction affects the accumulator; sets the zero flag

if the result in the accumulator is 0, otherwise resets the zero flag;

s sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag.

EOR is a "Group One'" instruction having addressing modes of

Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses of the EOR instruction is in complementing
bytes. This is accomplished below by exclusive ORA-ing the byte with
all 1's.

Example 2.21: Complementing a byte with EOR

LDA 1010 1111
- EOR 1111 1111
STA 0101 0000

22

CHAPTER 3

CONCEPTS OF FLAGS AND STATUS REGISTER

One can view each of the individual flags or status bits in the
machine as individual flip—flops. The carry flag can be considered the
ninth bit of an arithmetic operation. The decimal mode flag is set and
cleared by the user and used by the microprocessor to select either binary
or decimal mode. For programming convenience the microprocessor treats
all of the flags or status bits as component bits of a single 8-bit reg-
ister. In Figure 3.1 the processor status register (or "P" register) is

added to the block diagram.

| | DATA BUS]
PROCESSOR
ACCUMULATOR STATUS MEMORY
A KN, REGISTER M
P

Partial Block Diagram of MCS650X including P Register
FIGURE 3.1

23

Each of the individual flags or bits has its own particular meaning in the

microprocessor as defined in Figure 3.2.

|
i N Vv B D 1 z C PROCESSOR STATUS REGISTER

CARRY

ZERO RESULT

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND

EXPANSION

OVERFLOW

NEGATIVE RESULT

Processor Status Register
FIGURE 32

3.0 CARRY FLAG (C)

The carry bit which isimodified as a result. of specific:-arithmetic
operations or by a set or clear carry command has been discussed previously.
In the case of shift and rotate instruction, the carry bit is used as a
ninth bit as it is in the arithmetic operation. The carry flag can be set
or resé; p& ;hé_pgogrémgér.' A SECUihét%uétion will set and a CLC instruc-
tion will‘reset the carry ﬁiag.. Ope;afions théh affectAEhé éaéfy ére ADC,

.ASL,' CLC, CMP, CPX, CPY, Ljsﬁ,v?LP,' ROL, '‘RTI, SBC, SEC. T

| SN 9

st : ; e
i i .

''3.0.1 SEC:Set Carry Fiig
s r-

- H L s .

S

This instruction initializes—the carry flag t&'a'k;-'This‘op—
eration should normally precede a SBC loop. It is also useful when
used with a ROL instruction to initialize a bit in memory to a 1.

This instruction affects no registers in the microprocessor
; and no flags ‘other than the carry flag which is set.

SEC is a single-byte instruction and its addressing mode is

Implied.

24

20 RS AR

3.0.2 CLC--Clear Carry Flag

This instruction initializes the carry flag to a 0. This op-
eration should normally precede an ADC loop. It is also useful when
used with a ROL instruction to clear a bit in memory.

This instruction atfects no registers in the microprocessor
and no flags other than the carry flag which is reset.

CLC is a single-byte instruction and its addressing mode is

Implied.

3.1 ZERO FLAG (Z)

This flag is automatically set by the microprocessor during any data
movement or calculation operation when the 8 bits of results of the opera-
tion are 0. Therefore, the bit is on ("1") when the results are 0, and
off ("0") when the results are not equal to 0. The feature of the machine
is similar to that of the PDPll in the sense that operations which are
decrementing index registers or memory locations have a built-in test for
0 as a result of decrementing to the 0 condition, Tt is also possible to
test for O condition immediately following load and other logical opera-
tions, as opposed to processors which have to do a test and branch instruc-
tion. The Z flag is not directly settable or resettable by an instruction
but is affected by the following instructions: ADC, AND, ASL, BIT, CMP,
CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, RTI, SBC, TAX, TAY, TXA, TYA.

3.2 INTERRUPT DISABLE (I)

The interrupt disable is a flip-flop made use of by the programmer
and by the microprocessor to control the operations of the interrupt re-
quest pin. A more detailed discussion of the effects of the interrupt
disable are given in the discussion under interrupt control. However, the
purpose of the interrupt disable is to disable the effects of the interrupt
request pin. The interrupt disable, I, is set by the microprocessor dur-
ing reset and interrupt commands. The I bit is reset by the CLI instruc-
tion or the PLP-instruction, or at a return'from interrupt in which the
interrupt disable was resét prior to the interrupt. The interrupt flag

may be set by the programmer using a SEI instruction and is cleared by the

25

programmer by using a CLI instruction. Instructions which affect the

interrupt disable are BRK, CLI, PLP, RTI and SEI.

3.2.1 SEI--Set Interrupt Disable

This instruction initializes the interrupt disable to a 1. It
is used to mask interrupt requests during system reset operations and
during interrupt commands.

It affects no registers in the microprocessor and no flags
other than the interrupt disable which is set.

SEI is a single—~byte instruction and its addressing mode is

Implied.

3.2.2 CLI--Clear Interrupt Disable

This instruction initializes the interrupt disable to a O.
This allows the microprocessor to receive interrupts.

It affects no registers in the microprocessor and no flags
other than the interrupt disable which is cleared.

CLT is a single-byte instruction and its addressing mecde is

Implied.

3.3 DECIMAL MODE FLAG (D)

As discussed, the use of the decimal mode flag is to control whether
or not the adder operates as a straight binary adder for add and subtract
instructions or as a decimal adder for add and subtract instructions. The
SED instruction sets the flag and the CLD instruction resets it. The only

instructions which affect the decimal mode flag are CLD, PLP, RTI and SED.

3.3.1 SED--Set Decimal Mode

This instruction sets the decimal mode flag D to a 1. This
makes ail subsequent ADC and SBC instructions operate as a decimal
arithmetic operation.

SED affects no registers in the microprocessor and no flags

other than the decimal mode which is set to a 1.

26

S i

3.3.2 CLD--Clear Decimal Mode

This instruction sets the decimal mode flag to a 0. This
causes all subsequent ADC and SBC instructions to operate as simple
binary operations.

CLD affects no registers in the microprocessor and no flags

other than the decimal mode flag which is set to a 0.

3.4 BREAK COMMAND (B)

The break command flag is set only by the microprocessor and is used
to determine during an interrupt service sequence whether or not the inter-
rupt was caused by BRK cdmmand or by a real interrupt. A more detailed
discussion of BRK is in the interrupt section. This bit should be con-
sidered to have meaning only during an analysis of a normal interrupt se-

quence. There are no instructions which can set or which reset this bit.

3.5 EXPANSION BIT

The next bit in the flag register is an unused bit. It is most likely
that this bit will appear to be on when one is analyzing the bit pattern
in the processor status register; however, no guarantee as to its state is

made as this bit will be used in expanded versions of the microprocessor.

3.6 OVERFLOW/(V)

As discussed in the section on arithmetic operations, if one is to
look at the binary arithmetic operations as signed binary operations, there
needs to be some indication of the fact the result of the arithmetic opera-
tion has a greater value than could be contained in the 7 bits of the re-
sult. This bit is the overflow bit and during ADC and SBC instructions
represents a status of an overflow into the sign position. The user
who is not using signed arithmetic can totally ignore this flag during
his programming; however, this flag has the same meaning as the carry to
the user who is using signed binary numbers. . It indicates that a sign
correction routine must be used if this bit is on after an add or subtract

using signed numbers.

27

In addition to its use to monitor the validity of the sign bit in ADC
and SBC instructions, the overflow flag in the MCS650X products is dramat-
ically changed from PDP1l and the MC6800. In those systems the overflow
flag was very carefully controlled so as to allow certain signed branches
for analysis of signed numbers. These branches have been deleted from the
MCS6500 series because of confusioq and difficulty often associated with
using them, and so therefore, the overflow flag is applicable only to the
operation of ADC and SBC, and then only when using signed numbers.

However, in order to maximize the effectiveness of this testable flag
the BIT instruction which may be used to sample interface devices, allows
the overflow flag to reflect the condition of bit 6 in the sampled field.
During a BIT instruction the overflow flag is set equal to the content of
the bit 6 on the data tested with BIT instruction. When used in this mode,
the overflow has nothing to do with signed arithmetic but is just another
sense bit for the microprocessor. Instructions which affect the V flag are
ADC, BIT, CLV, PLP, RTI and SBC. On certain versions of the microproces-

sor the V bit will also be available for stimulus from the outside world.

3.6.1 CLV--Clear Overflow Flag

This instruction clears the overflow flag to a 0. This com-
mand is used in conjunction with the set overflow pin which can change
the state of the overflow flag with an external signal.

CLV affects no registers in the microprocessor and no flags

other than the overflow flag which is set to a 0.

3.6.2 Determination of Overflow

To briefly recap the concept of overflow detection, one must
understand that the machine signals an overflow based on the data
entered to the operation and the final result. Since, with signed
arithmetic, the range of numbers that be represented is +127 to -128,
the overflow flag will never set when numbers of oppgéite sign are
added, since their result will never exceed that range. The machine
deals with this by recognizing that for any 2 positive numbers, the
"bit 7" of each is a "0" and that for any arithmetic operation

28

yielding a result less than or equal to +127, the resultant "bit 7"
must be a "0." If it is a 1, the overflow flag is set.

Similarly, when two negative numbers are added, the "bit 7" of
each is a "1" and for any result yielding a value less than or equal
to -128, the resultant "bit" must be a "1." If it is a 0, the over-
flow flag is set.

Therefore, the machine recognizes by knowledge of the '"bit 7"
of each of the numbers to be added what the resultant "bit 7" must be
in a non-overflow situation. If these conditions are not met, the

overflow flag goes set,

3.7 NEGATIVE FLAG (N)

As already discussed, one of the uses of the microprocessor is to per-
form arithmetic operations on signed numbers. To allow the user to readily
sample the status of the sign bit (bit 7), the N flag is set equal to bit 7
of the resulting value in all data movement and data arithmetic. This
means, for instance, after a signed add one can determine the sign of the
result by sampling the N flag directly rather than finding a way to iso-
late bit 7. Although signs were the primary purpose for which the N flag
was intended, its usefulness far exceeds that of strictly a sign bit.
Because of every operation including simple moves and add operations the N
bit is equal to the status of bit 7 as a result of the operation; its pri-
mary use becomes that of an easily testable bit. Almost all single-bit in-
structions, all interrupts and all I/0 status flags use bit 7 as a sense bit.
This allows the user to perform some type of memory access operation such
as Load A followed by immediate conditional branch based on the status of
bit 7 as reflected in the N flag. Like the Z bit, this flag is not settable
or controllable by the programmer and represents the status of the last data
movement operation. Instructions which affect the negative flag are ADC,
AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX,
LDY, LSR, ORA, PLA, PLP, ROL, BIT, SBC, TAX, TAY, TSX, TXA and TYA.

29

3.8 FLAG SUMMARY

To summarize, the microprocessor treats a series of flags or status

' register.

bits as a single register called the "P" or "Program Status'
Some of these flags are controllable only by the programmer (such as the D
flag); others are controllable by both the user program and microprocessor
(such as the interrupt disable flag). Some of them are set and reset by
almost every processor operation, such as the N and Z flags. Each of these
flags has its own meaning to the programmer at a particular point in time.
When combined with the concept of conditional branches, they represent a
powerful test and jump capability not normally found in a machine of this
magnitude. Other than perhaps the carry flag which is used as part of the
arithmetic instructions, the flags by themselves have relatively little

meaning unless one has the ability to test them. For this purpose there

is a series of conditional branch instructions designed into the machine.

30

CHAPTER 4

TEST, BRANCH AND JUMP INSTRUCTIONS

4.0 CONCEPTS OF PROGRAM SEQUENCE

In all the discussions up until now, there has been little discus-
sion about how the microprocessor understands the instructions used to
perform various arithmetic and accumulator manipulations. However, it
is appropriate that the concept of a program and how the microprocessor
determines each instruction be developed. More registers are required

in the machine as shown in the figure below.

| DATA BUS |

i £ o 8% $
A K A PCL PCH P

& U

[INTERNAL ADL |

INTERNAL ADH

%

—

ABL

[ABH |
&

MEMORY

Partial Block Diagram of MCS650X Including Program
Counter and Internal Address Bus
FIGURE 4.1

31

Although two 8 bit registers have been added, they are the only
registers in the machine that act as though they are one 16 bit reg-
ister. They implement a concept known as program count or program
sequence and subsequently their value will be referred to as PC or
program count. In certain operations it may be convenient to talk
about how one affects the program count low (PCL) which will be the
lower 8 bit register or the program count high (PCH) which will be the
higher 8 bit register. The reason for this register being 16 bits in
length is that if it had only 8 bits it would only be able to reference
256 locations. Since it is through the address bus that one accesses
memory, the program counter which defines the addressable location,
should be as wide a word as possible.

The accessing of a memory location is called "addressing'. It is
the selection of a particular eight-bit data word (byte) out of the
65,536 possibilities fer memory data locations. This selection is trans-
mitted to the memory through the 16 address lines (ADH, ADL) of the micro-
processor. -

For a more detailed discussion of how an individual memory byte is
selected by the address lines, the reader is referred to Chapter 1 of
the Hardware Manual.

If the program counter was only 1 byte and if the bit pattern which
allows the microprocessor to choose which instruction it wants to act on
next, such as "LDA" -as opposed to an "AND", was contained in one byte of
data we could only have 256 program steps. Although the machine of this
length might make an interesting toy, it would have no real practical
value. Therefore, almost all of the competitive 8 bit microprocessors
have chosen to go to a double length program counter. Even though some
of the microprocessors of the MCS650X family do not have all of the out-
put address lines necessary to allow the user to address 65K bytes cf
program (due to package pinout constraints),-in all cases the program
counter is capable of addressing a full 65K by virtue of it's 16 bit

length.

32

edw

4.0.1 Use of Program Counter to Fetch an Instruction

The microprocessor contains an internal timing and state con-
trol counter. This counter, along with a decode matrix, govermns the
operation of the microprocessor on each clock cycle. When the state
of the microprocessor indicates that a new instruction is needed,
the program counter (program address pointer) is used to choose
(address) the next memory location and the value which the memory
sends back is decoded in order to determine what operation the
MCS650X is going to perform next.

To use the program counter to perférm this operation cor-
rectly, it must always be addressing the operation the user wants
to perform next. This operation may be an instruction or may be
data on which the instruction will operate.

In the MCS650X family, the program counter is set with the
value of the address of an instruction. The microprocessor then
puts the value of the program counter onto the address bus, trans-
ferring the 8 bits of data at that memory address into the instruc-
tion decode. The program counter then automatically increments by
one and the microprocessor fetches further data for address operation

necessary to complete the instruction. In the simple example below,

Example 4.1: Accessing Instructions with the P Counter Value

P Counter¥* Location Contents

0100%* ~ LDA *Program Counter
0101 ADC **Hexadecimal
0102 STA Notation

one can see how the program counter is used to access the instruc-
tion sequence load A, add with carry, and store the result. In this
example, the program counter would start out containing 0100. The
microprocessor would read location 0100 by using the program counter
to access memory and would then interpret and implement the LDA in-
struction as previously described. The program counter will auto-
matically increment by one on each instruction fetch, stepping to

0101. After performing the LDA, the microprocessor would fetch the

33

next instruction addressing memory with the program counter. This
would pick up the ADC instruction, the add would then be performed,
the program counter which has been incremented to 0102 would be used
to address the next instruction, STA. The P counter incrementing
once with each instruction is an oversimplified view of what actu-
ally transpires within the microprocessor.

The MCS650X processors usually require more than one byte to
correctly interpret an instruction. The first byte of an instruction
is called the OP CODE and is coded to contain the basic operation
such as LDA (load accumulator with memory) and aiso the data neces-
sary to allow the microprocessor to interpret the address of the data
on which the operation will occur. 1In most cases, this address will
appear in memory right after the OP CODE byte. This allows the micro-
processor to use the program counter to access the address as well as
the OP CODE.

The following example shows how the program counter picks up

the instruction and the address of data located at address 5155.

Example 4.2: Accessing Data Address With P Counter Value

P Counter Location Contents
0100 LDA
0101 55
0102 51
0103 Next Instruction

The OP CODE appears in. Location Address 0100. The code for the 55
would appear next in Location Address 0101 and the 51 would appear

in Location Address 0102, and the OP CODE for the next instruction
appears in Location Address 0103. 1In this example, we see that the
program counter is used not only to pick up the operation code, LDA,
but is also used to pick up the address of the memory location from
which the LDA is going to obtain its data. 1In this case, the program
counter automatically is incremented three times to pick up the full
instruction with the microprocessor interpreting each of the indivi-

dual fetches as the appropriate data. In other words, the first

34

fetch is used to pick up the OP CODE, LDA, the second fetch is used to
pick up the low order address byte of the data and the third fetch is
used to pick up the high order address byte of the data. This is the
form in which many of the microprocessor instructions will appear as
it is the most simple form of addressing in the machine and allows
referencing to any memory location.

Assuming that the microprocessor has the ability to start the
program counter at a known instruction, it should be fairly obvious
that the program counter would then continue to advance from that
location up to the maximum memory location, roll over to the least
memory location and continue incrementing through the memory, fetch-
ing instructions and addresses as it went. This would give us an
interesting sequential program but one which lacked one tremendously
powerful concept. The program would have no ability to perform tests
or implement various options based on the results of those tests.

In the previous section, the concept of flags which are set as
a result of the microprocessor operations was developed.

To use these flags, the program should be able to test them
- and. then change the sequence of operations which are being performed
depending on the result of the test. The program counter is going
to continually put out an address, the microprocessor is going to
fetch the instruction stored at that address and perform operations
based on that instruction. In order to change a sequence of perform-
ed instructions by the microprocessor, the programmer must change the
value in the program counter. Therefore, test instructions are in-
corporated which may result in a change of program count sequence as
a result of performing one of the tests. The simplest way to change
program sequence is to substitute a new value into the program counter
location. In the MCS650X microprocessors the simplest way to change

the program count sequence is with a JMP instruction.

35

4.0.2 JMP--Jump to New Location

In this instruction, the data from the memory location

located in the program sequence after the OP CODE is loaded into the

low order byte of the program counter (PCL) and the data from the

next memory location after that is loaded into the high order byte

of the program counter (PCH).

The symbolic notation for jump is (PC + 1)-»PCL, (PC + 2)-PCH.
As stated earlier, the "()" means 'contents of'" a memory location.
PC indicates the contents of the program counter at the time the
OP CODE is fetched. Therefore (PC + 2)-PCH reads, '"the contents of
the program counter two locations beyond the OP CODE fetch location
are transferred to the new PC high order byte."

The addressing modes are Absolute and Absolute Indirect.

The JMP instruction affects no flags and only PCL and PCH.

The JMP instruction allows use of the program counter to access

the new program counter value as illustrated by the following example:

Example 4.3: Use of JMP Instruction (Absolute Addressing Mode)

Address Data Comments
0100 JMP Jump to Location 3625
0101 25 (New PCL byte)
0102 36 (New PCH byte)
3625 OP CODE Next Instruction

The program counter in the example starts out at location 100. The

microprocessor loads a jump instruction. The program counter auto-
matically increments to 101 where the microprocessor picks up and
temporarily stores the 25. The program counter automatically in-
crements to 102 where the microprocessor picks up the 36.

The 3625 is substituted into the program counter and is used
to address the next instruction. Therefore, the JMP instruction

contains within its address the new program counter location.

Although the jump allows the change of program sequence, it
does so without performing any test. So it is a JMP instruction that
is employed when it is desired to change the program counter no matter

what conditions have occurred.

36

Another JMP addressing Mode in the Indirect Addressing Mode.
Before this technique can be understood, the basis of indirect addressing
found in Chapter 6 must be reviewed. The JMP Indirect instruction is

detailed in Chapter 9, page 141.

4.1 BRANCHING

To allow for conditional program sequence change, there are a series

of branch instructions which test and perform optional changes of the pro-

gram counter based on the status of the flags. To perform a conditional
change of sequence, the microprocessor must interpret the instruction,
test the value of a flag, and then change the P counter if the value
agrees with the instruction. If the condition is not met, the program
counter continues to increment in its normal fashion. Figure 4.2

illustrates how a conditional test might be used.

LOAD VALUE;

'

ADD VALUE,

TEST

BRANCH TO NEW CARRY STATE
PROGRAM COUNTER IS CARRY
LOCATION SET (=1)

?

CONTINUE IN
PROGRAM SEQUENCE

Use of Conditional Test
FIGURE 4.2

37

In this example, it is seen that generation of a carry from the add

operation will allow an out-of-sequence branch to a new location.

4.1.1 Basic Concept of Relative Addressing

If one considers that the instruction JMP required three
bytes, one for OP CODE, one for new program counter low (PCL) and
one for new program counter high (PCH) it is seen that jump on carry
set would also require three bytes. Because most programs for con-
trol require many continual jumps or branches, the MCS650X uses
"relative'" addressing for all conditional test instructions. To
perform any branch, the program counter must be changed. In rela-
tive addressing, however, we add the value in the memory location
following the OP CODE to the program counter. This allows us to
specify a new program counter location with only two bytes, one
for the OP CODE and one for the value to be added.

To illustrate this, in the following example, the branch on
carry set (BCS) illustration is followed by a value of 50. If the
carry is set, the new program location would be 108 + 50 = 158; in

other words, it will take the branch.

Example 4.4: Illustration of '"Branch on Carry Set”

Address Data Comments

0100 LDA Load First Value

0101 ADL1 First Number, low byte

0102 ADH1 First Number, high byte

0103 ADC Add Second Value

0104 ADLZ Second Number, low byte

0105 ADH2 Second Number, high byte

0106 BCS Test for Carry Set. If
yes, branch to 0158

0107 +50

0108 STA If not, store results
of add

0109 ADL3 Result, low byte

010A ADH3 Result, high byte

0158 OP CODE New Instruction

38

VR

The 0108 represents the value of the program counter after
reading the offset value. The program counter automatically incre-
ments so it can reference the next memory location on the next cycle.
The add of the offset is a signed binary add as discussed in the arith-
metic section. A positive branch is indicated by a 0 in bit 7 of the
relative value, and a minus branch is in two's complement form and is
indicated by a 1 in bit 7. The inherent capabilities of this type of
notation system allow branch conditionally forward 127 bytes from
the next instruction and back 128 bytes from that instruction. All
branches in the MCS650X series are conditional relative branches
and all have the form shown above. The advantage of relative ad-

dressing is best shown in the following example:

Example 4.5: Sequencing Two Branch Instructions

Address Data Comments

0100 LDA Load First Value

0101 ADL1

0102 ADH1

0103 ADC Add Second Value

0104 ADL2

0105 ADH2

0106 BCS Test for Carry Set. If
yes,branch to 0158

0107 +50

0108 BMI Test for Minus Number.
If yes, branch to 0095

0109 -75

010A STA If not, Store

010B ADL3

010C ADH3

In this example, the previous single-branch example was modi-
fied to also test the resulting number to see if it is negative. In
sequencing two-branch instructions, this loop is 2 bytes shorter by

use of relative branches rather than 3 byte branches.

39

4.1.2 Branch Instructions

4.1.2.1 BMI - Branch on Result Minus

This instruction takes the conditional branch if the N bit

is set.

BMI does not affect any of the flags or any other part of
the machine other than the program counter and then only if the
N bit is on.

The mode of addressing for BMI is Relative.

4.1.2.2 BPL - Branch on Result Plus

This instruction is the complementary branch to branch on
result minus. It is a conditional branch which takes the branch when
the N bit is reset (0). BPL is used to test if the previous result
bit 7 was off (0) and branch on result minus is used to determine if

the previous result was minus or bit 7 was on (1).

The instruction affects no flags or other registers other

than the P counter and only affects the P counter when the N bit is
reset.

The addressing mode is Relative.

4.,1.2.3 BCC - Branch on Carry Clear

This instruction tests the state of the carry bit and takes
a conditional branch if the carry bit is reset.

It affects no flags or registers other than the program
counter and then only if the C flag is not on.

The addressing mode is Relative.

4.1.2.4 BCS ~ Branch on Carry Set

This instruction takes the conditional branch if the carry
flag is on.

BCS does not affect any of the flags or registers except for

the program counter and only then if the carry flag is on.

The addressing mode is Relative.

40

PR — r,wmmvﬂvﬂ
ki
)

4.1.2.5 BEQ - Branch on Result Zero

This instruction could also be called "Branch on Equal.'
It takes a conditional branch whenever the Z flag is on or the previ-
ous result is equal to Q.

BEQ does not affect any of the flags or registers other than
the program counter and only thén when the Z flag is set.

The addressing mode is Relative.

4.1.2.6 BNE - Branch on Result Not Zero

This instruction could also be called "Branch on Not Equal."
It tests the Z flag and takes the conditional branch if the Z flag is
not on, indicating that the previous result was not zero.

BNE does not affect any of the flags or registers other than
the program counter and only then if the Z flag is reset.

The addressing mode is Relative.

4.1.2.7 BVS - Branch on Overflow Set

This instruction tests the V flag and takes the conditional
branch if V is on.

BVS does not affect any flags or registers other than the
program counter and only when the overflow flag is set.

The addressing mode is Relative.

4.1.2.8 BVC - Branch on Overflow Clear

This instruction tests the status of the V flag and takes
the conditional branch if the flag is not set.

BVC does not affect any of the flags and registers other
than the program counter and only when the overflow flag is reset.

The addressing mode is Relative.

41

4.1.3 Branch Summary

To summarize, the MCS650X branches have two characteristics;
each of them tests the state of a flag and then either accesses the
next instruction in program sequence if the flag is not in the test
state or adds the offset value to the PC value at the OP CODE of the
next instruction (PC + 1) to allow the program to change operations.
This allows the programmer the full ability to make decisions. By
writing a sequence of branch instructions, any combination of condi-
tions of the microprocessor may be determined and new action taken
as a result of the tests.

There are four branch conditions in the MCS6501-5 micropro-
cessors. These are branch on carry flag, branch of overflow flag,
branch on N flag, and branch on zero flag. Each of the branches has

a branch on flag set (1) or branch on flag clear (0).

4.1.4 Solution to Branch Qut of Range

The branch relative instruction is unlike the jump instruc-
tion which can reach anywhere in memory, since branch relative is
limited to +127 or -128 from“the tutrent program counter location.
Although for many loops and many tests this is sufficient range,
longer programs will occasionally find it necessary to condition-
ally branch to a location that is significantly further away than
the branch command will directly reach. This is one of the uses
of complementary branches. If a program should find it necessary
to branch to a location which was significantly further away than

127, the following solution would facilitate the branch:

42

Example 4.6: Use of JMP to Branch Out of Range

Address Data Comments
100 LDA Load First Value
101 ADL1
102 ADH1
103 ADC . Add Second Value
104 ADL2
105 ADH2
106 BCC Branch, if no carry,
ahead 3 (to Point 2)
107 +3
108 JMP If carry set, jump to
‘location specified by
ADH4, ADL4
109 ADL4
% 10A ADH4
' Point 2 10B BML Check for Minus
: 10C Offset
10D STA
' 10E ADL3 If not minus, Store
Result
10F ADH3

In this example, carry set is being checked. In order to accomplish
this when the branch command would have to reach outside of the 128
range, the use of a complementary branch is required. Instead of
doing the 'branch on carry set" to the location, the "branch on
carry clear" is utilized (a complementary instruction) which branches
past the jump. If the complementary branch is not taken, the jump is
the "branch on carry set" function.

This technique of branching past a jump with the complementary
branch is a universal solution to the branch out of range problem.

Another solution is to find a like branch to the same location
that is within range and although this involves two branches to trans-
fer control, it does save memory locations.

By use of the relative branch less bytes of code are used than
if a conditional jump had been used. However, in large programs, the
branch out of range occurs more frequently. If the user can determine

that a branch will be out of range by inspection, he should use the

jump solution at the time he is writing the code. Otherwise, the

43

various assemblers indicate an out of range branch which will

require recoding to use the jump solution.

NOTE: The jump solution causes 5 bytes of code to be
substituted for 2 bytes of branch which in a symbolic
assembly may force other branches to go out of range.
This might cause several consecutive reassemblies but

this technique will solve the problem.

44

e R

3 R

1 e

H
S

S i

TS S B

4.2 TEST INSTRUCTIONS

Although most of the normal operations of the microprocessor involve
setting of flags, there are specific instructions which are designed only

to set flags for testing with the branch instruction.

4.2.1 CMP - Compare Memory and Accumulator

This instruction subtracts the contents of memory from the
contents of the accumulator.

Its symbolic notation is A - M.

The use of the CMP affects the following flags: Z flag is
set on an equal comparison, reset otherwise; the N flag is set or
reset by the result bit 7, the carry flag is set when the value in
memory is less than or equal to the accumulator, reset when it is
greater than the accumulator. The accumulator is not affected.

It is a "Group One" instruction and therefore has as its
addressing modes: Immediate; Zero Page; Zero Page,X; Absolute;
Absolute,X; Absolute,Y; (Indirect,X); (Indirect),Y.

The purpose of the compare instruction is to allow the user
to compare a value in memory to the accumulator without changing
the value of the accumulator. An example of where this becomes
extremely important is when one is receiving command instructions
from an external device. 1In this case, an input byte may have
several values. Each value can cause the program to perform a
different operation. The only rapid way to determine the value of
the input data is to compare the memory with a series of constants.
It is fairly simple to perform 'compare to constant' operations.
By use of the immediate addressing mode which will be developed
later, the following example compares an input to three values

and branches to different locations for each:

45

Example 4.7: Using the CMP instruction

Data Comments

LDA Load Value

ADL Address Low

ADH Address High

CMP Compare COUNT 1 to Accumulator

COUNT 1

BEQ If Equal, take the branch of OFFSET 1
OFFSET 1

CMP Compare COUNT 2 to Accumulator

COUNT 2

BEQ If Equal, take the branch of OFFSET 2
OFFSET 2

CMP Compare COUNT 3 to Accumulator
COUNT 3

BEQ If Equal, take the branch of OFFSET 3
OFFSET 3

Next Inst. Otherwise, go to Next Instruction

based on default value (COUNT 4).

This example shows how to use the default option. A value

was compared against 3 values and if none were equal a fourth, or
default value, is assumed. This is a useful technique for code
minimization.

The compare instruction is designed to allow a signed compari-
son between 2 values assuming one makes appropriate use of the Z and
N and C flags. 1In order to give maximum flexibility to the instruc-
tion, the instruction performs an effective subtract between the value
in memory and the value in the accumulator. The reason it is an ef-
fective subtract is that subtraction allows the user to compare equal
or less with one instruction.

The results of a compare are:

N c Z v
Accumulator < Memory Either Reset Reset Unchanged
Accumulator = Memory Reset Set Set Unchanged
Accumulator > Memory Either Set Reset Unchanged

So, to check if the accumulator is less than memory, the com-
pare is followed by a BCC; to check if equal to is followed by a BEQ;
and to check if greater it is followed by a BEQ followed by a BCS.
Greater than or equal is checked by BCS.

46

i
|

4.2.2 Bit Testing

The comparison instruction is designed for cases when byte or
multiple bytes of values are being compared; however, in the analysis
of logic functions, it is very often necessary to determine the con-
dition of an individual bit. One of the ways to accomplish this is
with the use of the AND instruction as previously discussed. 1In other
words, the user can load a value into the accumulator and AND it with
a field that contains a one bit only in the corresponding bit posi-
tion to the bit under test. By using a Branch on Zero Flag after
the AND, the status of the bit in memory is testable by this tech-
nique. However, the use of this technique involves destroying the
accumulator value with the AND instruction. Therefore, searching a
table looking for a single bit in a given position would necessitate
the reloading of the test value (mask) after each AND instruction.

In order to allow memory sampling without disturbing the accumulator,

the BIT instruction is used.

4.2.2.1 BIT - Test Bits in Memory with Accumulator

This instruction performs an AND between a memory location
and the accumulator but does not store the result of the AND into
the accumulator.

The symbolic notation is MA A.

The bit instruction affects the N flag with N being set to
the value of bit 7 of the memory being tested, the V flag with V
being set equal to bit 6 of the memory being tested and Z being set
by the result of the AND operation between the accumulator and the
memory if the result is Zero, Z is reset otherwise. It does not
affect the accumulator.

The addressing modes are Zero Page and Absolute.

The BIT instruction actually combines two instructions from
the PDP-11 and MC6800, that of TST (Test Memory) and (BIT Test).
This, like the compare test, allows the examination of an individual
bit without disturbing the value in the accumulator and is illustra-

ted by the example below:

47

Example 4.8: Sample Program Using the BIT Test

Data Comments

LDA Load MASK into Accumulator

MASK

BIT Test First Memory Value for Mask Bit
ADL1

ADH1

BNE Branch if Set

+50

BIT Test Second Memory Value for Mask Bit

ADL2
ADH2
BNE Branch if Set
-75
etc.

The value '"MASK'" loaded into the accumulator in this example
is actually a descriptive title gince, this byte is 8 bits, only one
of which is a 1. Using this byte in the AND operation inherent in the
BIT test will effectively mask out all bits in the memory location under
test except that bit position corresponding to the 1 residing in the
accumulator. In Example 4.8, the MASK byte is AND'ed to the data
found in location ADH1, ADL1 and if the bit under test is a 1, the
branch will be taken; if not a 1, the second memory location will be
tested with the same mask, etc.

In addition to the nondestructive feature of the bit which
allows us to isolate an individual bit by use of the branch equal or
branch no equal test, two modifications to the PDP-11 version of that
instruction have been made in the MCS650X microprocessor. These are
to allow a test of bit 7 and bit 6 of the field examined with the BIT
test. This feature is particularly useful in serving polled interrupts
and particularly in dealing with the MCS6520 (Peripheral Interface
Device). This device has an interrupt sense bit in bit 6 and bit 7
of the status words. It is a standard of the M6800 bus that whenever
possible, bit 7 reflects the interrupt status of an I/0 device. This
means that under normal circumstances, an analysis of the N flag
after a load or BIT instruction should indicate the status of the

bit 7 on the I/0 device being sampled. To facilitate this test using

48

T

the Bit dinstruction, bit 7 from the memory being tested is set
into the N flag irrespective of the value in the accumulator.

This is different from the bit instruction in the M6800 which re-
quires that bit 7 also be set on the accumulator to set N. The
advantage to the user is that if he decides to test bit 7 in the
memory, it is done directly by sampling the N bit with a Bit fol-
lowed by branch minus or branch plus instruction. This means that
I/0 sampling can be accomplished at any time during the operation
of instructions irrespective of the value preloaded in the accumu-
lator.

Another feature of the BIT test is the setting of bit 6 into
the V flag. As indicated previously, the V flag is normally reserved
for overflow into the sign position during an add and subtract in-
struction. In other words, the V flag is not disturbed by normal
instructions. When the BIT instruction is used, it is assumed that
the user is trying to examine the memory that he is testing with the
BIT instruction. In order to receive maximum value from a BIT in-
struction, bit 6 from the memory being tested is set into the V flag.
In the case of a normal memory operation, this just means that the
user should organize his memory such that both of his flags to be
tested are in either bit 6 or bit 7, in which case an appropriate
mask does not have to be loaded into the accumulator prior to imple-
menting the BIT instruction. In the case of the MCS6520, the BIT
instruction can be used for sampling interrupt, irrespective of the
mask. This allows the programmer to totally interrogate both bit 6 and
bit 7 of the MCS6520 without disturbing the accumulator. In the case
of the concurrent interrupts, i.e., bit 6 and bit 7 both on, the fact
that the V flag is automatically set by the BIT instruction allows
the user to postpone testing for the "6th bit on' until after he has
totally handled the interrupt "for bit 7 on" unless he performs an

arithmetic operation subsequent to the BIT operation.

49

CHAPTER 5

NON-INDEXING ADDRESSING TECHNIQUES

5.0 ADDRESSING TECHNIQUES

The addressing modes of the MCS6500 family can be grouped into two
major categories: Indexed and Non-Indexed Addressing. This section deals
with the Non-Indexed mode of addressing. Before detailing the various

modes available to the user, several concepts will be reviewed. The first

of these is the concept of memory field, address bus and data bus. Then a
brief introduction to two non-indexed addressing modes and timing will be

made with the intent of preparing the reader for a discussion of program

PR

sequence and the internal activity of the microprocessor during execution
of an instruction. This will be followed by a review of how one treats
memory and the assorted allocation of memory space to the elements of RAM,
ROM and I/0.
Subsequent to reading this section the user should have an understand-
ipg of the following fundamentals:
a) Memory Field
b) Address Bus
c) Data Bus
d) Cycle Timing
e) Program Sequence
f) Pipelining
With these tools in hand, the reader will be better prepared to readily

comprehend the detailed definitions of the non-indexed addressing modes.

As discussed in Section 1.1 the MCS650X microprocessor family is
organized around a l6-bit address function. All locations are accessed by
a 16-bit word, even though in the case of the MCS6503, the MCS6504, and
the MCS6505, only 11 or 12 bits are actually utilized.

50

Sixteen bits of address allow access to 65,536 memory locations, each
of which, in the MCS650X family, consists of 8 bits of data. Figure 5.1
displays the total memory field and incorporates the concept of address bus
and data bus. The memory address can be regarded as 256 pages (each page
defined by the high order byte) of 256 memory locations (bytes) per page.
It will be seen in the detailed discussion of addressing that the lowest
order page, page zero, has special significance in the minimization of pro-

gram code and execution time.

Much of the uniqueness of the MCS6500 product family has to do with
how the 16-bit address is created. The simplest way to create a 16-bit ad-
dress is for the programmer to indicate to the microprocessor the 16 bits
necessary to access a particular operand on which the microprocessor is ex-
pected to operate. An instruction consists of 1, 2, or 3 bytes. It always
takes 1 byte to specify the operation which is to be performed (OP CODE).
This OP CODE is then followed by 0, 1, or 2 bytes of address depending on
the specific operation involved. In the case of the simple instructions

such as transfer accumulator to X, operations are performed internally and,

therefore, no additional bytes are necessary. This instruction mode is

known as "Implied" in the sense that the instruction contains both the OP

CODE and the source and destination for the operation. This is the simpiest
form of addressing and applies to only a limited number of the instructions
available in the MCS6500 family. Another form of addressing, absolute ad-
dressing, is the case when the programmer specifies directly to the micro-
processor the address he wants the microprocessor to use in fetching the
memory value on which the operation will occur. This form is illustrated
by the example below.

Example 5.1: Using absolute addressing

Clock Cycle Address Bus Data Bus
1 0100 LDA, Absolute
2 0101 ADL
3 0102 ADH
4 ADH, ADL Data

In this example, memory location 0100 contains the OP CODE "LDA Abso-

lute." The next location, 0101, contains ADL which will be defined as the

51

"low order byte of the address," hence address low (ADL). Location 0102
contains ADH--the "high order byte of the address," hence address high (ADH).
At the next clock cycle, the 16 bits composed of ADH and ADL are put on the
address bus with the location defined by ADH, ADL containing the data to be

loaded into the accumulator. The effective address of the data is best

described in Figure 5.1, where the 16-bit address (ABOO through AB1l5) is
composed of ADH and ADL.

This is the normal form for an absolute memory address. The first
byte of the instruction which is picked up by the program counter is the
operation code. This is interpreted by the microprocessor as ''Load A -
Absolute." At the same time that this Load A is being interpreted by the

microprocessor, the microprocessor accesses the next memory location by

putting the program counter content, which was incremented as the OP CODE

was fetched, on the address bus.

5.1 .CONCEPTS OF PIPELINING AND PROGRAM SEQUENCE

The overlap of fetching the next memory location while interpreting

the current data from memory minimizes the operation time of a normal 2-

or 3-byte instruction and is referred to as pipelining. It is this feature

that allows a 2-byte instruction to only take 2 clock times and a 3-byte
instruction to be interpreted in 3 clock cycles.

In the MCS650X microprocessors, a clock cycle is defined as 1 complete
operation of each of the 2 phase clocks. Figure 5.2 is a sketch of the
: address and data bus timing as it relates to the system clocks.

The major point to be noted is that every clock cycle in the MCS650X
microprocessor is a memory cycle in which memory is either read or written.
Simultaneously with the read or write of memory, an internal operation of

the microprocessor is also occurring.

52

P11y AdOWB Y O] UOHIDII Y PUD SHLE SSIPPT

SN9 vIvdQ
A
4)
Oq Lq
" “ “\J “\H\ " id - 44 G669 | TTTT TTITT I T 1T 1T T 1T1T1
nw_______\l
per 10 - ad 18259 | T0OO0OO 0000 T 1T 1T 1T T 1T 1
" “ “ _ " “ " 00 - ad 08259 | 0000 0000 T 1T 1T 1T T T 171
Py bbb a4 - a4 60259 | TTTT TTITT 0T T T T TTT
___“___ 4
by b
i bl
B x
L R B
[T I A
TR 00 - 10 957 0000 0000 1 000 000 O
P 4 - 00 55z TTTT TTTTI 0O 000 000 O
\%_______L(
o N T A IO T O I
R 0 - 00 T T000 0000 0000 000 O
TR 00 - 00 0 0000 00O0O 0000 0 OO O
(s2349 9£659) 1aquny | xequny YAGHAN | 0T 2 € %S9 ¢ 8 6 OT IT 2T €T %T ST
Ou%m wmmm
‘ MIOM 15pap Mo I9p10 USIH
QTEId RHOWAR 3p0) S591ppY
4TgvVSSTAAqY TVWIDIAVXEH TVWIDEA SSTUAQY XVNIG

LR U R I N B
92 T I

ADDRESS LINE / \
DATA LINE /"\

Example of Timing - MCS650X Family
FIGURE 5.2

The following example will let us analyze this effect:

Example 5.2: Demonstration of '"Pipelining' effect

Clock
Cycles External Operation Address Data Internal Operation
: 1 Fetch OP CODE 100 ADC Increment P-counter
{ to 101
i
§
: 2 Fetch first-address 101 ADL Increment P-counter
half from memory to 102, Interpret
ADC instruction
3 Fetch second ad- 102 ADH Increment P-counter
dress half from to 103; Hold ADL
memory
4 Fetch operand from ADH, Data Load Data
memory ADL
5 Fetch next OP CODE 103 STA Increment P-counter
from memory to 104, Perform ADC
operation:
A+M+C
6 Fetch address from 104 ADL Increment P-counter
memory to 105, Result of
Add -+ accumulator,
Interpret STA Instruc-
tion
The above example shows the operation of an ADC, add with carry in-
struction, using absolute addressing. In the first cycle, the OP CODE is
fetched from memory addressed by the P-counter. To implement the

54

look-ahead or pipeline in cycle two, the fetch of ADL address low is done
simultaneously with the interpretation of the ADC absolute instruction.

By the end of cycle 2, the microprocessor knows that it should access the
next memory location for the address high as a result of interpretation of
the absolute addressing mode.

The address low (ADL) is stored in the ALU while the address high (ADE)
is being fetched in cycle 3.

On the fourth cycle, no internal operation is necessary while the
microprocessor is putting the calculated value onto the address bus. How-
ever, during this cycle, the operand is loaded into the microprocessor.

The 4 cycles have all been involved with memory access for the ADC,
absolute instruction. The first to fetch the instruction, the second to
fetch the address low, the third to fetch the address high and the fourth
to use the calculated address to fetch the operand. Because that completes
the memory operations for this instruction, during the fifth cycle the
microprocessor starts to fetch the next instruction from memcry while it
is completing the add operation from the first instruction. During the
sixth cycle, the microprocessor is interpreting the new instruction fetched
during cycle 5 while transferring the result of the add operation to the
accumulator. This means that even though it really takes 6 cycles for the
microprocessor to do the ADC instruction, the programmer only need concern
himself with the first 4 cycles as the next 2 are overlapped as shown.

All instructions take at least 2 cycles; one to fetch the OP CODE and
1 to interpret the OP CODE and, with few exceptions, the number of cycles
that an instruction takes is equal to the number of times that memory must
be addressed.

The details of how each addressing mode is overlapped are described
in the individual sections and for specific details of each cycle in vari-
ous operations, the user is referred to the Hardware Manual, Appendix A.

All instructions take at least 2 cycles; one to fetch the OP CODE and
1 to interpret the OP CODE and, with few exceptions, the number of cycles
that an instruction takes is equal to the number of times that memory must

be addressed.

55

5.2 MEMORY UTILIZATION

As indicated, the 16-bit address allows the user to access greater
than 65,000 separate locations. Most of the locations which will be ac-
cessed in the course of a control problem will be in program or P-counter
referenced locations. A typical program will probably range from 1000 to
8000 bytes and will normally be implemented in fixed ROM or non-volatile
alterable ROM.

A second type of memory will be the read-write memory in which the
user keeps data such as working values, input and output data. Depending
on the type of problem being addressed, this RAM usually ranges from 32
bytes to 8000 bytes, although most applications will be under 2000 bytes
of RAM.

It would seem there is significant address space not used in most
applications. To get the maximum benefit of the addressing space, 2 con-
cepts are implemented in the MCS6500 family. These are the use of data
addressing as I/0 control and distributed address connections for minimum
control lines. The latter concept utilizes the address bus, which is
basic to and therefore pervasive in any microcomputer system, as a con-
trolling network whenever possible. An example of this is the use of the

address bus in selecting devices to interface with the microprocessor.

5.2.1 T1I/0 Control

The advantages of accessing I/0 as memory are 1) the use of
distributed address space allows for simple I/0 control lines and 2)
all of the power of the instructions is applied to I/0 operatioms.
This has the advantage of minimizing I/0 hardware and allows the pro-
grammer to be innovative in the application of I/0 devices in solving
his problem.

All MCS6500 product family I/0 devices contain 8-bit registers
which are addressed by the microprocessor as though they were a mem-—
ory byte. In the simplest case, the 8-bit register being read con-
tains a 1 and 0's pattern which corresponds to the TTL voltage level

applied to 8 input pins to the I/0 device.

56

If the register was a flip-flop register driving 8 output pins
with TTL levels, the storing of 8 bits of data with a STA instruction
into that I/0 register would, in effect, be programming the flip-flop
to a specific desired state. Thus, one can use the instructions with

the I/0 just as any other memory location.

5.2.2 Memory Allocation

Figure 5.1 displays the relationship between memory, address
bus and data bus while referencing the address values in hexadecimal
notation. The previous section has dealt with utilization of memory
address space for not only ROM and RAM but for I/0 as well. At this
time, the concept of allocation of the memory field &6f Figure 5.1 to
the elements of ROM, RAM and I/0 will be considered. The allocation
below satisfies most applications requirements and represents an

optimum allocation for minimization of programming code and speed.

Hexadecimal Address Suggested Allocation of Memory
0000 - 3FFF RAM
4000 - 7FFF I/0
8000 - FFFF ROM

It should be noted that the 3 memory blocks address defini-
tions which, while not mandatory or required for proper system opera-—
tion, do represent a logical assignment of space. The justification
for this particular allocation will be presented in Section 9.12.

In the meantime, the reader should retain the concept of the various
memory bibcks allocated to RAM, I/0 and ROM as they are useful in the
following discussion. With an understanding of pipelining and the
concept of memory allocation, the next subject must be: in what manner

can data be accessed from the memory field?

5.3 IMPLIED ADDRESSING

Implied addressing is a single-byte instruction.

The byte contains the OP CODE which stipulates an operation intermal

to the microprocessor. Instructions utilizing this type of addressing in-

clude operations which clear and set bits in the P (Processor Status) reg-

ister, incrementing and decrementing internal registers and transferring

/

57

contents of one internal register to another intermnal register. Operations
of this form take 2 clock cycles to execute. The first cycle is the OP
CODE fetch and duriﬁg this fetch, the program counter increments.

In the second cycle, the incremented P-counter is now the address of
the next byte of the instruction. However, since the OP CODE totzlly de-
fines the operation, the second memory fetch is worthless and any P-counter
increment in the second cycle is suppressed. During the second cycle, the
OP CODE is decoded with reéognition of its single byte operationm.

In the third cycle, the microprocessor repeats the same address to
fetch the next OP CODE. This is the second time the memory address is
fetched; once as the second byte of the first instruction and second, as
the correct OP CODE address for the next instruction.

A symbolic representation of a 2-cycle instruction is given below.

"PC" means "Program Counter."

Example 5.3: TIllustration of implied addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC+1 OP CODE Fetch OP CODE
2 PC+1 PC +1 New Ignore New
OP CODE OP CODE;
Decode 0Ol1d
OP CODE
3 PC+1 PC + 2 New Fetch New
OP CODE OP CODE;
Execute 01d
OP CODE

Instructions which use implied addressing and require only 2 cycles
include CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED, SEI,
TAX, TAY, TSX, TXA, TXS, TYA.

Instructions utilizing implied addressing and which require more than
2 cycles are stack operations which include BRK, PHA, PHP, PLA, PLP, RTI,
RTS.

‘

58

5.4 IMMEDIATE ADDRESSING

Immediate addressing is a 2-byte instruction.

The first byte contains the OP CODE specifying the operation and ad-
dress mode. The second byte contains a constant value known to the pro-
grammer. It is often necessary to compare load and/or test against cer-
tain known values. Rather than requiring the user to define and load con-
stants into some auxiliary RAM, the microprocessor allows the user to

specify values which are known to him by the immediate addressing mode.

’

Example 5.4: TIllustration of immediate addressing

Clock '
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 Data Fetch Data,
Decode OP CODE
3 PC + 2 PC + 3 New Fetch New
OP CODE OP CODE,
Execute 01d
OP CODE

Immediate addressing is the simplest form of constant manipulation

available to the programmer. It requires a minimum execution time in the

sense that 1 cycle is used in loading the OP CODE and as this CODE is be-
ing interpreted, the constant is being fetched.
Instructions utilizing immediate addressing are ADC, AND, CMP, CPX,

CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

5.5 ABSOLUTE ADDRESSING

Absolute addressing is a 3-byte instruction.
The first byte contains the OP CODE for specifying the operation and

address mode. The second byte contains the low order byte of the effective

address (that address which contains the data), while the third byte con-
tains the high order byte of the effective address. Thus the programmer
specifies the full 16-bit address and, since any memory location can be
specified, this is considered the most normal mode for addressing. Other

modes may be considered special subsets of this 16-bit addressing mode.

59

o

Example 5.5: Tllustration of absolute addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL,
) Decode OP CODE
3 PC + 2 PC + 3 ADH Fetch ADH,
Hold ADL
4 ADH, ADL PC + 3 Data Fetch Data
5 PC + 3 PC + 4 New Fetch New
OP CODE OP CODE,
Execute 01ld
OP CODE

The basic operation of the microprocessor in an Absolute address mode
is to read the OP CODE in the first cycle while finishing the previous
operation. In the second cycle, the microprocessor automatically reads
the first byte after the OP CODE (in this case the address low) while
interpreting the operation code. At the end of this cycle, the microproces-
sor knows that it needs a second byte for program sequence; therefore, 1
more byte will be accessed using the program counter while temporarily
storing the address low. This occurs during the third cycle. 1In the
fourth cycle, the operation is one of taking the address low and address
high that were read during cycles 2 and 3 to address the operand. For ex-
ample, in load A, the effective address is used to fetch from memory the
data which is going to be loaded in the accumulator. In the case of stor-
ing, data is transferred from the accumulator to the addressed memory.

As was illustrated in the review of pipelining, depending on the in-
struction, it is possible for the microprocessor to start the next instruc-
tion fetch cycle after the effective address operation and independent of
how many more internal cycles it may take to complete the OP CODE. The
only exception to this is the case of "Jump Absolute" in which the address
low and address high that are fetched in cycle 2 and cycle 3 are used as
the 16-bit address for the next OP CODE. The jump absolute therefore only
requires 3 cycles. 1In all other cases, absolute addressing takes 4 cycles,
3 to fetch the full instruction including the effective address, the fourth

to perform the memory transfer called for in the instruction.

60

Absolute addressing always takes 3 bytes of program memory; 1 for the
OP CODE, 1 for the address low, 1 for the address high, plus 1 byte of data
memory (such as RAM) that is pointed to by the effective address.

Instructions which have absolute addressing capability include ADC,
AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR,
ORA, ROL, SEC, STA, STX, STY.

5.6 ZERO PAGE ADDRESSING

Zero page addressing is a 2-byte instruction. The first byte con-
tains the OP CODE, while the second byte contains the effective address in
page zero of memory.

As seen in absolute addressing, the ability to address anywhere in
the 65K memory space costs 3 bytes of program space, plus a minimum of 4
cycles to perform address operations. In order to allow the user a shorten-
ing of ﬁoth memory space and execution time, particularly when dealing with
working registers and intermediate values, the MCS650X microprocessor family
has a special addressing mode that assumes automatically the effective ad-
dress high (ADH) to be in the lowest page of memory. In order to under-
stand the page concept one should think of each of the various memory ad-
dresses as comprising a consecutive block of 256 locations which have an
independent high order address associated with that block. Each block is
called a page. Other than for zero page and for calculating indexed ad-
dresses which will be covered in the following sections, the microprocesscr
pays little attention to the page concebt.

The microprocessor assumes that the high order byte of the effective
address for instructions which contain OP CODES which indicate the zero
page addressing option is all 0's (ADH = 00, hexadecimal). This allows the

following sequence to occur.

61

Example 5.6: TIllustration of zero page addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC + 1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL, De-
code OP CODE
00, ADL PC + 2 Data Fetch Data
4 PC + 2 PC + 3 New Fetch New
OP CODE OP CODE, Exe-
cute 01d
OP CODE

On the first cycle, the microprocessor puts out the program counter,
reads the OP CODE and increments the program counter. On the second cycle,
the microprocessor puts out the program counter, reads the effective ad-
dress low, interprets the OP CODE and increments the program counter. So
far, the operations are identical to those described in the absolute ad-
dressing mode. However, by the end of the second cycle, the microprocessor
has decoded the fact that this is a zero page operation and on the next
cycle, it outputs address 00, as the effective address high, along with
the address low that it just fetched and then either reads or writes mem-—
ory at that location, depending on the OP CODE.

The advantage of zero page addressing is that it takes only 2 bytes,
1 for the OP CODE and 1 for the effective address low; and only 3 cycles,
1 to fetch the OP CODE, 1 to fetch the address low, and 1 to fetch the
data, as opposed to absolute addressing which takes 3 bytes and 4 cycles.

In order to make most effective utilization of this concept, the user
should organize his memory so that he is keeping his most frequently
accessed RAM values in the memory locations between O and 255. If one
organizes the zero page of memory properly, including moving data into
these locations for longer loops, significant shortening of program code
and execution time can be obtained.

The concept of zero page is so important that the various cross
assemblers have error notations which indicate when improper use of this
space is made. If one's coding is organized according to the guidelines
shown in Section 5.2.2, one normally will find working stérage located in
values from 0 to 255. This is an important aspect of the discipline known

as "memory management."

62

Once the pattern of coding for the MCS650X, which considers working
storage or registers in the zero page, becomes a habit, one finds that in

most control applications, all of the working registers will take advantage

of this programming and the associated time reduction without any special

effort on the user's part.

Instructions which allow zero page addressing include ADC, AND, ASL,
BIT, CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, ROL, SBC, STA,
STX, STY.

5.7 RELATIVE ADDRESSING

As discussed in Section 4.1, all of the branch operations in the micro-
processor use the concept of relative addressing. In example 5.7, it is
seen that for the case of the straightforward branch in which the branch
is not taken, on the first program count cycle, the microprocessor puts
out program counter as an address, fetches the OP CODE and finishes the
previous operation. During the second cycle, the program counter is put
on the address bus, picking up the relative offset. Internally, the micro-
processor is decoding the OP CODE to determine that it is a branch instruc-

tion.

Example 5.7: 1Illustration of relative addressing branch not taken

External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous Oper-
OP CODE ation, Increment Pro-
gram Counter to 101
2 0101 Offset Fetch Interpret Instruc-
Offset tion, Increment Pro-

gram Counter to 102

3 0162 Next Fetch Next Check Flags, Increment
OP CODE OP CODE Program Counter to 0103

This is only the second cycle of an internal operation; therefore, the
microprocessor may be storing a computed value from the previous instruc-
tion at the same time it is finishing interpreting the present instruction.
It is while doing the store operation that the flags in the machine get

physically set; therefore, the microprocessor allows the program counter

63

to go 1 more cycle to allow itself time to determine the wvalue of the
flags. For example, if the previous instruction is ADC, the flags will
not get set until the cycle in which the offset value is fetched.

During the third cycle, the microprocessor puts the incremented PC
onto the address bus, fetches the next OFP CODE and checks the flag in
order to decide whether or mnot the program counter value that is going out
is correct and that the branch is not going to be taken. Therefore, an
additional type of pipeline, in this case fetching the next OP CODE in a
branch sequence, accomplishes the implementation of a branch relative with
no branch being taken. This requires 2 cycles. One cycle fetches the
branch OP CODE and 1 cycle fetches the next operation, the relative offset.
The second fetch is effectively ignored by virtue of the fact that the
branch is not taken, so the program counter location has already been incre-
mented and the next OP CODE has already been fetched by the microprocessor.

If in the above example it is assumed that the flag is set such that
the branch is taken and the relative offset is +50, the microprocessor
takes a third cycle to perform the branch operation.

Example 5.8: Illustration cf relative addressing branch positive
taken, no crossing of page boundaries

External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous Oper-
OP CODE ation, Increment Pro-
gram Counter to 101
2 0101 +50 Fetch Interpret Imstruction,
Offset Increment Program
Counter to 102
3 0102 Next Fetch Next Check Flags, Add Rela-
OP CODE OP CODE tive to PCL, Increment
Program Counter to 103
4 0152 Next Fetch Next Transfer Results to
0P CODE 0P CODE PCL, Increment Program

Counter to 153

In Example 5.8, on the first cycle, a branch OP CODE is fetched while
the previous operation is finished. On the second cycle, the offset is
fetched while the branch instruction is being interpreted. On the third

cycle, the microprocessor uses the adder to add the program count low to

64

the offset and also checks the flags. Because the program count for the
next OP CODE in program sequence is already in the program counter and is
being incremented, the microprocessor can allow the incrementation process
to continue. If the value for the next instruction is indicated because
the flag is not set, then the microprocessor loads the next OP CODE and
the add of the program counter low to the offset value, is ignored as it
was in the previous example.

If during the third cycle the flag is found to be the correct value
for a branch, the OP CODE that has been fetched during this cycle is
ignored. The microprocessor then updates the program counter with the
results from the add operation, puts that value out on the address bus

.which fetches a new OP CODE.

This gives the effect of a 3-cycle branch. Thus it can be seen that
in a case where the branch is not taken, the microprocessor has an effec-
tive 2-cycle branch, i.e., 2 memory references. In the case when the
branch is taken, the branch takes 3 cycles as long as the relative value
does not force an update to the program counter high. In other words, 3
cycles are required if the page boundary is not crossed (recall the dis-
cussion of the "page" concept in Section 5.0). If in the above example
the branch was back from address 0102 fifty locations, as opposed to +50
locations, the following result would occur:

Example 5.9: TIllustration of relative addressing--branch negative
taken, crossing of page boundary

External Internal
Cycle Address Bus Data Bus Operations Operations
1 0100 OP CODE Fetch Finish Previous
OP CODE Instruction
2 0101 =50 Fetch Interpret Instruc-
Offset tion
3 0102 Next Fetch Next Check Flags
OP CODE OP CODE Add Relative to
PCL
4 01B2 Discarded Fetch Dis- Store Adder in PCL
Data carded Data and Subtract 1
from PCH
5 00B2 Next Fetch Next Put OQut New PCH
OP CODE OP CODE and Increment PC
to 00B3

65

In this example, the adder is used to perform the arithmetic opera-
tion, and the adder can do only the 8 bits of addition at a time. The
minus branch crosses back over the page boundary, therefore an intermediate
result is developed of 01B2 which has no intrinsic value because of the
borrow which now has to be reflected into the program counter high. Since
this example displays both a negative offset and the crossing of a page
boundary, additional explanation is in order.

The value to which the offset will be added is 0102 (hexadecimal).

The offset itself is -50 (hexadecimal).

Subtract low order byte:
02 0000 0010

HEX
50 0101 0000

HEX

Take two's complement of 50:

50 = 1010 1111
Add 1 1
-50 = 1011 0600

Add 02 0000 0010
-50 1011 0000

Carry = 1§7 1011 0010
B 2

Up to this point, the PCH has not been affected; therefore the value
on the address bus is 01B2.

The Carry = 0, indicating a borrow.

Subtract high order byte:
01 0000 0001

HEX
00 0000 0000

HEX

Take two's complement of 00:

00HEX = 1111 1111
Add Carry = 0
—00HEX = 1111 1111

Add 01 0000 0001
-00 1111 1111

Carry = /1/ 0000 0000
0 0

The presence of the Carry indicates no borrow, hence a
positive result.

66

At this time, after the arithmetic operation on both bytes of the P.C.,
the address bus will be: 00B2.

The microprocessor does put out on the address line the intermediate
results (01B2), thereby reading a location within the page it was currently
working in, the value of which is ignored. It then subtracts 1, or if this
was a branch forward to the next page, the microprocessor would add 1 to
program counter high in this fourth cycle. In the fifth cycle, the micro-
processor will recognize that it has the correct new program counter high
and program counter low and is able to start a new instruction operation,
thereby giving an effective length to the branch operation when a page
crossing is encountered of 4 cycles.

It should be noted that all of the above operations are automatic;
once a branch instruction is encountered, the following relative value is
calculated and put into the memory location after the branch instruction.

We can see, however, that it is possible to control the execution
time of a branch. This is important for counting or estimating execution

times of operations. For counting purposes, the following applies:
If a branch is normally not taken, assume 2 cycles for the branch.

If the branch is normally taken but it is not across the page boundary,
assume 3 cycles for the branch.

If the branch is over a page boundary, then assume 4 cycles for the

branch.

In loops which are repeated many times, one can assume some type of
statistical factor between 3 and 2, or 4 and 2, depending on the proba-
bility of taking the branch versus not taking it.

In order to indicate to the programmer when the 4-cycle branch is
taken as opposed to the 3-cycle branch, the various assemblers flag all
branch operations which cross page boundaries with a warning message and
if timing is important, the user can perhaps relocate his program in such
a way that the branch does not cross page boundary.

It should be re-emphasized that other than for timing purposes, page
boundary crossings can be ignored by the programmer.

To summarize, the relative addressing always takes 2 bytes, 1 for the

OP CODE and 1 for the offset.

67

[" The execution time is as follows:

Branch with Not Taking the Branch -- 2 cycles

Branch When the Branch Is Taken But

No Page Crossing 3 cycles

Branch When the Branch Is Taken with

a Page Crossing T 4 cycles

Only branch instructions have relative addressing. The branch instruc-
tions are: BCC, BEQ, BIT, BMI, BNE, BPL, BSC, BVC, BVS. For a more detailed
explanation of relative offset calculations the reader is referred to

Appendix H.

P

e

68

CHAPTER 6

INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

6.0 GENERAL CONCEPT OF INDEXING

In previous sections techniques for using the program counter to
address memory locations after the operation code to develop the address
for a particular operation have been discussed. Other than cases when
the programmer directly changes the program memory, it can be considered
that the addressing modes discussed up until now are fixed or directed
addresses and each has the relative merits discussed undér each individual
section. However, a more powerful concept of addressing is that of
computed addressing. There are basically two types of computed address-

ing; indexed addressing and indirect addressing.

Indexed addressing uses an address which is computed by means of

modifying the address data accessed by the program counter with an

internal register called an index register.

Indirect addressing uses a computed and stored address which is

accessed by an indirect pointer in the programming sequence.

In the MCS650X product family, both of these modes are used and

combinations of them are available.

Before undertaking the more difficult concepts of indirect address-

ing the concept of indexed instructions will be developed.

69

In order to move five bytes of memory from an address contained
in FIELD 1 to another set of addresses, starting with FIELD 2, the

following program could be written:

Example 6.1: Moving Five Bytes of Data With Straight Line Code
LABEL INSTRUCTION OPERAND COMMENTS
START LDA FIELD 1 ::::::::> Move First Value
STA FIELD 2
LDA FIELD 1 + 1 ::::::::> Move Second Value
STA FIELD 2 + 1
LDA FIELD 1 + 2 ::::::::> Move Third Value
STA FIELD 2 + 2
LDA FIELD 1 + 3 ::::::::> Move Fourth Value
STA FIELD 2 + 3
LDA FIELD 1 + 4 ::::::::> Move Fifth Value
STA FIELD 2 + 4

In this example, data is fetched from the first memory location in
FIELD 1, as addressed by the next one or two bytes in program memory,
stored temporarily in A and then written into the first memory location
in FIELD 2, also addressed by the next one or two bytes in program memory.
This sequence is repeated, with only the memory addresses changing, until
all the data has been transferred. This type of programming is called
straight line programming because each repetitive operation is a sepa-
rate group of instructions listed in sequence or straight line form in
program memory. This is necessary even though the instruction OP CODES
are identical for each memory transfer operation because the specific
memory addresses are different and require a different code to be writ-

ten into the program memory for each transfer.

It takes a total of 10 instructions to accomplish the move when it

is implemented this way. It should be noted that it is not indicated
whether or not FIELD 1 and FIELD 2 are Zero Page addresses or Absolute

addresses.

If they were Zero Page addresses, the total number of bytes con-
sumed in solving the problem would be two bytes for each instruction
and thereby requiring 20 bytes of memory; if both FIELD 1 and FIELD 2
were Absolute memory locations, each instruction would take 3 bytes

and this program would require 30 bytes of program storage.

70

TP

The Zero Page program would execute in three cycles per in-
struction or 30 cycles and the Absolute location version would execute

in four cycles per instruction or 40 cycles.

A new concept has been introduced in this example, that of symbolic

notation rather than actual locations for the instructions.

The form that this short program is written in uses symbolic
addressing in which the address of the beginning of the program has
a name START. Symbolic representations of addresses such as '"START"
are referred to as labels. The addresses in the two address field
used in this example have also been given names, the first address of the
first field is called FIELD 1; the first address of the second field is
called FIELD 2. Each additional address in the fields has been given
a number which is referenced to the first number; for example, the
third byte in FIELD 1 is FIEID 1 + 2. All of these concepts are im-
Plemented to simplify the ease of writing a program because the user does
not have to worry about the locations of FIELD 1 and FIELD 2 until after
analyzing the memory needs of the whole program. Symbolic notation also

results in a more readable program.

Translation from symbolic form instructions and addresses into
actual numerical OP CODES and addresses is done by a program called a
symbolic assembler. Several different versions of symbolic assemblers
and cross assemblers are available for the MCS650X product family.
Symbolic notation will be used throughout the remainder of this text
because of its ease of understanding and because individual byte
addresses are unnecessary although for an explanation of a particular

mode, the byte representation may be used.

In this example, only direct addresses were used. A program to

reduce the number of bytes required to move the five values follows:

71

> Move FIELD 1 to FIELD 2

Add 1 to FIELD 1 Address

I

Add 1 to FIELD 2 Address

I

No Is FIELD 2 Address =End of FIELD?
2

i Yes

Done

Flow Chart — Moving Five Bytes of Data with Loop
FIGURE 6.1

Example 6.2 is a program listing that corresponds to the flow chart:

Example 6.2: Moving Five Bytes of Data With Loop

LABEL INSTRUCTION OPERAND COMMENTS
INITIALIZE CLC
START LDA FIELD 1 :I
OTHER STA FIELD 2 Move Loop
LDA START + 1
ADC #1
STA START + 1
LDA OTHER + 1 Modify Move Values
ADC ##1
STA OTHER + 1 ——
CMP #FIELD 2 + 5——— Check for End
BNE START

NOTE: For ease of reading, labels have been written in the form
"FIELD 1". This is incorrect format for use in the various
symbolic assemblers. "FIELD 1" must be written "FIELD1"

when coding for assembler formats.

72

Assuming Zero Page, direct addressing, Example 6.3 is written
below with one byte per line just as it would appear in program memory.

This will provide a more detailed description of Example 6.2.

Example 6.3: Coded Detail of Moving Fields With Loop

LABEL CODE NAMES COMMENTS
CLC Clear Carry

START LDA (FIELD 1)-»A
FIELD 1

OTHER STA A—p (FIELD 2)
FIELD 2
LDA From Address—@» A
START + 1
ADC A+ 1-9A
1
STA A—®» From Address
START + 1
LDA To Address—p» A
OTHER + 1
ADC A+ 1A
1
STA A + To Address
OTHER + 1
CMP A - ORIGINAL FIELD 2 + 5
ORIGINAL FIELD 2 + 5
BNE If not, loop to START
START

In this example, the program is modifying the addresses of one
load instruction and one store instruction rather than writing ten in-
structions to move five bytes of data and fifty instructions to move
twenty-five bytes of data.

The address of the Load A instruction is located in memory at
START + 1 and the Store instruction at OTHER + 1. In order to perform
this operation, the address must be modified once for each move opera-
tion until all of the data is moved.

Checking for the end of the moves is accomplished by checking the
results of the address modification to determine if the address exceeds

the end of the second field. When it does, the routine is complete.

73

If a hundred values were to be moved this program would remain 20
bytes long, whereas the solution to the first problem would require

a program of 200 instructiocons.

The type of coding used in this example is called a "loop".
Although the program loop in this case requires as many bytes as the
original program, more values could be moved without increasing the
length of the program. The greater the number of repetitive operations
that are to be accomplished, the greater the advantage of the loop

type program over straight line programming.

Important Note: The execution time required to move the five

values is significantly longer using the loop program than the straight
line program. In the straight line program, if a Zero Page operation
is assumed, the time to perform the total move is 30 cycles. Using

the loop program, the execution time to move five values is five times
through the entire loop, which takes 25 cycles. Therefore the time

to move five values is 125 cycles.

While loops have an advantage in coding space efficiency, all loops

cost time. If the programmer has a problem that is extremely time

dependent, taking the loop out and going to straight line programming,
even though it is extremely inefficient in terms of its utilization of

memory, will often solve the timing problem.

The straight line programming technique becomes very useful in some
control applications. However, it is not recommended as a standard
technique but should only be used when there are extreme timing problems.
Using loops will normally save a significant number of bytes but they

will always take more time.

The technique used in the loop program example has two major

problems:

1. The necessity to modify program memory. This should be
avoided to take advantage of the ability to put programs
into read only memory with the corresponding savings in

hardware costs.
74

2. Although this is the simplist form of computed addressing,
less program bytes would be necessary than the more sophis-

ticated form of program shown in the following flow chart:

CLEAR COUNTER

Y

r—ﬂ FETCH FIELD 1 4+ COUNTER

Y

STORE FIELD 2 + COUNTER

!

ADD 1 TO COUNTER

it i b L e R L e

TR

Not Equal

COUNTER=5?

FINISH

f Moving Five Bytes of Data with Counter
FIGURE 6.2

In the MCS650X microprocessor family, the counter is called an index
register. It is an 8-bit register which is loaded from memory and has the
ability to have one added to it by an increment instruction (INX,INY) and
can be compared directly to memory using the compare index instruction
(CPX,CPY). Example 6.4 shows the program listing for the flow chart of
Figure 6.2.

75

Example 6.4: Moving Five Bytes of Data With Index Registers

BYTES LABEL INSTRUCTION OPERAND COMMENTS
2 LDX 0 Load Index With Zero
3 LOOP LDA FIELD 1,X
3 STA FIELD 2,X
1 INX Increment Count
2 CPX 5 Compare For End
2 BNE LOOP
13 for Absolute

In this example, index register X is used as an index and as a
counter. It is initialized to zero. Data is fetched from memory at
the address "FIELD 1 plus the value of register X", and placed in A.
The data is then written from A to memory at the address "FIELD 2
plus the value of register X". Register X is incremented by one and
compared with 5 in order to determine if all five data values have
been transferred. If not the program loops back to LOOP. In this
example, "FIELD 1" is called the "Base Address" which is the address

to which indexing is referenced.

This only takes 11 or 13 bytes, depending on whether or not the
field is in Page Zero or in absolute memory. It still takes 13 or 15
cycles per byte moved, again confirming that loops are excellent for

coding space but not for execution time.

It can be seen from the example that there are basically two
criterias for an index register; one, that it be a register which is
easily incremented, compared, loaded, and stored, and two, that in a
single instruction one can specify both the Base Address and the

value of X.

In the MCS650X microprocessor, the way that the indexed in-
struction is symbolically represented is OP CODE, Address, X. This
indicates to the symbolic assembler that an instruction OP CODE
should be picked, which should specify either the absolute address
modified by the content of index X register or Zero Page address

modified by the content of index X register.

76

In performing these operations, the microprocessor fetches the
instruction OP CODE as previously defined, and fetches the address,
modifies the address from the memory by adding the index register to

it prior to loading or storing the value of memory.

The index register is a counter. As discussed previously, one

of the advantages of the flags in the microprocessor is that a value

can be modified and its results tested. Assume the last example is
modified so that instead of moving the first value in FIELD 1 to the

g first value in FIELD 2, the last value in FIELD 1 is moved first to the
F last value in FIELD 2, then the next to the last value, etc. and finally
é‘ the first value. With the index register preloaded with 5 and using

a decrement instruction the contents of the index register would

end at zero after the 5 fields of data were transferred. The zero
indicates that the number of times through the loop is correct and

the loop exited by use of the zero test. The program listing for

this modification is shown in Example 6.5:

Example 6.5: Moving Five Bytes of Data By Decrementing the Index

Register
3 LABEL INSTRUCTION OPERAND
i T LDX 5
LOOF LDA FIELD 1-1,X
STA FIELD 2-1,X
DEX
BNE LOOP

In this example, Index Register X is again used as an Address

Counter but it will count backwards. It is initialized to five for

this example. Data is fetched from memory at the address "FIELD 1 plus

the value of Register X" and placed in A. The data is then written
from A to memory at the address "FIELD 2 plus the value of Register X."

Register X is decremented by one. If the decremented value is not zero,

as determined by a Branch on Zero instruction, the program loops back

to LOOP

The loop has been decreased to 9 or 11 bytes and the execution

time per byte has been decreased from 15 cycles to 13 cycles per value

77

S W SR

index instruction.

system block diagram as in Figure 6.3

which shows the advantage of using the flag setting of the decrement

The two index registers, X and Y, can now be added to the

L DATA BUS]
3 $ @ g 1 8 & 3
INDEX INDEX ALU R oL - .
Y X
ey
| INTERNAL ADL |
7
[INTERNAL ADH]
ABH
A4
MEMORY

FIGURE 6.3

Partial Block Diagram of MCS650X Including Index Registers

Each of the index registers is 8 bits long and is loaded and stored
from memory, using techniques similar to the accumulator. Because of this

ability, they can be considered as auxiliary channels to flow data

| through the microprocessor. However, their primary use is in being

decremented (DEX,DEY).
78

added to addresses fetched from memory to form a modified effective
address, as described previously. Both index registers have the ability

to be compared to memory (CPX,CPY) and to be incremented (INX,INY) and

Because of OP CODE limitations, X and Y have slightly different
uses. X is a little more flexible because it has Zero Page operations
which Y does not have with exception of LDX and STX. Aside from which

modes they modify, the registers are autonomous, independent and of

equal value.

6.1 ABSOLUTE INDEXED

Absolute indexed address is absolute addressing with an index
register added to the absolute address. The sequences that occur for

indexed absolute addressing without page crossing are as follows:

Example 6.6: Absolute Indexed; With No Page Crossing

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Increment PC to 101,
Finish Previous
Instruction
2 0101 BAL Fetch BAL Increment PC to 102,
Interpret In-
struction
3 0102 BAH Fetch BAH Increment PC to 103,

Calculate BAL + X

4 BAH,BAL+X OPERAND Put Out
Effective
Address
5 103 Next OP Fetch Next Finish Operations
CODE OP CODE

BAL and BAH refer to the low and high order bytes of the base address,
respectively. While the index X was used in Example 6.7, the index Y

is equally applicable.

If a page is not crossed, the results of the address low + X does
not cause a carry. The processor is able to pipeline the addition of the
8-bit index register to the lower byte of the base address (BAL) and not
suffer any time degradation for absolute indexed addressing over straight
absolute addressing. In other words, while BAH is being fetched, the
add of X to BAL occurs. Both addressing modes require four cycles with

79

the only difference being that X or Y must be set at a known value

and the OP CODE must indicate an index X or Y.
The second possibility is that when the index register is added
to the address low of the base address that the resultant address is

in the next page. This is illustrated in Example 6.7.

Example 6.7: Absolute Indexed; With Page Crossing

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous
Operation Increment
PC to 101
2 0101 BAL Fetch BAL Interpret Instruction

Increment PC to 102

3 0102 BAH Fetch BAH Add BAL + Index

Increment PC to 103

4 BAH,BAL Data Fetch Data Add BAH + Carry
+X (Ignore) (Data is
ignored)
5 BAH+1, Data Fetch Data
BATA+HX
6 0103 Next OP Fetch Next Finish Operation
CODE OP CODE

The most substantial difference between the page crossing operation
and no page crossing is that during the fourth cycle, the address
high and the calculated address low is put out, thereby incorrectly
addressing the same page as the base address. This operation is carried
on in parallel with the adding of the carry to the address high.
During the fourth cycle the address high plus the carry from the adder
is put on the address bus, moving the operation to the next page. Thus
there are two effects from the page crossing. 1. The addressing of
a false address. This is similar to what happens in a branch relative
during a page crossing. 2. The operation takes one additional cycle
while the new address high is calculated. As with the branch relative

80

this page crossing occurs independently of programmer action and
there is no penalty in memory for having crossed the page boundary.
It is possible for the programmer to predict a page crossing by
knowing the value of the base address and the maximum offset value
in the index register. If timing is of concern, the base address

can be adjusted so that the address field is always in one page.

As with absolute addressing, absolute indexed is the most
general form of indexing. It is possible to do absolute indexed
modified by X, and absolute indexed modified by Y. Instructions
which allow absolute indexed by X are ADC, AND, ASL, CMP, DEC,
EOR, INC. LDA, LDY, LSR, ORA, ROL, SBC, and STA.

The instructions which allow indexed absolute by Y are ADC,

AND, CMP, EOR, LDA, LDX, ORA, SBC, and STA.

6.2 ZERO PAGE INDEXED

As with non-computed addressing, there is a memory use advantage
to the short-cut of Zero Page addressing. Except in LDX and STX
instructions which can be modified by Y, Zero Page is only available
modified by X. If the base address plus X exceeds the value that
can be stored in a single byte, no carry is generated, therefore
there is no page crossing phenomena. A wrap-around will occur within
Page Zero. The following example illustrates the internal operations

of Zero Page indexing.

81

Example 6.8: Illustration of Zero Page Indexing

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous

Operation, 0101 - PC

2 0101 BAL Fetch Base Interpret Instruct-
Address Low ion, 0102 - PC
(BAL)
3 00, BAL Data Fetch Add: BAL + X
(Dis- Discarded
carded Data
4 00,BAL Data Fetch Data
+X
5 0102 Next OP Fetch Next OP Finish Operation
CODE CODE

As can be seen from the example, there is no time savings of Zero
Page indexing over absolute indexing without page crossing. In the case
of the indexed absolute during cycle 3 the address high is being
fetched at the same time as the addition of the index to address low.

In the case of the Zero Page, there is no opportunity for this type of
overlap; therefore, indexed Zero Page instructions take one cycle longer

than non-indexed instructions.

In both Zero Page indexed and absolute indexed with a page crossing,
there are incorrect addresses calculated. Provisions have been made to
make certain that only a READ operation occurs during this time. Memory
modifying operations such as STORE, SHIFT, ROTATE, etc. have all been
delayed until the correct address is available, thereby prohibiting any
possibility of writing data in an incorrect location and destroying

the previous data in that location.

As has been previously stated, there is no carry out of the Zero
Page operation. 00 is forced into address high under all circumstances
in cycle 4. For example, if the index register containing a value
of 10 is to be added to base address containing a value of F7, the

following operation would occur:

82

Example 6.9: Demonstrating the Wrap—-Around

Cycle Address Bus Internal Operation
3 00F7 F7 + 10
4 0007

This indicated the wrap-around effect that occurs with Zero Page
indexing with page crossing. This wrap—around does not increase the

cycle time over that shown in the previous example.

Only index X is allowed as a modifier in Zero Page. Instructions
which have this feature include ADC, AND, ASL, CMP, DEC, EOR, INC, LDA,
LDY, LSR, ORA, ROL, SBC, STA and STY. Note that index Y is allowed in
the instructions LDX and STX.

6.3 INDIRECT ADDRESSING

In solving a certain class of problems, it is sometimes necessary
to have an address which is a truly computed value, not just a base
address with some type of offset, but a value which is calculated or
sometimes obtained as a group of addresses. In order to implement
this type of indexing or addressing, the use of indirect addressing

has been introduced.

In the MCS650X family indirect operations have a special form.
The basic form of the indirect addressing is that of an instruction
consisting of an OP CODE followed by a Zero Page address. The micro-
processor obtains the effective address by picking up from the Zero
Page address the effective address of the operation. The indirect
addressing operation is much the same as absolute addressing except
indirect addressing uses a Zero Page addressing operation to in-
directly access the effective address. 1In the case of absolute
addressing the value in the program counter is used as the address to
pick up the effective address low, one is added to the program counter
which is used to pick up the effective address high. Ih the case
of indirect addressing, the next value after the OP CODE, as addressed

with the program counter, is used as a pointer to address the effective

83

address low in the zero page. The pointer is then incremented by
one with the effective address high fetched from the next memory
location. The next cycle places the effective address high (ADH) and
effective address low (ADL) on the address bus to fetch the data.

An illustration of this is shown in Figure 6.4.

0100 | OP CODE

0101 | IAL
00,
IAL ADL
00, TAL+1 ADH
[apL,
ADH DATA

Indirect Addressing—Pictorial Drawing
FIGURE 6.4

The address following the instruction is really the address of an
address, or "indirect" address. The indirect address is represented

by IAL in the figure.

) A more detailed definition of indirect addressing is included in

the appendix.

84

Although the MCS650X microprocessor family has indirect operations,
it has no simple indirect addressing such as described above. There
are two modes of indirect addressing in the MCS650X microprocessor

family: 1.) indexed indirect and 2.) indirect indexed.

6.4 INDEXED INDIRECT ADDRESSING

The major use of indexed indirect is in picking up data from a
table or list of addresses to perform an operation. Examples where
indexed indirect is applicable is in polling I/0 devices or performing
string or multiple string operations. Indexed indirect addressing
uses the index register X. Instead of performing thé indirect as
shown in the Figure 6.4, the index register X is added to the Zero
Page address, thereby allowing varying address for the indirect
pointer. The operation and timing of the indexed indirect addressing

is shown in Figure 6.5.

0100 OP CODE

0101 | TAL
00,IAL+0 | ADL 1 |
ADHL,
aon1’ | paTa 1
ADH 1
00, TAL+2 b
0, TAL ADL 2 ADE2,
00, IAL+X ~*— > ADL2 | DATA 2
ADH 2 y
ADL 3 N
00, TAL+4
ADH3,
ADL3 DATA 3
N ADH 3 ,

Indexed Indirect Addressing
FIGURE 6.5

85

Example 6.10: Tllustration of Indexed Indirect Addressing

<At

Address Data External Internal
Cycle Bus Bus Operation Operation i
1 0100 OP CODE Fetch OP CODE Finish Previous &
Operation, 0101 - PC [
2 0101 BAL Fetch BAL Interpret In- f
struction, 0102 - PC %
3 00,BAL DATA (Dis- Fetch Discard- Add BAL + X
carded) ed DATA :
4 00,BAL ADL Fetch ADL Add 1 to BAL + X
+ X 3
5 00,BAL ADH Fetch ADH Hold ADL
+X+1
6 ADH,ADL DATA Fetch DATA
7 0102 Next OP Fetch Next OP Finish Operation

CODE 0103 » PC

One of the advantages of this type of indexing is that a 16-bit
address can be fetched with only two bytes of memory, the byte that
contains the OP CODE and the byte that contains the indirect pointer.
It does require, however, that there be a table of addresses kept in
a read/write memory which is more expensive than having it in read
only memory. Therefore, this approach is normally reserved for appli-
cations where use of indexed indirect results in significant coding
or throughput improVement or wﬁere the address being fetched is a

variable computed address.

It is also obvious from the example that the user pays a minor time
penalty for this form of addressing in that indexed indirect always takes
six cycles tc fetch a single operand which is 25% more than an absolute
address and 507 more than a Zero Page reference to an operand. As in
the Zero Page indexed, the operation in cycles three and four are
located in Zero Page and there is no ability to carry over into the next
page. It is possible to develop a value of the index plus the base
address where the result exceeded 255, in this case the address put out

is a wrap-around to the low part of the Page Zero.

86

Instructions which allow the use of indexed indirect are ADC, AND,

CMP, EOR, LDA, ORA, SBC, STA.

6.5 INDIRECT INDEXED ADDRESSING

The indirect indexed instruction combines a feature of indirect
addressing and a capability of indexing. The usefulness of this in-
struction is primarily for those operations in which one of several
values could be used as part of a subroutine. By having an indirect
pointer to the base operation and by using the index register Y in
the normal counter type form, one can have the advantages of an
address that points anywhere in memory, combined with the advantages

of the counter offset capability of the index register.

Figure 6.6 illustrates the indirect indexed concept in flow form
while Example 6.11 indicates the internal operation of a non-page roll-

over of an indirect index.

0100 OP CODE

0101 TAL
00, IAL BAL
00,TAL+1 BAH
BAH,
4 BAL DATA 1
BAH,BAL+Y g gfé 1 DATA 2
(ADH, ADL)
k BAH, DATA 3
BAL+2

Indirect Indexed Addressing
FIGURE 6.6

87

Example 6.11: Indirect Indexed Addressing (No Page Crossing)

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous

Operation, 0101 - PC

2 0101 TAL Fetch IAL Interpret In-
‘ struction, 0102 - PC

3 00,IAL BAL Fetch BAL Add 1 to IAL ‘
4 00, IAL BAH Fetch BAH Add BAL + Y ?

+ 1 §

%

5 BAH, BAL DATA Fetch Operand

+Y
6 0102 Next OP Fetch Next OP Finish Operation

CODE CODE 0103 -+ PC

The indirect index still requires two bytes of program storage, one
for the OP CODE, one for the indirect pointer. Once beyond the indirect,
the indexing of the indirect memory location is just the same as though
it was an absolute indexed operation in the sense.that if there is no
page crossing, pipelining occurs in the adding of the index register Y to
address low while fetching address high, and therefore, the non-page
crossing solution is one cycle shorter than the indexed indirect. In
Example 6.12 it is seen that the page crossing problem that occurs with
absolute indexed page crossing also occurs with indirect indexed address-—

ing.

88

Example 6.12: Indirect Indexed Addressing (With Page Crossing)

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Load OP CODE Finish Previous

Operation, 0101 - PC

2 0101 IAL Fetch IAL Interpret In-
struction, 0102 - PC
3 00,IAL BAL Fetch BAL Add 1 to IAL
4 00,IAL BAH Fetch BAH Add BAL to Y
+ 1
5 BAH,BAL DATA (Dis- Fetch DATA Add 1 to BAH
+Y carded) (Discarded)
6 BAH + 1 DATA Fetch Data
BAL + Y
7 0102 Next QP Fetch Next OP Finish This
CODE CODE Operation,
0103 - PC

When there is a page crossing, the base address high and base
address low plus Y are pointing to an incorrect location within a
referenced page. However, it should be noted that the programmer has
control of this incorrect reference in the sense that it is always
pointing to the page of the base address. In one more cycle the correct
address is referenced. As was true in the case of absolute indexed,
the data at the incorrect address is only read. STA and the various
read, modify, write memory commands all operate assuming that there
will be a page crossing, take the extra cycle time to perform the add
and carry and only perform a write on the sixth cycle rather than
taking advantage of the five cycle short-—cut which is available to
read operations. This added cycle guarantees that a memory location

will never be written into with incorrect data.

Instructions which allow the use of indexed indirect are ADC, AND,

CMP, EOR, LDA, ORA, SBC, STA.

89

In the following two examples can be seen a comparison between

the use of absolute modified by Y and indirect indexed addressing.

In these examples the same function is performed. Values from
two memory locations are added and the result stored in a third
memory location, assuming that there are several values to be added.
The first example deals with known field locations. The second
example, such as might be traditionally used in subroutines, deals
with field locations that vary between routines. A two byte pointer
for each routine using the subroutine is stored in Page Zero.

The number of values to be added for each routine is also stored.

Example 6.13: Absolute Indexed Add - Sample Program

#Bytes Cycles Label Instruction Comments
2 2 START LDY #COUNT -1 Set Y = End of FIELD
3 4 LOoP LDA FIELD 1,Y Load Location 1
3 4 ADC FIELD 2,Y Add Location 2
3 4 STA FIELD 3,Y Store in Location 3
1 2 DEY
2 3 BPL LOOP Check for Less Than Zero
14 19 Time for 10 Bytes = 171 Cycles

Example 6.14: Indirect Indexed Add - Sample Program

#Bytes Cycles Label Instruction Comments
2 2 START LDY #COUNT -1 Set Y = End of FIELD
2 5 LOOP LDA (PNT1), Y Load FIELD 1 Value
2 5 ADC (PNT2), Y ‘ Add FIELD 2 Value
2 5 STA (PNT3), Y Store FIELD 3 Value
1 2 DEY
2 3 BPL LOOP
11 22 Time for 10 Bytes = 201 Cycles

+ 6 bytes for pointers

90

The "count" term in these examples represents the number of sets
of values to be added and stored. Loading the index register with
COUNT-1 will allow a fall through the BPL instruction when computation

on all set of values has been completed.

There is a definite saving in program storage using indirect be-
cause it only requires two bytes for each indirect pointer, the OP CODE
plus the pointer of the Page Zero location, whereas in the case of the
absolute, it takes three bytes, the QP CODE, address low and address
high.

It is noted that there are six bytes of Page Zero memory used for
pointers, two bytes for each pointer. The number of memory locations
allocated to the problem are 17 for the indirect and 14 for the problem
where the values are known. The execution time is longer in the ip-
direct loop. Even though the increase in time for a single pass
through the loop is only three cycles, if many values are to be trans-
ferred, it adds up. It is important to note that loops require time
for setup but it is only used once. But in the loop itself, additional
time is multiplied by the number of times the program goes through
the loop; therefore, on problems where execution time is important,

the time reduction effort should be placed on the loop.

Even though the loop time is longer and the actual memory expended
is greater for the indexed indirect add, it has the advantage of not
requiring determination of the locations of FIELD 1, FIELD.2, and FIELD

3 at the time the program was written as is necessary with absolute.

An attempt to define problems to take advantage of this shorter
memory and execution time by defining fields should be investigated
first. However, in almost every program, the same operation must be
performed several times. In those cases, it is sometimes more useful
to define a subroutine and set the values that the subroutine will
operate on as fields in memory. Pointers to these fields are placed
in the Zero Page of memory and then the indexed indirect operation
is used to perform the function. This is the primary use of the

indexed indirect operation.

91

6.6 INDIRECT ABSOLUTE

In the case of all of the indirect operations previously described,
the indirect reference was always to a Page Zero location from which
is picked up the effective address low and effective address high.
There is an exception in the MCS650X microprocessor family for the jump
instruction in which absolute indirect jumps are allowed. The use of
the absolute indirect jump is best explained in the discussion on

interrupts where the addressing mode and its capabilities are explained.

6.7 APPLICATION OF INDEXES

As has been developed in many of the previous examples, an index
register has primary values as a modifier and as a counter. As a
modifier to a base address operation, it allows the accessing of
contiguous groups of data by simple modification of the index. This
is the primary application of indexes and it is for this purpose they
were created. By virtue of the fact that all of the MCS650X instructions
have the base address in the instruction, or in the case of the in-
direct, in the pointer, a single index can usually be used to service
an entire loop, because each of the many instructions in the loop
normally are referring to the same relative value in each of the lists.
An example is adding the third byte of a number to its corresponding
third byte of another number, then storing the result in the memory
location representing the third byte of the result; therefore, the
index register only needs to contain three to accomplish all three of

these offset functions.

Some other microprocessors use internal registers as indirect point-
ers. The single register requirement is a significant advantage of
the type of indexing done in the MCS650X. Even though the MCS650X has
two indexes, more often than not, a single index will solve many of
the problems because of the fact that the data is normally organized

in corresponding fields.

The second feature of the MCS650X type of indexing is that, if used
properly, the index register also contains the count of the operations

to be performed.

92

The examples have tried to show how to take advantage of that
feature. There are two approaches to counting; forward counting and
reverse counting. In forward counting, the data in memory can be
organized such that the index register starts at zero and is added
to on each successive operation. The disadvantage of this type of
approach is that the compare index instruction, as used in Example
6.13 must be inserted into the loop in order to determine that the

correct number of operations is completed.

The reverse counting approach has been used in the latter
examples. The data must be organized for reverse counting operation.
The first value to be operated on is at the end of the FIELD, the
next value is one memory location in front of that, etc. The ad-
vantage of this type of operation is that it takes advantage of the
combined decrement and test capability of the processor. There are
two ways to use the test. First there is the case where the actual
number of operations to be performed is loaded into the index register
such as was done in Example 6.13. 1In this case, the index contains
the correct count but if added to the base directly, would be point-
ing to one value beyond the FIELD because the base address contains
the first byte. Therefore, when using the actual count in the index
register, one always references to the base address minus one. This
is easily accomplished as shown in the examples. The cross assembler
accepts symbolic references in the form of base address minus one,

and the microprocessor very carefully performs the operation shown.

The advantage of putting the actual count in the register is
that the branch if not equal instruction (BNE) can be used because

the value of the register goes to zero on the last operation.

The second alternative is to load the counter with the count
minus one as done in Example 6.14. In this case, the actual value of
the base address is used in the offset. However, the branch back
to loop now is a branch plus, remembering that the value in the index

register will not go to minus (all ones) until we decrement past zero.

93

Values of count minus one through zero will all take the branch.

It is only when attempting to reference less than the base address

that the loop will be completed.

Either approach gives minimum coding and only requires that
the user develop a philosophy of always organizing his data with
the first value at the end. In many cases, the operations such as
MOVE can be performed even if the data is organized the other way.
Experienced programmers find that this reverse counting form is
actually more convenient to use and always results in minimum loop

time and space.

Although for most applications, the 8-bit index register allows
simple count in offset operations, there are a few operations where]
the 256 count that is available in the 8-bit register is not enough
to perform the indexed operatioms. There are two solutions to this
problem. First, to code the program with twe sets of bases, that f
is duplicating the coding for the loop with two different address
highs, each one 2 page apart. The second, more useful solution, is
to go to indirect operations because the indirect pointer can be
modified to allow an infinite indexed operation. An example of the

move done under 256 and over 256 is shown in the following example:

Example: 6.16: Move N Bytes (N<256)

Number of Program Instruction OPERAND
Cycles Label Mnemagnics FIELD Comments
2 LDX #BLOCK Setup 2 Cycles
4 LOOP . LDA FROM-1,X
4 STA TO -1,X LOOP Time:
2 DEX 13 cycles
3 BNE LOOP

Memory Required:
11 Bytes

94

Example 6.17:

Move N Bytes (N>256)

Number of Program Instruction operand
Cycles Label Mnemonics FIELD
2 MOVE LDA #FROML
3 STA FRPOINT
2 LDA #FROMH
3 STA FRPOINT + 1
2 LDA #TOL
3 STA TOPOINT
2 LDA #TOH
3 STA TOPOINT + 1
2 LDX ##BLLOCKS
2 LDY 0
5 LooP LDA (FRPOINT),Y
6 STA (TOPOINT),Y
2 DEY
3 BNE LOOP
5 SPECIAL INC FRPOINT + 1
5 INC TOPOINT + 1
2 DEX
2 BMI ouT
3 BNE LOOP
2 LDY #fCOUNT
3 BNE LOOP
ouT -—= -

Memory required:
40 bytes

95

Comments

Move from address to
an indirect pointer

Move A to address
to an index pointer

Setup # of 256 blocks
to move

Loop Time: 16 cycles/
byte. Move 256 bytes

Increase high
pointer

Check for last move

Setup last move

CHAPTER 7

INDEX REGISTER INSTRUCTIONS

The index registers can be treated as auxiliary-general purpose reg-
isters, having the added ability of being incremented and decremented

because of the normal operations in which they are required to perform.

7.0 LDX— LOAD INDEX REGISTER X FROM MEMORY

Load the index register X from memory.

The symbolic notation is M - X.

LDX does not affect the C or V flags; sets Z if the value
loaded was zero, otherwise resets it; sets N if the value loaded in
bit 7 is a 1; otherwise N is reset, and affects only the X register.
The addressing modes for LDX are Immediate; Absolute; Zero Page;

Absolute Indexed by Y; and Zero Page Indexed by Y.

7.1 LDY — LOAD INDEX REGISTER Y FROM MEMORY

Load the index register Y from memory.

The symbolic notation is M -+ Y.

LDY does not affect the C or V flags, sets the N flag if the
value loaded in bit 7 is a 1, otherwise resets N, sets Z flag if the
loaded value is zero otherwise resets Z and only affects the Y reg-~
ister. The addressing modes for load Y are Immediate; Absolute;

Zero Page; Zero Indexed by X, Absolute Indexed by X.

96

7.2 STX — STORE INDEX REGISTER X IN MEMORY

Transfers value of X register to addressed memory location.

The symbolic notation is X > M,

No flags or registers in the microprocessor are affected by
the store operation. The addressing modes for STX are Absolute,

Zero Page, and Zero Page Indexed by Y.

7.3 STY — STORE INDEX REGISTER Y IN MEMORY

Transfer the value of the Y register to the addressed memory
location. The symbolic notation is Y - M. STY does not affect any
flags or registers in the microprocessor. The addressing modes for

STY are Absolute; Zero Page; and Zero Page Indexed by X.

7.4 INX - INCREMENT INDEX REGISTER X BY ONE

Increment X adds 1 to the current value of the X register. This
is an 8-bit increment which does not affect the carry operation, there-
fore, if the value of X before the increment was FF, the resulting
value is 00. The symbolic notation is X + 1 » X. 1INX does not affect
the carry or overflow flags; it sets the N flag if the result of the
increment has a one in bit 7, otherwise resets N; sets the Z flag if
the result of the increment is 0, otherwise it resets the Z flag.

INX does not affect any other register other than the X register. INX

is a single byte instruction and the only addressing mode is Implied.

7.5 INY — INCREMENT INDEX REGISTER Y BY ONE

Increment Y increments or adds one to the current value in the
Y register, storing the result in the Y register. As in the case of
INX the primary application is to step thru a set of values using the
Y register. The symbolic notation is Y + 1 - Y. The INY does not
affect the carry or overflow flags, sets the N flag if the result of

the increment has a one in bit 7, otherwise resets N, sets Z if

97

as a result of the increment the Y register is zero otherwise resets

the Z flag. Increment Y is a single byte instruction and the only

addressing mode is Implied.

7.6 DEX — DECREMENT INDEX REGISTER X BY ONE

This instruction subtracts one from the current value of the
index register X and stores the result in the index register X.

The symbolic notation is X - 1 » X.

DEX does not affect the carry or overflow flag, it sets the
N flag if it has bit 7 on as a result of the decrement, otherwise
it resets the N flag; sets the Z flag if X is a 0 as a result of
the decrement, otherwise it resets the Z flag.

DEX is a single byte instruction, the addressing mode is

Implied.

7.7 DEY — DECREMENT INDEX REGISTER Y BY ONE

This instruction subtracts one from the current value in the in-
dex register Y and stores the result into the index register Y. The
result does not affect or consider carry so that the value in
the index register Y is decremented to 0 and then through 0 to FF.

Symbolic notation is Y - 1 - Y.

Decrement Y does not affect the carry or overflow flags; if the
Y register contains bit 7 on as a result of the decrement the N flag
is set, otherwise the N flag is reset. If the Y register is 0 as a
result of the decrement, the Z flag is set;otherwise the Z flag is
reset. This instruction only affects the index register Y.

DEY is a single byte instruction and the addressing mode is
Implied.

NOTE: Decrement of the index registers is the most convenient
method of using the index registers as a counter, in that the decre-
ment involves setting the value N on as a result of having passed

through 0 and sets Z on when the results of the decrement are O.

98

7.8 CPX — COMPARE INDEX REGISTER X TO MEMORY

This instruction subtracts the value of the addressed memory
location from the content of index register X using the adder but
does not store the result; therefore, its only use is to set the
N, Z and C flags to allow for comparison between the index register
X and the value in memory.

The symbolic notation is X - M.

The CPX instruction does not affect any register in the machine;
it also does not affect the overflow flag. It causes the carry to be
set on if the absolute value of the index fegister X is equal to or
greater than the data from memory. If the value of the memory is
greater than the content of the index register X, carry is reset.

If the results of the subtraction contain a bit 7, then the N flag
is set, if not, it is reset. If the value in memory is equal to the
value in index register X, the Z flag is set, otherwise it is reset.

The addressing modes for CPX are Immediate, Absolute and Zero

Page.

7.9 CPY — COMPARE INDEX REGISTER Y TO MEMORY

This instruction performs a two's complement subtraction between
the index register Y and the specified memory location. The results
of the subtraction are not stored anywhere. The instruction is strict-
ly used to set the flags.

The symbolic notation for CPY is Y - M.

CPY affects no registers in the microprocessor and also does not
affect the overflow flag. If the value in the index register Y is
equal to or greater than the value in the memory, the carry flag will
be set, otherwise it will be cleared. If the results of the subtract-
tion contain bit 7 on the N bit will be set, otherwise it will be
cleared. If the value in the index register Y and the value in the
memory are equal, the zero flag will be set, otherwise it will be

cleared.

The addressing modes for CPY are Immediate, Absolute and Zero Page.

99

7.10 TRANSFERS BETWEEN THE INDEX REGISTERS AND ACCUMULATOR

There are four instructions which allow the accumulator and in-
dex registers to be interchanged. They are TXA, TAX which transfers
the contents of the index register X to the accumulator A and back,
and TYA, TAY which transfers the contents of the index register Y to
the accumulator A and back. The usefulness of this will be discussed

after the instructions.

711 TAX —~ TRANSFER ACCUMULATOR TO INDEX X

This instruction takes the value from accumulator A and trans-
fers or loads it into the index register X without disturbing the
content of the accumulator A.

The symbolic notation for this is A » X.

TAX only affects the index register X, does not affect the
carry or overflow flags. The N flag is set if the resultant value in
the index register X has bit 7 on, otherwise N is reset. The Z bit
is set if the content of the register X is 0 as a result of the opera-
tion, otherwise it is reset. TAX is a single byte instruction and

its addressing mode is Implied.

7.12 TXA — TRANSFER INDEX X TO ACCUMULATOR

This instruction moves the value that is in the index register
X to the accumulator A without disturbing the content of the index
register X.

The symbolic notation is X - A.

TXA does not affect any register other than the accumula-
tor and does not affect the carry or overflow flag. If the result in
A has bit 7 on, then the N flag is set, otherwise it is reset. If the
resultant value in the accumulator is 0, then the Z flag is set, other-
wise it is reset.

The addressing mode is Implied, it is a single byte instruction.

100

7.13 TAY — TRANSFER ACCUMULATOR TO INDEX Y

This instruction moves the value of the accumulator into index
register Y without affecting the accumulator.

The symbolic notation is A -+ Y.

TAY instruction only affects the Y register and does not affect

either the carry or overflow flags. If the index register Y has bit 7 on,
then N is set, otherwise it is reset. If the content of the index register
Y equals 0 as a result of the operation, Z is set on, otherwise it is reset

TAY is a single byte instruction and the addressing mode is Implied.

7.14 TYA — TRANSFER INDEX Y TO ACCUMULATOR

This instruction moves the value that is in the index register Y
to accumulator A without disturbing the content of the register Y.

The symbolic notation is Y =+ A.

TYA does not affect any other register other than the accumula-
tor and does not affect the carry or overflow flag. If the result in
the accumulator A has bit 7 on, the N flag is set, otherwise it is
reset. If the resultant value in the accumulator A is 0, then the Z
flag is set, otherwise it is reset.

The addressing mode is Implied and it is a single byte instruc-

tion.

Some of the applications of the transfer instructions between
accumulator A and index registers X, Y are those when the user wishes
to use the index register to access memory locations where there are
multiple byte values between the addresses. In this application a
count is loaded into the index register, the index register is trans-
ferred to the accumulator, a value such as 5, 7, 10, etc. is added

immediate to the accumulator and results stored back into the index

101

register using the TAX or TAY instruction. The consequence of this
type of operation is that it allows the microprocessor to address
non-consecutive locations in memory. Another application is where
the internal transfer instructions allow the index registers to hold
intermediate values for the accumulator which allows rapid transfer
to and from the accumulator to help solve high speed data shuffling

problems.

715 SUMMARY OF INDEX REGISTER APPLICATIONS AND MANIPULATIONS

Primary use of index register X and Y is as offset and counters
for data manipulation in which the index register is used to compute
an address based on the value of the index register plus base address
specified by the user, either in a fixed instruction format or in a
variable pointer type format. In order to operate as both an offset
and counter, index registers may be incremented or decremented by one
or compared to values from memory. There are limitations on the
applications of each of the index registers which have to do with
formats which are unique to certain instruction addressing modes.
Because of the ability of the index registers to be loaded, changed
and stored, they are also useful as general purpose registers. They
can be used as interim storages for moves between memory locations
or for moves between memory and the accumulator.

One of the optimum uses of the indexing concept is the case
when the index register is being used both as an offset and a counter.
This type of operation uses the ability of- the microprocessor to
perform a decrement function on the index registers and set flags.
Therefore, a single decrement instruction not only changes the value

in the counter but can also perform a test on the count value.

102

CHAPTER 8

STACK PROCESSING

8.0 INTRODUCTION TO STACK AND TO PUSH DOWN STACK CONCEPT

In all of the discussions on addressing, it has been assumed that
either the exact location or at least a relation to an exact location of a
memory address was known.

Although this is true in most of the programming for control applica-
tions, there are certain types of programming and applications which re-
quire that the basic program not be working with known memory locations but
only with a known order for accessing memory. This type of programming is
called re-entrant coding and is often used in servicing interrupts.

To implement this type of addressing, the microprocessor maintains a
separate address generator which is used by the program to access memory.
This address generator uses a push down stack concept.

Discussions of push down stacks are usually best stated considering
that if one were given 3 cards, an ace, a king and a ten and were told that
the order of cards was important and asked to lay them down on the table in
the order in which they were given, ace first, the king on top of it and
finally the ten, and then if they were retrieved, 1 card at a time, the ten
is retrieved first even though it was put on last, the king is retrieved
second, the ace retrieved last, even though it was put on first.

The only commands needed to implement this operation are '"put next
card on stack" and "pull next card from the stack." The stack could be
processing clubs and then go to diamonds and back to clubs. However, we
know that while we are processing clubs, we will always find ten first,

king second, etc.

103

The hardware implementation of the ordered card stack which just
described is a 16-bit counter, into which the address of a memory location
is stored. This counter is called a "Stack Pointer." Every time data is
to be pushed onto the stack, the stack pointer is put out on the address
bus, data is written into the memory addressed by the stack pointer, and
the stack pointer is decremented by 1 as may be seen in Example 8.1.

Every time data is pulled from the stack, the stack pointer is incremented
by 1. The stack pointer is put out on the address bus, and data is read
from the memory location addressed by the stack pointer. This implementa-
tion using the stack pointer gives the effect of a push down stack which

is program independent addressing.

Example 8.1: Basic stack map for 3-deep JMP to subroutine sequence

Stack Address Data
O1FF PCH 1
01FE PCL 1
01FD PCH 2
01FC PCL 2
01FB PCH 3
01FA PCL 3
01F9

In the above example, the stack pointer starts out at 01FF. The stack
pointer is used to store the first state of the program counter by storing
the content of program counter high at O1FF and the content of program
counter low at O1lFE. The stack pointer would now be pointed at OlFD. The
second time the store program count is performed, the program counter high
number is stored on the stack at 01FD and the program counter low is stored
at OlFC. The stack pointer would now be pointing at 01FB. The same pro-
cedure is used to store the third program counter.

When data is taken from the stack, the PCL 3 will come first and the
PCH 3 will come second just by adding 1 to the stack pointer before each
memory read. The example above contains the program count for 3 successive
jump and store operations where the jump transfers control to a subroutine
and stores the value of the program counter onto the stack in order to re-
member to which address the program should return after completion of the

subroutine.

104

Following is an example of a program that would create the Example 8.1

stack operation.

Example 8.2: Basic stack operation

Program
Counter Label Instruction
PC1l Jump to Subroutine 1 —
SUBL -
PC2 Jump to Subroutine 2 —
SUB2 -]
PC3 Jump to Subroutine 3
SUB3

105

This is known as subroutine nesting and is often encountered in solv-
ing complex control equations.
To correctly use the stack for this type of operation requires a jump

to subroutine and a return from subroutine instruction.

8.1 JSR — JUMP TO SUBROUTINE

This instruction transfers control of the program counter to a sub-
routine location but leaves a return pointer on the stack to allow the
user to return to perform the next instruction in the main program after
the subroutine is complete. To accomplish this, JSR instruction stores the
program counter address which points to the last byte of the jump instruc-
tion onto the stack using the stack pointer. The stack byte contains the
program count high first, followed by program count low. The JSR then
transfers the addresses following the jump instruction to the program
counter low and the program counter high, thereby directing the program
to begin at that new address.

The symbolic notation for this is PC + 2+, (PC + 1) » PCL,

(PC + 2) - PCH.

The JSR instruction affects no flags, causes the stack pointer to be
decremented by 2 and substitutes new values into the program counter low
and the program counter high. The addressing mode for the JSR is always
Absolute.

Example 8.3 gives the details of a JSR instruction.

Example 8.3: TIllustration of JSR instruction

Program Memory

PC Data
0100 JSR
0101 ADL
0102 ADH Subroutine

Stack Memory

Stack

Pointer Stack
01FD .
Ol1FE 02
OlFF 01

106

External Internal

Cycle Address Bus Data Bus Operations Operations
1 0100 OP CODE Fetch Finish Previous
Instruction Operation; Incre-

ment PC to 0101

2 0101 New ADL Fetch Decode JSR;

New ADL Increment PC to 0102
3 QlFF Store ADL
4 O01FF PCH Store PCH Hold ADL, Decre-

ment S to O1FE

5 O1lFE PCL Store PCL Hold ADL, Decre-
ment S to OlFD

6 0102 ADH Fetch ADH Store Stack Pointer
7 ADH, ADL New Fetch New ADL > PCL
OP CODE OP CODE ADH - PCH

* § denotes ''Stack Pointer."

In this example, it can be seen that during the first cycle the micro-
processor fetches the JSR instruction. During the second cycle, address
low for new program counter low is fetched. At the end of cycle 2, the
microprocessor has decoded the JSR instruction and holds the address low

in the microprocessor until the stack operatiomns are complete.

NOTE: The stack is always stored in Page 1 (Hex address 0100-01FF).

The operation of the stack in the MCS650X microprocessor is such that
the stack pointer is always left pointing at the next memory location into
which data can be stored. In Example 8.3, the stack pointer is assumed to
be at OlFF in the beginning and PC at location 0100. During the third
cycle, the microprocessor puts the stack pointer onto the address lines and
on the fourth writes the contents of the current value of the program counter
high, 01, into the memory location indicated by the stack pointer address.
During the time that the write is being accomplished, the stack pointer is
being automatically decremented by 1 to OIFE. During the fifth cycle the
PCL is stored in the next memory location with the stack pointer being auto-
matically decremented.

It should be noted that the program counter low, which is now stored
in the stack, is pointing at the last address in the JSR sequence. This
is not what would be expected as a result of a JSR instruction. It would
be expected that the stack points at the next instruction. This apparent
anomaly in the machine is corrected during the Return from Subroutine in-

structiom.

107

Note: At the end of the JSR instruction, the values on the stack con-
tain the program counter low and the program counter high which referenced
the last address of the JSR instruction. Any subroutine calls which want
to use the program counter as an intermediate pointer must consider this
fact. It should be noted also that the Return from Subroutine instruction
performs an automatic increment at the end of the RTS which means that any
program counters which are substituted on the stack must be 1 byte or 1
pointer count less than the program count to which the programmer expects
the RTS to return.

The advantage of delaying the accessing of the address high until
after the current program counter can be written in the stack is that only
the address low has to be stored in the microprocessor. This has the
effect of shortening the JSR instruction by 1 byte and also minimizing in-
ternal storage requirements.

After both program counter low and high have been transferred to the
stack, the program counter is used to access the next byte which is the ad-
dress high for the JSR. During this operation, the sixth cycle, internally
the microprocessor is storing the stack pointer which is now pointing at
01FD or the next location at which memory can be loaded.

During the seventh cycle the address high from the data bus and the
address low stored in the microprocessor are transferred to the new program
counter and are used to access the next OP CODE, thus making JSR a 6-cycle
instruction.

At the completion of the subroutine the programmer wants to return to
the instruction following the Jump-to-Subroutine instruction. This is i
accomplished by transferring the last 2 stack bytes to the program counter
which allows the microprocessor to resume operations at the instruction fol-

lowing the JSR, and it is done by means of the RTS instruction.

8.2 RTS — RETURN FROM SUBROUTINE

This instruction loads the program count low and program count high
from the stack into the program counter and increments the program counter
so that it points to the instruction following the JSR. The stack pointer
is adjusted by incrementing it twice.

The symbolic notation for the RTS is PC+, INC PC.

108

The RTS instruction does not affect any flags and affects only PCL
and PCH. RTS is a single-byte instruction and its addressing mode is Im-
plied.

The following Example 8.4 gives the details of the RTS instruction.

It is the complete reverse of the JSR shown in Example 8.3.

Example 8.4: TIllustration of RTS instruction
Program Memory
PC Data
0300 RTS
0301 ?
Stack Memory
Stack Pointer Stack
01FD ?
O1FE 02
O1FF 01
Return from Subroutine (Example)
External Internal
Cycle Address Bus Data Bus Operations Operations
1 0300 OP CODE Fetch Finish Previous
OP CODE Operation, 0301
2 0301 Discarded Fetch Dis- Decode RTS
Data carded Data
3 O1FD Discarded Fetch Dis- Increment Stack
Data carded Data Pointer to O1lFE
4 O1FE 02 Fetch PCL Increment Stack
Pointer to O1FF
5 O1FF 01 Fetch PCH
6 0102 Discarded Put OQut PC Increment PC by
Data to 0103
7 0103 Next Fetch Next
OP CODE OP CODE

As we can see, the RTS instruction effectively unwinds what was done

to the stack in the JSR instruction.

109

Because RTS is a single-byte

- PC

instruction it wastes the second memory access in doing a look-ahead oper-
ation. During the second cycle the value located at the next program ad-
dress after the RTS is read but not used in this operation. It should be
noted that the stack is always left pointing at the next empty location,
which means that to pull off the stack, the microprocessor has to wait 1
cycle while it adds 1 to the stack address. This is done to shorten the
interrupt sequence which will be discussed below; therefore, cycle 3 is a
dead cycle in which the microprocessor fetches but does not use the current
value of the stack and, like the fetch of address low on Indexed and Zero
Page Indexed operations, does nothing other than initialize the micro-
processor to the proper state. It can be seen that the stack pointer de-
crements as data is pushed on to the stack and increments as data is

pulled from the stack. In the fourth cycle of the RTS, the microprocessor
puts out the Q1FE address, reads the data stored there which is the pro-
gram count low which was written in the second write cycle of the JSR.
During the fifth cycle, the microprocessor puts out the incremented stack
picking up the program count high which was written in the first write cycle
of the JSR.

As is indicated during the discussions of JSR, the program counter
stored on the stack really points to the last address of the JSR instruc-
tion itself; therefore, during the sixth cycle the RTS causes the program
count from the stack to be incremented. That is the only purpose of the
sixth cycle. Finally, in the seventh cycle, the incremented program counter
is used to fetch the next instruction; therefore, RTS takes 6 cycles.

Because every subroutine requires 1 JSR followed by 1 RTS, the time
to jump to and return from a subroutine is 12 cycles.

In the previous 2 examples, we have shown the operations of the JSR
located in location 100 and the RTS located in location 300. The follow-
ing pictorial diagram, Example 8.5, illustrates how the memory map for

this operation might look:

110

[

Example 8.5: Memory map for RTS instruction

Address
Bus Data
100 JSR
101 04 —_)
102 02 |
103 Next Instruction 4—-'

0204 First Instruction of Subroutine

—— 0300 RTS

With this capability of subroutining, the microprocessor allows the
programmer to go from the main program to 1 subroutine, to the second sub-
routine, to a third subroutine, then finally working its way back to the
main program. Example 8.6 is an expansion of Example 8.2 with the returns

included.

Example 8.6: Expansion of RTS memorv map

Main Program

JSR SUB1 —_—
——®» Next Inst.

L—> SUBL Stack Located at
Ol1FF, OlFE

Test a Value

JSR SUB2
’ RTS
Stack Located at
SUB2 01FD, O1FC
JSR SUB3 —w—m——y
— Stack Located at
_ O1lFB, O1FA
‘ RTS
SUB3
RTS

111

This concept is known as nesting of subroutines, and the number of
subroutines which can be called and returned from in such a manner is

limited by only the length of the stack.

8.3 IMPLEMENTATION OF STACK IN MCS6501 THROUGH MCS6505 i

As we have seen, the primary requirement for the stack is that irre-
spective of where or when a stack operation is called, the microprocessor

must have an independent counter or register which contains the current

memory location value of the stack address. This register is called the
Stack Pointer, S. The stack becomes an auxiliary field in memory which
is basically independent of programmer control. We will discuss later how
the stack pointer becomes initialized, but once it is initialized, the pri-
mary requirement is that it be self-adjusted; in other words, operationms
which put data on the stack cause the pointer to be decremented automati-
cally; operations which take data off from the stack cause the pointer to
be incremented automatically. Only under rare circumstances should the
programmer find it necessary to move his stack from one location to another
if he is using the sEgck as designed.

On this basis, there is no need for a stack to be longer than 256 bytes.
To perform a single subroutine call takes only 2 bytes of stack memory.
To perform an interrupt takes only 3 bytes of stack memory. Therefore,

with 256 bytes, one can access 128 subroutines deep or interrupt ourselves

85 times. Therefore the length of the stack is extremely unlikely to be
limiting. The MCS6501 through MCS6505 have a 256-byte stack length.

Figure 8.1, which is now the complete block diagram, shows all of the

microprocessor registers. The 8-bit stack pointer register, S, has been
added. It is initialized by the programmer and thereafter automatically
increments or decrements, depending on whether data is being put on to the
stack or taken off the stack by the microprocessor under control of the

program or the interrupt lines.

112

DATA BUS

g ¢ 8 U U VI

STACK
INDEX I”gﬁx POINTER ALU A PCL PCH
X s

N !
r'iz_l INTERNAL ADL AAJ
L[f¥' INERNBE/ ADH

J
[am] [amn |

AV4
MEMORY

Partial Block Diagram of MCS650X Including Stack Pointer, S
FIGURE 8.1

The primary purpose of the stack is to furnish a block of memory loca-
tions in which the microprocessor can write data such as the program coun-
ter for use in later processing. In many control systems the requirements
for Read/Write memory are very small and the stack just represents another
demand on Read/Write memory. Therefore these applications would like the
stack to be in the Page Zero location in order that memory allocation for
the stack, the Zero Page operations, and the indirect addresses can be
performed. Therefore, one of the requirements of a stack is that it be
easily locatable into Page Zero.

On the other hand, if more than 1 page of RAM is needed because of the
amount of data that must be handled by the user programs, having the stack
in Page Zero is an unnecessary waste of Page Zero memory in the sense that
the stack can take no real advantage of being located in Zero Page, whereas

other operations can.

113

In each of the examples, the stack has been located at high order
address 01 followed by a low order address. In the same manner as the
microprocessor forces locations 00 on to the high order 8 bits of the
address lines for Zero Page operations, the microprocessor automatically
puts 01 Hex on to the high order 8-bit address lines during each stack
operation. This has the advantage to the user of locating the stack into
Page One of memory which would be the next memory location added if the
Zero Page operation requirements exceed Page Zero memory capacity. This
has the advantage of the stack not requiring memory to be added specifi-
cally for the stack but only requiring the allocation of existing memory
locations. It should be noted that the selected addressing concepts of
the MCS650X microprocessor support devices would involve connecting the
memories such that bit 8, which is the selection bit for the Page One
versus Page Zero, is a "don't care" for operations in which the user does
not need more than 1 page of Read/Write memory. This gives the user the
effect of locating stack in Page Zero for those applications.

The second feature that should be noted from the examples is that
the stack was located at the end of Page One and decremented from that
point towards the beginning of the page. This is the natural operation of
the stack. RAM memory comes in discrete increments, 64, 128, 256 bytes so
the normal method of_allocating stack addressing is for the user to calcu-
late the number of bytes probably needed for stack access. This could be
done by analyzing the number of subroutines which might be called and the
amount of data which might be put onto the stack in order to communicate
between subroutines or the number of interrupts plus subroutines which
might occur with the respective data that would be stored on the stack for
each of them. By counting 3 bytes for each interrupt, 2 bytes for each
jump to subroutine, plus 1 byte for each programmer-controlled stack opera-
tion, the microprocessor designer can estimate the amount of memory which
must be allocated for the stack. This is part of his decision-making pro-
cess in deciding how much memory is necessary for his whole program.

Once the allocation has been made, it is recommended that the user
assign his working storage from the beginning of memory forward and always
load his stack at the end of either Page Zero, Page One, or at the end of

his physical memory which is located in one of those locations. This will

114

g

give the effect of having the highest bytes of memory allocated to the
stack, lower bytes of memory allocated to user working storage and hope-
fully the two shall never overlap.

It should be noted that the natural operation of the stack, which often
is called by hardware not totally under program control, is such that it
will continue to decrement throughout the page to which it is allocated irre-
spective of the user's desire to have it do so. A normal mistake in allo-
cation in memory can result in the user writing data into a memory location
and later accessing it with another subroutine or another part of his pro-
gram, only to find that the stack has very carefully written over that area
as the result of its performing hardware control operations. This is one
of the more difficult problems to diagnose. If this problem is suspected
by the programmer, he should analyze memory locations higher than unex-
plained disturbed locations.

There is a distinctive pattern for stack operations which are unique
to the user's program but which are quite predictable. An analysis of the
value which has been destroyed will often indicate that it is part of an
address which would normally be expected during the execution of the pro-
gram between the time data was stored and the time it was fetched. This is
a very strong indication of the fact that the stack somehow or other did get
into the user's program area. This is almost always caused by improper con-
trol of interrupt lines or unexpected operations of interrupt or subroutine
calls and has only 2 solutions: (1) If the operation is normal and predict-
able, the user must assign more memory to his program and particularly re-
assign his memory such that the stack has more room to operate; or (2) if
the operation of the interrupt lines is not predictable, attention must be
given to solving the hardware problem that causes this type of unpredictable

operation.

8.3.1 Summary of Stack Implementation

The MCS6501 through MCS6505 microprocessors have a single 8-bit
stack register. This register is automatically incremented and decre-
mented under control of the microprocessor to perform stack manipula-
tion operations, under direction of the user program or the interrupt

lines. Once the programmer has initialized the stack pointer to the

115

end of whatever memory he wants the stack to operate in, the program-

mer can ignore stack addressing other than in those cases where there
is an interference between stack operations and his normal program
working space.

In the MCS6501 through MCS6505, the stack is autématically

located in Page One. The microprocessor always puts out the address

0100 plus stack register for every stack operation. By selected mem-
ory techniques, the user can either locate the stack in Page Zero or
Page One, depending on whether or not Page One exists for his hard-

ware.

8.4 USE OF THE STACK BY THE PROGRAMMER

Discussed in Section 8.1 was the use of the JSR to call a subroutine.
However, not indicated was the technique by which the subroutine knew
which data to operate on. There are 3 classical techniques for communi-
cating data between subroutines. The first and most straightforward tech-
nique is that each subroutine has a defined set of working registers located
in the Page Zero in which the user has left values to be operated on by the
subroutine. The registers can either contain the values directly or can

contain indirect pointers to addresses to values which would be operated

on. The following example shows the combination of these:

Example 8.7: Call-a-move subroutine using preassigned memory locations

Count

Location 10

Base from Address

Location 11, 12

Location 13, 14 Base to Address

Main Line Routine

No. of
Bytes instruction Comment
2 LDA #Count -1 Load Fixed Value for the Move
2 STA 10
2 LDA #FRADH ., L
2 STA 12 Set up "FROM" Pointer
2 LDA #FRADL
2 STA 11
2 LDA {#TOADL
2 STA 13
2 LDA #TOADH o
2 STA 14 Set up '"TO" Pointer
3 JSR SUB1
23 bytes

116

Subroutine Coding

No. of
Bytes Label Instruction

SUB1 LDY 10

LOOP 1bA (11), Y
STA (13), Y
DEY
BNE LOOP
RTS

N NN

total 33 bytes

As has been previously developed, the loop time is the overriding con-
sideration rather than setup time for a large number of executions.

It can be seen that we have used the techniques developed in previous
sections of the indirect referencing, the jump to subroutine and the return
from subroutine to perform this type of subroutine value communication.

In this operation, there was no use of the stack except for the program
counter value.

A seccond form of communication is the use of the stack itself as an
intermediate storage for data which is going to be communicated to the
subroutine. In order for the programmer to use the stack as an intermediate
storage, he needs instructions which allow him to put data on the stack and
to read from the stack. These instructions are known as push and pull in-

structions.

8.5 PHA — PUSH ACCUMULATOR ON STACK

This instruction transfers the current value of the accumulator to
the next location on the stack, automatically decrementing the stack to
point to the next empty location.

The symbolic notation for this operation is A¥, Noted should be that
the notation + means push to the stack, 4 means pull from the stack.

The Push A instruction only affects the stack pointer register which
is decremented by 1 as a result of the operation. It affects no flags.

PHA is a single-byte instruction and its addressing mode is Implied.

The following example shows the operations which occur during Push A

instruction.

117

Example 8.8: Operation of PHA, assuming stack at 01FF

External Internal
Cycles Address Bus Data Bus Operations Operations
1 0100 OP CODE Fetch Finish Previous
Instruction Operation, Incre-

ment PC to 0101

2 0101 Next Fetch Next Interpret PHA In-
OP CODE OP CODE struction, Hold
and Discard P-Counter
3 Ol1FF (A) Write A on Decrement Stack
Stack Pointer to O1FE
4 0101 Next Fetch Next
OP CODE OP CODE

As can be seen, the PHA takes 3 cycles and takes advantage of the
fact that the stack pointer is pointing to the correct location to write
the value of A. As a result of this operation, the stack pointer will be
setting at OLFE. The notation (A) implies contents of A. Now that the
data is on the stack, later on in the program the programmer will call for

the data to be retrieved from the stack with a PLA instruction.

8.6 PLA — PULL ACCUMULATOR FROM STACK

This instruction adds 1 to the current value of the stack pointer and
uses it to address the stack and loads the contents of the stack into the
A register.

The symbolic notation for this is-A+4.

The PLA instruction does not affect the carry or overflow flags. It
sets N if the bit 7 is on in accumulator A as a result of instructions,
otherwise it is reset. If accumulator A is zero as a result of the PLA,
then the Z flag is set, otherwise it is reset. The PLA instruction changes
content of the accumulator A to the contents of the memory location at
stack register plus 1 and also increments the stack register.

The PLA instruction is a single-byte instruction and the addressing
wmode is Implied.

In the following example, the data stored on the stack in Example 8.8

is transterred to the accumulator.

118

Example 8.9: Operation of PLA stack from Example 8.8

External Internal
Cycles Address Bus Data Bus Operations Operations
1 0200 PLA Fetch Finish Previous Opera-
Instruction tion, Increment PC to
101
2 0201 Next Fetch Next Interpret Instruction,
0P CODE 0P CODE and Hold P-Counter
Discard
3 O1FE Read Stack Increment Stack Pointer
to OLlFF
4 O1FF (A) Fetch A Save Stack
5 0201 Next Fetch Next M- A
0P CODE OP CODE

When taking data off the stack, there is 1 extra cycle during which
time the current contents of the stack register are accessed but not used
and the stack pointer is incremented by 1 to allow access to the value
that was previously stored on the stack. The stack pointer is left point-
ing at this location because it is now considered to be an empty location

to be used by the stack during a subsequent operation.

8.7 USE OF PUSHES AND PULLS TO COMMUNICATE VARIABLES BETWEEN SUBROUTINE
OPERATIONS

In Example 8.10, we perform the same operation as we did in Example 8.7;
only here, instead of using fixed locations to pick up the pointers, we are

going to use the stack as a communicatioms vehicle:

Example 8.10: (all-a-move subroutine using the stack to communicate

Location 11, 12 = Base "FROM'" Address

. Location 13, 14 = Base “TO" Address
Main Line Routine

Bytes Instruction
2 LDA #Count -1
1 PHA
2 1LDA #FRADL
1 PHA
2 1L.DA #FRADH
1 PHA
2 LDA #TOADL
1 PHA
2 LDA #TOADH
1 PHA

3 JSR SUB1

18

119

Subroutine
Bytes Label Instruction Comments

SUB1 LDX 6
LOOP1 PLA
STA 10,X
DEX Move Stack to Memory
BNE 1LOOP 1
PLA Set up Count
TAY
LOOP2 LbA (11),Y
STA (13),Y Move Memory Location
DEY
BNE LOOP 2
LDA 15
PHA
LDA 16
PHA
RTS

Restore PC to Stack

PR RNRFNMNNHEFNMNNHERERDODERNDRRND

Total ZE_Bytes

We can see from this example that using the stack as a communication
vehicle actually increases the number of bytes in the subroutine and the
total bytes overall. However, the only time one should be using subroutines
in this case is when the subroutine is fairly long and the number of times
the subroutine is used is fairly frequent. This technique does reduce the
number of bytes;in the calling sequence. The calling sequence is normally
repeated once for every time the instruction is called; therefore the use
of the stack to communicate should result in a net reduction in the number
of bytes used in the total program.

Up until this time, we have been considering that the stack is at a
fixed location and that all stack references use the stack pointer. It
has not been explained how the stack pointer in the microprocessor gets
loaded and accessed. This is done through communication between the stack

pointer and index register X.

8.8 TXS — TRANSFER INDEX X TO STACK POINTER

This instruction transfers the value in the index register X to the
stack pointer.

Symbolic notation is X - S.

TXS changes only the stack pointer, making it equal to the content of

the index register X. It does not affect any of the flags.

120

TXS is a single-byte instruction and its addressing mode is Implied.

Another application for TXS is the concept of passing parameters to
the subroutine by storing them immediately after the jump to subroutine
instruction.

In Example 8.11, the from and to address, plus the count of number of
values would be written right after the JSR instruction and its address.

By locating the stack in Page Zero, the address of the last byte of
the JSR can be incremented to point at the parameter bytes and then used
as an indirect pointer to move the parameter to its memory location.

The key to this approach is transferring the stack pointer to X which
allows the program to operate directly on the address while it is in the
stack.

It should be noted that this approach automatically leaves the address

on the stack, positioned so that the RTS picks up the mext OP CODE address.

Example 8.11: Jump to subroutine (JSR) followed by parameters

Address Bus Data
0100 JSR
0101 ADL
0102 ADH
0103 To High
0104 To Low
0105 From High
0106 From Low
0107 Count
0108 Next OP CODE

Before concluding this discussion on subroutines and parameter passing,
one should again note the use of subroutines should be limited to those
cases where the user expects to duplicate code of significant length sev-
eral times in the program. In these cases, and only in these cases, is
subroutine call warranted rather than the normal mode of knowing the
addresses and specifying them in an instruction. In all cases where timing
is of significant interest, subroutines should also be avoided. Subroutines
add significantly to the setup and execution time of problem solution. How-
ever, subroutines definitely have their place in microcomputer code and
there have been presented 3 alternatives for use in application programs.
The user will find a combination of the above techniques most useful for

solving his particular problem.

121

8.9 TSX — TRANSFER STACK POINTER TO INDEX X

This instruction transfers the value in the stack pointer to the
index register X.

Symbolic notation is S -+ X.

TSX does not affect the carry or overflow flags. It sets N if

bit 7 is on in index X as a result of the instruction, otherwise it is

reset. If index X is zero as a result of the TSX, the Z flag is set, other-

wise it is reset. TSX changes the value of index X, making it equal to
the content of the stack pointer.

TSX is a single-byte instruction and the addressing mode is Implied.

8.10 SAVING OF THE PROCESSOR STATUS REGISTER

During the interrupt sequences, the current contents of the processor

status register (P) are saved on the stack automatically. However, there
are times in a program where the current contents of the P register must

be saved for performing some type of other operation. A particular example
of this would be the case of a subroutine which is called independently and
which involves decimal arithmetic. It is important that the programmer
keeps track of the arithmetic mode the program is in at all times. One way
to do this is to establish the convention that the machine will always be
in binary or decimal mode, with every subroutine changing its mode being
responsible for restoring it back to the known state. This is a superior
convention to the one that is about to be described.

A more general convention would be one in which the subroutine that
wanted to change modes of operation would push P onto the stack, then set
the decimal mode to perform the subroutine and then pull P back from the
stack prior to returning from the subroutine.

Instructions which allow the user to accomplish this are as follows:

8.11 PHP — PUSH PROCESSOR STATUS ON STACK

This instruction transfers the contents of the processor status reg-
ister unchanged to the stack, as governed by the stack pointer.

Symbolic notation for this is P¥.

The PHP instruction affects no registers or flags in the micropro-
cessor.

PHP is a single-byte instruction and the addressing mode is Implied.

122

812 PLP — PULL PROCESSOR STATUS FROM STACK

This instruction transfers the next value on the stack to the Proces-
sor Status register, thereby changing all of the flags and setting the mode
switches to the values from the stack.

Symbolic notation is 4P.

The PLP instruction affects no registers in the processor other than

the status register. This instruction could affect all flags in the status

register.

PLP is a single-byte instruction and the addressing mode is Implied.

8.13 SUMMARY ON THE STACK

The stack in the MCS650X family is a push-down stack implemented
by a processor register called the stack pointer which the programmer ini-
tializes by means of a Load X immediately followed by a TXS instruction and
thereafter is controlled by the microprocessor which loads data into mem-
ory based on an address constructed by adding the contents of the stack
pointer to a fixed address, Hex address 0100. Every time the microproces-
sor loads data into memory using the stack pointer, it automatically decre-
ments the stack pointer, thereby leaving the stack pointer pointing at the
next open memory byte. Every time the microprocessor accesses data from
the stack, it adds 1 to the current value of the stack pointer and reads
the memory location by putting out the address 0100 plus the stack pointer.
The status register is automatically pointing at the next memory location
to which data can now be written. The stack makes an interesting place to
store interim data without the programmer having to worry about the actual
memory location in which data will be directly stored.

There are 8 instructions which affect the stack. They are: BRK,
JSR, PHA, PHP, PLA, PLP, RTI, and RTS.

BRK and RTI involve the handling of the interrupts.

123

CHAPTER 9

RESET AND INTERRUPT CONSIDERATIONS

9.0 VECTORS

Before developing the concepts of how the MCS650X Microprocessors
handle interrupts and start-up, a brief definition of the concept of
vector pointers needs to be developed.

In the sections on Jumps and Branches, it was always assumed that
the program counter is changed by the microprocessor under control of the
programmer while accessing addresses which were in program sequence. In
order to get the microprocessor started and in order to properly handle
external control or interrupt, there has been developed a different way
of setting the program counter to point at a specific location. This
concept is called vectored pointers. A vector pointer consists of a pro-
gram counter high and program counter low value which, under control of
the microprocessor, is loaded in the program counter when certain external
events occur. The word vector is developed from the fact that the micro-
processor directly controls the memory location from which a particular
operation will fetch the program counter value and hence the concept of
vector.

By allowing the programmer to specify the vector address and then by
allowing the programmer to write coding that the address points to, the
microprocessor makes available to the programmer all of the control
necessary to develop a general purpose control program. The microprocessor

has fixed address in memory from which it picks up the vectors. By this

124

implementation, minimum hardware in the microprocessor is obtained. Loca-
tions FFFA through FFFF are reserved for vector pointers for the micro-
processor. Into these locations are stored respectively the interrupt
vectors or pointers for: non-maskable interrupt, reset and interrupt

request.

9.1 RESET OR RESTART

In the microprocessor, there is a state counter which controls when
the microprocessor is going to use the program counter to access memory
to pick up an instruction, then after the instruction is loaded, the
microprocessor goes through a fixed sequence of interpreting instructions
and then develops a series of operations which are based on the OP CODE
decoding.

Up to this point, it has been assumed that the program counter was
set at some location and that all program counter changes are then
directed by the program once the program counter had been initialized.

Instructions exist for the initialization and loading of all other
registers in the microprocessor except for the initial setting of the
program counter. It is for this initial setting of the program counter
to a fixed location in the restart vector location specified by the micro-
processor programmer that the reset line in the microprocessor is pri-
marily used.

The reset line is controlled during power on initialization and is
a common line which is connected to all devices in the microcomputer sys-
tem which have to be initialized to a known state. The initialization of
most I/0 devices is such that they are brought up in a benign state such
that with minimum coding in the microcomputer, the programmer can con-—

figure and control the I/0 in an orderly fashion.
The concept has important systems implications in systems where

damage can be done if peripheral devices came up in unknown states. There-

fore, in the MCS650X, power on or reset control operates at two levels.

125

First, by holding of an extermal line to ground, and having this external
line connected to all the devices during power up transient conditions,
the entire microcomputer system is initialized to a known disabled state.
Second, the releases of the reset line from the ground or TTL zero
condition to a TTL one condition causes the microprocessor to be automat-—
ically initialized, first by the internal hardware vector which causes it
to be pointed to a known program location, ana secondly through a software
program which is written by the user to control the orderly start-up
of the microcomputer system. ‘

All of the MCS650X family parts also obey a discipline that while
the reset line is low, the system is in a stop or reset state. The micro-
processor is guaranteed to be in a Read state and upon release of the re-
set line from ground to positive, the microprocessor will continue to
hold the line in a Read stéte until it has addressed the specified vectored
count location, at which time control of the microprocessor is available
to the programmer.

NOTE: The MC6800 family also follows this convention.
9.2 START FUNCTION

While the reset line is in the low state, it can be assumed that
internal registers may be initialized to any random condition; therefore,
no conditions about the internal state of the microprocessor are assumed
other than that the microprocessor will, ome cycle after the reset line

goes high, implement the following sequence:

126

Example 9.1: Illustration of Start Cycle

Cycles Address Bus Data Bus External Operation Internal Operation
1 ? ? Don't Care Hold During Reset
2 27+ 1 ? Don't Care First Start State
3 0100 + SP ? Don't Care Second Start State
4 0100 + spP-1 ? Don't Care Third Start State
5 0100 + SP-2 ? Don't Care Fourth Start State
6 FFFC Start PCL Fetch First Vector
7 FFFD Start PCH Fetch Second Vector Hold PCL
8 PCH PCL First Load First OP CODE

OP CODE

The start cycle actually takes seven cycles from the time the reset
line is let go to TTL plus. On the eighth cycle, the vector fetched from

the memory location FFFC and FFFD is used to access the next instruction.

The microprocessor is now in a normal program load sequence, the location
where the vector points should be the first OP CODE which the programmer
desires to perform.

The second point that should be noted is that the microprocessor
actually accesses the stack three times during the start sequence in
cycles 3, 4 and 5. This is because the start sequence is in effect a
specialized form of interrupt with the exception that the read/write line
is disabled so that no writes to stack are accomplished during any of the

cycles.

9.3 PROGRAMMER CONSIDERATIONS FOR INITIALIZATION SEQUENCES

There are two major facts to remember about initialization. One, the
only automatic operations of the microprocessor during reset are to turn
on the interrupt disable bit and to force the program counter to the vector
location specified in locations FFFC and FFFD and to load the first instruc-
tion from that location. Therefore, the first operation in any normal pro-
grém will be to initialize the stack. This should be done by having pre-
viously decided what the stack value should be for initial operations and
then doing a LDX immediate of this wvalue followed by a TXS. By this simple
operation, the microprocessor is ready for any interrupt or non-maskable
interrupt operation which might occur during the rest of the start-up

sequence.
127

Once this is accomplished, the two non variable operations of the
machine are under control. The program counter is initialized and under
programmer control and the stack is initialized and under program control.
The next operations during the initialization sequences will consist of
configuring and setting up the various control functions necessary to
perform the I1/0 desired for the microprocessor.

Specific discussion for considerations regarding the start-up are
covered in Section 11.

The major things which have to be considered include the current
state of the I/0 device and the non destructive operations that will
allow the state to be changed to the active state.

The initialization programs mostly consist of loading accumulator
A immediately with a bit pattern and storing it in the data control regis-
ter of an I/0 device.

Note: The interrupt disable is automatically set by the micro-

processor during the start sequence. This is to minimize
the possibility of a series of interrupts occurring during
the start-up sequence because of uncontrolled external
values although it is usually possible to control interrupts
as part of the configuration.

The programmer should consider two effects. First, that the non
maskable interrupt is not blockable by this technique since it would be
possible to configure a device that was connected to a non maskable inter-
rupt and have to service the interrupt immediately., Secondly, the mask
must be cleared at the end of the start sequence unless the user has
specific reason to inhibit interrupts after he has done the start-up
sequence. Therefore, the next to last instruction of the start-up
sequence should be CLI.

It should be noted that the start-up routine is a series of
sequential operations which should occur only during power on initial-

ization and is the first step in the programmed logic machine.

128

Because the execution of the routine during power on occurs very
seldom in the normal operation of the machine, the coding for power
on sequence should tend to minimize the use of memory space rather
than speed.

The last instruction in the start-up sequence should initialize
the decimal mode flag to the normal setting for the program.

The next instruction should be the beginning of the user's normal
programming for his device, everything preceding that being known as

"housekeeping.”

9.4 RESTART

It should be noted that the basic microprocessor control philosophy
allows for a single common reset line which initializes all devices.
This line can be used to clear the microprocessor to a known state and to
reset all peripherals to a known state; therefore, it can be used as a
result of power interruption, during the power on sequence, or as an
external clear by the user to re-initialize the system.

As discussed in the hardware manual, restart is often used as an
aid to making sure the microprocessor has been properly interconnected

and that programs have been loaded in the correct locatiomns.

9.5 INTERRUPT CONSIDERATIONS

Up until this point, the microprocessor has to proceed under program-
mer control through a variety of sequences. The only way for the program-
mer to change the sequence of operations of the microprocessor was to
change the program counter location to point at new operations. The
microprocessor is in control of fetching the next instruction at the
conclusion of the current instruction. The only way that external events
could control the microprocessor, if it were not for interrupts, would be
for the programmer to periodically interrupt or stop processing data and
check to see whether or not an external event which might cause him to

change his direction has occurred. The problem with this technique is that

129

e

I1/0 events are usually asynchronous, i.e., not timed with the micro-
processor internal instructioms, therefore, it would be possible for the
event to occur shortly after the programmer has stopped to look at I/0
events which would mean that the event would not be sampled until the
programmer took the time to stop his coding and sample again.

Because the sampling of I/0 devices nbrmally takes several byte
counts or cycles to accomplish, the frequent insertion of checking
routines into straight line code results in significant delays to the
entire program. In trying to use this technique, there has to be a
trade-off between the fact that the program wastes a significant
amount of time checking events which have not yet occurred versus
delaying checking of an event which has occurred and if not timely
serviced the data may be lost.

In order to solve this dichotomy, the concept of interrupt is used
to signal the microprocessor that an external event has occurred and the
microprocessor should devote attention to it immediately. This technique
accomplishes processing in which the microprocessor's program is inter-
rupted and the event that caused the interrupt is serviced.

Transferring most of data and control to I/0 devices in an interrupt
driven environment will usually result in maximum program and/or program-
mer efficiency. Each event is serviced when it occurs which means there
is a minimum amount of delaying in servicing events, also a minimum amount
of coding because of elimination of the need to determine occurrence
of several events simultaneously; each interrupting event is handled
as a unique combination. It is possible to interrupt an interrupt
processing routine and, therefore, all the interrupt logic uses the
stack which allows processing of successive interrupts without any
penalty other than increasing the stack length.

A real world example of an event which should interrupt is when
the user is given a panic button indicating to the microcomputer some
event has occurred which requires total immediate attention of the

microprocessor to solving that problem.

130

The action and events are as follows: The microprocessor user
pushes the panic button; the panic switch sensor causes an external
device to indicate to the microprocessor an interrupt is desired; the
microprocessor checks the status of the internal interrupt inhibit
signal; if the internal inhibit is set, then the interrupt is ignored.
However, if it is reset or when it becomes reset through some program

reaction, the following set of operations occur:

Example 9.2: Interrupt Sequence

Cycles Address Bus Data Bus External Operation Internal Operation
1 PC OP CODE Fetch OP CODE Hold Program Counter,
Finish Previous
Operation
2 PC OP CODE Fetch OP CODE Force a BRK

Instruction, Hold
P~-Counter

3 O1FF PCH Store PCH on Stack Decrement Stack

! Pointef to OIFE

4 O1FE PCL Store PCL on Stack Decrement Stack

Pointer to 01FD

5 01FD P Store P on Stack Decrement Stack

Pointer to O01FC

6 FFFE New PCL Fetch Vector Low Put Away Stack
7 FFFF New PCH Fetch Vector High Vector Low >
PCL and Set I

8 Vector OP CODE - Fetch Interrupt Increment PC to

PCH PCL Program PC+1

As can be seen in Example 9.2, the microprocessor uses the stack to
save the reentrant or recovery code and then uses the interrupt vectors
FFFE and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt
request or a non maskable interrupt request had occurred. It should be
noted that the interrupt disable is turned on at this point by the micro-

processor automatically.

131

Because the interrupt disable had to be off for an interrupt request
to have been honored, the return from interrupt which loads the processor
status from before the interrupt occured has the effect of clearing the
interrupt disable bit. After the interrupt has been acknowledged by the
microprocessor by transferring to the proper vector location, there are a
variety of operations which the user can perform to service the interrupt;
however, all operations should end with a single instruction which
reinitializes the microprocessor back to the point at which the interrupt

occurred., This instruction is called the RTI instruction.

9.6 RTI — RETURN FROM INTERRUPT

This instruction transfers from the stack into the microprocessor
the processor status and the program counter location for the instruction
which was interrupted. By virtue of the interrupt having stored this data
before executing the instruction and thet fact that the RTI reinitializes
the microprocessor to the same state as when it was interrupted, the
combination of interrupt plus RTI allows truly reentrant coding.

The symbolic notation for RTI is 4P +4PC.

The RTI instruction reinitializes all flags to the position to the
point they were at the time the interrupt was takeﬁ and sets the program
counter back to its pre-interrupt state. It affects no other registers
in the microprocessor.

RTI is a single byte instruction and its addressing mode is Implied.

In the following example, we can see the internal operation of the

RTI which restores the microprocessor:

132

Example 9.3: Return from Interrupt

Cycles Address Bus Data Bus External Operation Internal Operation

1 0300 RTIL Fetch OP CODE Finish Previous
Operation,Increment
PC to 0301

2 0301 ? Fetch Next OP CODE Decode RTI

3 0l1lFcC ? Discarded Stack Increment Stack

Fetch Pointer to OLlFD

4 01FD P Fetch P Register Increment Stack
Pointer to OLFE

5 Ol1FE PCL Fetch PCL Increment Stack Point-
er to 01FF, Hold PCL

6 O1FF PCH Fetch PCH M+PCL, Store
Stack Pointer

7 PCH PCL /OP CODE Fetch OP CODE Increment New PC

Note the effects of the extra cycle (3) necessary to read data from
stack which causes the RTI to take six cycles. The RTI has restored the
stack, program counter and status register to the point they were at
before the interrupt was acknowledged.

There is no automatic save of any of the other registers in the
microprocessor. Because the interrupt occurred to allow data to be trans-
ferred using the microprocessor, the programmer must save the various in-
ternal registers at the time the interrupt is taken and restore them prior
to returning from the interrupt. Saving of the registers is best done
on the stack as this allows as many consecutive interrupts as the program-
ming will allow for. Therefore, the routines which save all registers

and restore them are as_follows:

Example 9.4: Illustration of Save and Restore for Interrupts

Cycle Bytes

3 1 SAVE PHA Save A
2 1 TXA Save X
3 1 PHA
2 1 TYA Save Y
3 1 PHA
13 5
4 1 RESTORE PLA Restore Y
2 1 TAY
4 1 PLA Restore X
2 1 TAX
4 1 PLA Restore A
16 5

133

The SAVE coding assumes that the programmer wants to save and to
restore registers A, X and Y. It should be noted that for many inter-
rupts, the amount of coding that has to be performed in the interrupt is
fairly small.

In this type of operation, it is usually more desirable to shorten
the interrupt processing time and not use all of the registers in the
machine. Therefore, a more normal interrupt processing routine would
consist of just saving registers A and X which means that the restore
routine would be just restore registers X and A. This has the effect of
shortening the interrupt routiﬁe by two bytes, and also shortens the restore
routine by two bytes and will cut 5 cycles out of the interrupt routine
and 6 cycles out of the restore routine.

This technique combined with automatic features of the interrupt
and the RTI allows multiple interrupts to occur with successive inter-
rupts interrupting the current interrupt. This is one of the advantages
of the use of the stack so that as many interrupts can interrupt other
interrupts as can be held in the stack. The stack contains six bytes for
every interrupt if all registers are saved, so 42 sequences of interrupts
can be stored in one page. However, in more practical situatioms, consecu-
tive interrupts hardly ever get more than about three deep.

The advantage of allowing an interrupt to interrupt am interrupt is
that the whole concept behind the interrupt is that asynchronous events
can be responded to as rapidly as possible; therefore, it is desirable
to allow the processing to service one interrupt to be interrupted to
service the second, as long as the first interrupt has been properly
serviced.

To review how this is accomplished using the normal interrupt
capability of the MCS650X, it is important that we review the bus concept
which is inherent in the MCS6500 family and which is compatible with the
M6800.

As has already been discussed, all I/0 operations on this type of

microprocessor are accomplished by reading and writing registers which

134

actually represent connections to physical devices or to physical pins
which connect to physical devices.

Up until this point, this discussion has addressed itself to
i transferring of data into and out of the microprocessor. However, there
is a concept that is inherent in the bus discipline that says that when-~
ever an interrupt device capable of generating an interrupt desires to
accomplish an interrupt, it performs two acts; first, it sets a bit,
usually bit 7, in a register whose primary purpose is to communicate
to the micrOprocessqr the status of the device. The interrupting device
causes one of perhaps many output lines to be brought low. These

collector-or'd outputs are connected together to the IRQ pin on the

R

MCS650X microprocessor.

The interrupt request to the MCS650X is the IRQ pin being at a

TTL zero. In order to minimize the handshaking necessary to accomplish

an interrupt, all interrupting devices obey a rule that says that once an

interrupt has been requested by setting the bit and pulling interrupt

low, the interrupt will be held by the device until the condition that

caused the interrupt has been satisfied. This allows several devices

to interrupt simultaneously and also allows the microprocessor to

ignore an interrupt until it is ready to service it. This ignoring is

done by the interrupt disable bit which can be set on by the programmer

and is initialized on by the interrupt sequence or by the start sequence.
Once the interrupt line is low and interrupt disable is off, the

microprocessor takes an interrupt which sets on the interrupt disable.

The interrupt disable then keeps the input low line from causing more than

one interrupt until an interrupt has been serviced. There is no other

handshaking between the microprocess;r and the interrupting device other

than the collector-or'd line. This means that the microprocessor must use

the normal addressing registers to determine which of several collector-

or'd devices caused the line to go low and to process the interrupt which

has been requested.

135

Once the processor has found the interrupting device by means of
analyzing status bits which indicates an interrupt has been requested,
the microprocessor then clears the status by reading or writing data
as indicated by the status register.

It should be noted that a significant difference between status
registers and data registers in I/0 devices is that status registers
are never cleared by being read, only by being written into or by the
microprocessor transferring data from a data register which corresponds
to some status in the status register. Detailed examples of this
interaction are discussed in Chapter 11. The clearing of the status
register also releases the collector-or'd output thereby releasing the
interrupt pin request.

The basic interaction between the microprocessor and interrupting
device is when interrupting device sets the status bit and brings its
output-iia line low. If its output IRQ line is connected to the micro-
processor interrupt request line, the microprocessor waits until the
interrupt disable is cleared, takes thé interrupt vector, and sets the
interrupt disable which inhibits further interrupts in the Tﬁa line.

The microprocessor determines which interrupting device is causing an
interrupt and transfers data from that device.

Transferring of data clears the interrupt status and the IRQ pin. At
this point, the programmer could decide that he was ready to accept another
interrupt even though the data may have been read but not yet operated on.
Allowing interrupts at this point, gives the most efficient operation of
the microprocessor in most applications.

There are also times when a programmer may be working on some coding
the timing of which is so important that he cannot afford to allow an
interrupt to occur. During these times, he needs to be able to turn on
the interrupt disable. To accomplish this, the microprocessor has a set

and clear interrupt disable capability.

136

9.7 SOFTWARE POLLING FOR INTERRUPT CAUSES

As was indicated above, any one of several devices are collector-or'd

to cause an-Tﬁa. The effect of any one of the devices or combination of
them having polled the IRQ line low is always the same. The interrupt
stores the current status of the program counter and processor on the
stack and transfers to a fixed vector address. 1In servicing the inter-
rupt, it is important to save those registers which will be used in the
analysis of the interrupt and during the interrupt processing, so the
normal first steps of the interrupt routine are to do the SAVE pro-
cedures.

The next operation is to determine which of the various potential
interrupting devices caused the interrupt. To accomplish this, the
programmer should make use of the fact that all interrupting devices
signal the interrupt by a bit in the status register. All currently

implemented 6800 and 6500 peripherals always have interrupt indicators;

either bit 7 or bit 6 in their status register. Therefore, the basic 1lcocp

that a user will use to verify the existence of an interrupt on one of

five devices is as follows:

Example 9.5: Interrupt Polling

No.of Bytes Cycles

3 4 LDA Status 1
2 2 BMI FIRST
3 4 LDA Status 2
2 2 BMI SECOND
3 4 LDA Status 3
2 2 BMIL THIRD
3 4 LDA Status 4
2 2 BMI . FOURTH
3 4 LDA Status 5
2 2 BMI FIFTH
RES1 JMP to RESTORE
FIRST LDA DATA 1
CLI
Process 1
etc.

137

In this example, the simplest case where the potential interrupts
are indicated by bit 7 being on, has been assumed. This allows advantage
to be taken of the free N-bit test by following the load of the first
status register with a branch on result minus. If the first device has an
active interrupt request, the BMI will be taken to FIRST where the data is
transferred. This automatically clears the interrupt for the first device.
To allow multiple interrupts, the load A is followed by the CLI instruction
which allows the program to accept another interrupt. As a result of the
CLI, one of two things can occur; there is not another interrupt currently
active, in which case, the microprocessor will continue to process the
first interrupt down to the point where the interrupt is complete and the
first subroutine does a jump to RESTORE, which is the routine that unsaves
the registers that were used in the process of servicing the interrupt.

If another device has an active interrupt which occurred either prior

to the first interrupt or subsequent to it but before the microprocessor
has reached the point where the CLI occurs, then the microprocessor will
immediately interrupt again following the CLI, go back and save registers
as defined before and come back into the polling loop. Therefore, multiple
interrupts are serviced in the order in which they are looked at in polling
sequence. Polling means that the program is asking each device individu-
ally whether or not it is the one that requested an interrupt.

It should be noted that polling has the effect of giving perfect
priority in the sense that no matter which two interrupts occur before the
microprocessor gets to service one, the polling sequence always gives
priority to the highest priority device first, then the second, then the
third, etc. In light of the fact that this polling sequence requires no
additional hardware to implement other than is available in the inter-
rupting devices themselves, this is the least expensive form of interrupt
and the one that should be used whenever possible because of its indepen-

dence from external hardware.

138

Although it would appear that the last interrupting device in a
sequence pays a significant time penalty based on the amount of instruc-
tions to be executed before the last device is serviced, the amount of
time to perform polls is only six cycles per device and, therefore,
the extra penalty that the last device has to pay over the first device
is 24 cycles. This is in comparison to a minimum time to cause an inter-
rupt (eight cycles), plus store time for registers (in the range of
another 8 to 13 cycles) which means that the delay to the last devices
is roughly twice what it would be for the first device.

This timing just described represents a most interesting part of the

analysis of interrupts for a microprocessor. There is a significant
amount of fixed overhead which must bé paid for the interrupt. This over-
head includes the fact that the interrupts can only occur at the end of
an instruction so, therefore, if an interrupt occurs prior to the end of
an instruction, the microprocessor delays until the end of the instruction
to service it. Therefore, in doing the worst case analysis, one has to
consider the faet that the interrupt might be occurring in the middle of
a seven cycle, read/modify/write instruction which means that the worst
case time to process the first instruction in an interrupt sequence is
14 cycles (7 cycles plus the 7 cycles for the interrupt).

In light of the fact that saving of additional registers is often
required (at least the accumulator A must be saved), at least twice
the number of cycles will be required. Consequently the absolute minimum
worse case time for an interrupt is 17 cycles plus thé time to transfer
data which is another 4 cycles. Therefore interrupt driven systems must
be capable 6f handling a delay of at least 20 cycles and more realistically,
20 to 50 cycles before the first interrupt is serviced. This means that
devices which are running totally interrupt driven must not require succes-
sive bytes of data to be transferred to the microprocessor in less than 30
or 40 cycles and on a given system, only one device is capable of operating
at that rate at one time. This limits the interrupt driven frequency of
data transfer to 40KHZ at a one megahertz clock system and 80KHZ on a two

megahertz clock system.

139

An even more serious problem is the timing delay when an interrupt
has just started to be serviced. The interrupt mask is on and higher
priority interrupts are blocked from service. In this case, the delay
to the service can easily stretch out to 100 cycles before the interrupt
mask is cleared. This is one of the reasons for clearing up the inter-
rupt mask as soon as data is transferred. (The non-maskable interrupt
which will be discussed later is one solution to this problem.) A second
is to only use interrupts for systems that have adequate buffering and/or
slower transfer rates. This does not imply that most microprocessor
applications should not be primarily interrupt driven. The MCS650X inter-
rupt system is designed to be very economical and easy to apply. It should
be used for almost all control applications, other than when the throughput
described is not sufficient to handle the particular problem. It should
be remembered that at one megahertz the fast MCS650X is not really capable
of handling problems with more than 50KHZ byte throughput for a sustained
period of operation. It is also true that in most control applications,
many of the signals occur at much slower rates or are bufferable so that
the response time to a request for service is significantly longer than
the 20 to 50 cycles that can normally be expected with a polling system.
Because of this, it is expected that most applications will be quite

satisfied using the polling technique described above.

9.8 FULLY VECTORED INTERRUPTS

However, there are occasions where several high speed peripherals
can be managed by the microprocessor if the user is willing to make the
investment to attain a truly vectored interrupt. There is a second level
of interrupt vectoring possible by just putting one high priority device
on the non-maskable interrupt line. However,‘the case when multiple
inputs are desired with both priority encoding and true vectoring, the
MCS650X when combined with appropriate hardware has the ability in the
first polling instruction to transfer control to appropriate interrupting

device service software.

140

The MCS6520 contains, in its two bytes of memory,
an indirect pointer to the address of the subroutine in which
resides the interrupt processing for the devices, which the priority
encoder has selected. This gives an effective service time of approxi-
mately 24 cycles to a prioritized interrupt and is one of the primary

applications of the jump indirect capability.

9.8.1 JMP Indirect

This instruction establishes a new value for the program counter.

It affects only the program counter in the microprocessor and affects
no flags in the status register.

JMP Indirect is a three byte instruction.

In the JMP Indirect instruction, the second and third bytes of the
instruction represent the indirect low and high bytes respectively of the
memdfy location containing ADL. Once ADL is fetched, the program counter is

incremented with the next memory location containing ADH.

Example 9.6: Illustration of JMP Indirect

Address Data External Internal
Cycle Bus Bus . Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous
Operation.

Increment PC to 0101

2 0101 TAL Fetch IAL Interpret Instructions
Increment PC to 102

3 0102 1AH Fetch IAH Store IAL
4 TAH, IAL ADL Fetch ADL Add 1 to IAL
5 IAH,IAL+1 ADH Fetch ADH Store ADL
6 ADH,ADL Next OP Fetch Next
CODE OP CODE

141

9.9 INTERRUPT SUMMARY

There is an interrupt request line (IRQ) that, when low, indicates
one of the devices which are connected to the interrupt request line
requires service. At the beginning of the interrupt service routine, the
user should save, on the stack, whatever registers will be used in his
interrupt processing routine. His program then goes through a polling
sequence to determine the interrupting device by analyzing the status
registers in the order of priority of service for the I/0 devices. On
finding a device which requires service, the data for that device should
be read or written as soon as possible and the interrupt disable cleared
so that the microprocessor can interrupt again to service lower priority
devices. Devices with over 40KHz byte transfer, etc., and mixed devices
with over 20KHz should not normally be run interrupt driven. All others
should be run interrupt driven as it minimizes the service time and

programming for interrupt I/O operationms.

9.10 NON-MASKABLE INTERRUPT

As is discussed, it is often desirable to have the ability to inter-
rupt an interrupt with a high priority device which cannot afford to wait
during the time interrupts are disabled. For this reason, the MCS650X has
a second interrupt line, called a Non-Maskable Interrupt. The input
characteristics of this line are different than the interrupt request line
which senses it needs service when it remains low. The non-maskable input
is an edge sensitive input which means that when the collector-or'd input
transitions from high to low, the microprocessor sets an internal flag

such that at the beginning of the next instruction, no matter what the

status of the interrupt disable, the microprocessor performs the interrupt
sequence shown in Example 9.2 except that the vector pointer put out in
cycle 6 and 7 is FFFA and FFFB. ’
This gives two effects of a non-maskable interrupt. First, no

matter what the status of the interrupt disable, the non-maskable inter-
rupt will interrupt at the beginning of the next instruction, therefore,
the maximum response time to the vector point is 14 cycles. Secondly, the
internal logic of the MCS650X is such that if an interrupt request and non-
maskable interrupt occur simultaneously or if the non-maskable interrupt

occurs prior to the time that the vectors are selected, the microprocessor

142

always assigns highest priority to the non-maskable interrupt. Therefore,
the FFFA and FFFB vector are always taken if both interrupts are active

at the time the vector is selected. Thus the non-maskable interrupt is
always a higher priority fast response line, and can, in any given system
be used to give priority to the high speed device.

It is possible to connect multiple devices to the non-maskable inter-
rupt line except for the fact that the non-maskable interrupt is edge
sensitive. Therefore, the same logic that allows the IRQ to stay low until
the status has been checked and the data transferred will keep the non-mask-
able interrupt line in a low state until such time as the first interrupt
is serviced. If-subsequent to the first interrupt of a non-maskable inter-
rupt line occuring, a second device which is collector-ored would have
turned on its status and collector-or'd output, the clearing of the first
interrupt request woula not cause the line to re-initialize itself to the
high state and the microprocessor would ignore the second interrupt. There-
fore, multiple lines connected to the non-maskable interrupt must be careful-
ly serviced.

In any case, NMI is always one free high priority vectored interrupt.
By virtue of the fact that it goes to a different vector pointer, the
microprocessor programmer can be guaranteed that in 17 cycles he can trans-

fer data from the interrupting device on the non-maskable interrupt input.

The Eﬁﬁ_and NMI are lines which, externally to the microprocessor,
control the action to the microprocessor through an interrupt sequence.
As is mentioned during the discussion on the start command, the restart
cycle is a pseudo interrupt operation with a different vectbr being
selected for reset which has priority over both interrupt and non-
maskable interrupt. Non-maskable interrupt has priority over interrupt.
There is also a software technique which allows the user to simulate an
interrupt with a microprocessor command, BRK. It is primarily used for
causing the microprocessor to go to a halt condition or stop condition

during program debugging.

143

9.11 BRK — BREAK COMMAND

The break command causes the microprocessor to go through an inter-
rupt sequence under program control. This means that the program counter
of the second byte after the BRK is automatically stored on the stack
along with the processor status at the beginning of the break instruction.
The microprocessor then transfers control to the interrupt vector.

Symbolic notation for break is PC + 2+ (FFFE)-»PCL (FFFF}~PCH.

Other than changing the program counter, the break instruction
changes no values in either the registers or the flags.

The BRK is a single byte instruction and its addressing mode is
Implied.

As is indicated, the most typical use for the break instruction is
during program debugging. When the user decides that the particular pro-
gram is not operating correctly, he may decide to patch in the break
instruction over some code that already exists and halt the program when
it gets to that point. 1In order to minimize the hardware cost of the
break which is applicable only for debugging, the microprocessor makes use
of the interrupt vector point to allow the user to trap out that a break
has occurred. 1In order to know whether the vector was fetched in response
to an interrupt or in response to a BRK instruction, the B flag is stored
on the stack, at stack pointer plus 1, containing a one in the break bit
position, indicating the interrupt was caused by a BRK instruction. The B
bit in the stack contains 0 if it was caused by a normal IRQ. Therefore,

the coding to analyze for this is as follows in Example 9.6.

Example 9.7: Break-Interrupt Processing

Cycles Bytes Check for A BRK Flag

4 1 PLA Load status register

3 1 PHA Restore onto Stack

2 2 AND # $ 10 Isolate B Flag

2 2 BNE BRKP Branch to Break Programming
11 6 ~

l

Normal Interrupt Processing

144

This coding can be inserted any place in the interrupt processing
routine. During debugging, if the user can afford the execution time, it
should be placed immediately after the save routine. If not, it can be

put at the end of the polling routine which gives a priority to the

polling devices as far as servicing the interrupts. However, it should

be noted that in order not to lose the break, the returns from all inter-

rupts during debugging should go through an equivalent routine.
Once the user has determined that the break is on, a second analysis

and correction must be made. It does not operate in a normal manner of

holding the program counter pointing at the next location in memory during
the BRK instruction. Because of this, the value on the stack for the
program counter is at the break instruction plus two. If the break had
been patched over an instruction, this is usually of no significant
consequence to the user. However, if it is desired to process the next
byte after the break imnstruction, the use of decrement memory instructions
in the stack must be used.

It is recommended that the user normally takes care of patching
programs with break by processing a full instruction prior to returning
and then use jump returns.

An interesting characteristic about the break instruction is that it's
OP CODE is all zero's‘(O), therefore, BRK coding can be used to patch
fusable link PROMS through a break to an E-ROM routine which inserts patch
coding.

An example of using the break to patch with is shown below:

Example 9.8: Patching with a break utilizing PROMs

01d Code FC21 LDA

FC22 05

FC23 21

FC24 Next OP CODE
Patched FC21 BRK 00
Code FC22 05

FC23 21

FC24 Next OP CODE

[145

The interrupt vector routine points to:

Patch LDA
06

21

JMP

24

FC

This coding substitutes:

LDA 2106
for the
LDA 2105
coding at
FC21

by use of the BRK and a break processing routine.

9.12 MEMORY MAP

A series of requirements were discussed to this point for the

memory organization which can be illustrated by the following memory map:

Hex Address

0000-00FF RAM used for zero page and indirect memory addressing
operation.

0100-01FF RAM used for stack processing and for absolute addressing.

0200-3FFF Normally RAM.

4000-7FFF Normally I/0

8000-FFF9 Program storage normally ROM.

FFFA Vector low address for NMI.

FFFB Vector high address for NMI.

FFFC Vector low address for RESET.

FFFD Vector high address for RESET.
FFFE Vector low address for IRQ + BRK.
FFFF Vector high address for IRQ + BRK.

The addressing schemes for I/0 control between locations 4000 and
8000 Hex, have not been fully developed. This is described in detail in
the Hardware Manual, Chapter 2. The Zero Pagg addressing requires that
RAM should be located starting in location 00. If more than one RAM page
is necessary, RAM location 0100 through OlFF should be reserved for the
stack or at least a portion of parts should be reserved for the stack
with the rest of it being available to the user to use as normal RAM.

Locations from 0200 up to 4000 are normally reserved for RAM expansion.

146

In small memory configurations such as are inherent in a MCS6530 class de-
vice, in order to minimize the addressing lines, page two (02XX) will be
normally used for input/output as opposed to using the 40XX page which is
used for devices which require significant amount of outboard RAM, ROM
and I/0.

Because of the fact that the MCS650X has three very important vector
points selected in highest order memory, it is usually more useful to
write programs with the memory storage located at a starting address
which allows the programmer to make sure that the last address in his
ROM contains the start and interrupt vectors. Because of these alloca-
tions, the user finds himself working in three directions. RAM is
assigned in location 0000 working up. I1/0 devices are started at
location 4000 starting up and ROM starts at location FFFF and works down.
Although this seems like an unusual concept, one must remember that the
hardware really only gives performance to either end of memory and,
therefore, data located in the middle has no priority one over the other.
So starting at either end is just as useful a technique as starting at one
end and working up.

In order to take maximum advantage of the capability of the micro-
processor, particularly when using a symbolic assembler, working data
should be located starting in the location 0, and stack addresses should
be reserved until after analysis of the working storage requirements have
been completed. Program storage should start in high order memory with
some guess as to the amount of memory required being taken and fhat being
taken as a start address. However, care should be taken to assign the
three fixed vectors almost immediately at least symbolically as they are

all necessary for correct operation of the microprocessor.

- A
G & B ok M

CHAPTER 10

SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.0 DEFINITION OF SHIFT AND ROTATE

In many cases operations of the control systems must operate a bit at
a time. Data is often available only bit-serial and sometimes sequential
bit operations are the only way to solve a particular problem. In addition
to that, in order to combine bits into a field, shift and rotate instruc-
tions are necessary. Multiply and divide routines all require the ability
to move bits relative to one another in a full multiple byte field.

The shift instruction is one that takes a register such as the
accumulator and moves all of the bits in the accumulator 1 bit to the right
or 1 bit to the left. Examples of the shift and rotate instructions in the

MCS650X are shown below:

Example 10.1: General shift and rotate

Carry
Shift Right Before B7 B6 | B5 | B4 | B3 B2 | B1 | BO
After 0 B7 B6 B5 B4 B3 B2 Bl BO
Shift Left Before B7 B6 | B5 | B4 | B3 B2 | BL | BO C
After r B6 B5 B4 B3 B2 B1 BO 0 B7
Rotate Left Before B7 B6 B5 B4 B3 B2 Bl RO C
After I— g6 | Bs | B4 | B3 |B2 | B1| BO| C B7u—j

147

As you can see from our example, moving data 1 bit to the right is
called shift right. The natural consequence of the shift right is that
the input bit or high order bit in this case is set to 0. Moving the data
in the register 1 bit to the left is called shift left. In this case, the
0 is inserted in the low order position. These are the 2 shift capabilities
that exist in the MCS650X microprocessor.

It should be noted that in both cases, the bit that is shifted from
the register, the low order bit in shift right, and the high order bit in
shift left, is stored in the carry flag. This is to allow the programmer
to test the bit by means of the carry branches that are available and also
to allow the rotate capability to transfer bits in multiple precision
shifts.

The second part of the multiple precision shift instruction is the
rotate which is shown in Example 10.1, in which the value of the carry bit
becomes the low order bit of the register, and the output bit from the shift

is stored in carry.

10.1 LSR — LOGICAL SHIFT RIGHT

This instruction shifts either the accumulator or a specified memory
location 1 bit to the right, with the higher bit of the result always being
set to 0, and the low bit which is shifted out of the field being stored
in the carry flag. B7 BO

The symbolic notation for LSR is 0 > -—1

The shift right instruction either affects the accumulator by shift-
ing it right 1 or is a read/modify/write instruction which changes a speci-
fied memory location but does not affect any internal registers. The shift
right does not affect the overflow flag. The N flag is always reset. The
Z flag is set if the result of the shift is 0 and reset otherwise. The
carry is set equal to bit 0 of the input.

LSR is a read/write/modify instruction and has the following address-

ing modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.

148

10.2 ASL — ARITHMETIC SHIFT LEFT

The shift left instruction shifts either the accumulator or the ad-
dress memory location 1 bit to the left, with the bit 0 always being set
to 0 and the bit 7 output always being contained in the carry flag. ASL
either shifts the accumulator left 1 bit or is a read/modify/write instruc-

tion that affects only memory. B7 BO

The symbolic notation for ASL is | [f= 0

The instruction does not affect the overflow bit, sets N equal to the
result bit 7 (bit 6 in the input), sets Z flag if the result is equal to
0, otherwise resets Z and stores the input bit 7 in the carry flag.

ASL is a read/modify/write instruction and has the following address-

ing modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X

10.3 ROL — ROTATE LEFT

The rotate left instruction shifts either the accumulator or addressed
memory left 1 bit, with the input carry being stored in bit 0 and with the
P g

input bit 7 being stored in the carry flags.

The symbolic notation for ROL is B7 BQ
C 1 il I‘j

The ROL instruction either shifts the accumulator left 1 bit and

stores the carry in accumulator bit O or does not affect the internal reg-
isters at all. The ROL instruction sets carry equal to the input bit 7,
sets N equal to the input bit 6, sets the Z flag if the result of the ro-
tate is 0, otherwise it resets Z and dces not affect the overflow flag at
all.

ROL is a read/modify/write instruction and it has the following address-

ing modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.

149

10.4 ROR - ROTATE RIGHT (Available on Microprocessors after June, 1976)

The rotate right instruction shifts either the accumulator or addressed
memory right 1 bit with bit O shifted into the carry and carry shifted into
bit 7.

The symbolic notation for ROR is
B7 BO

C

The ROR instruction either shifts the accumulator right 1 bit and
stores the carry in accumulator bit 7 or does not affect the internal regis-
ters at all. The ROR instruction sets carry equal to input bit 0, sets N
equal to the input carry and sets the Z flag if the result of the rotate is 0;
otherwise it resets Z and does not affect the overflow flag at all.

ROR is a read/modify/write instruction and it has the following address-

ing modes: Accumulator; Zero Page; Absolute; Zero Page,X; Absolute,X.

10.5 ACCUMULATOR MODE ADDRESSING

As indicated, all of the shift instructions can operate on the accumu-
lator. This is a special addressing mode that is unique to the shift in-

structions and operates with the following set of operations:

Example 10.2: Rotate accumulator left

External Internal
Cycles Address Bus Data Bus Operation Operation
1 100 OP CODE Fetch Next Finish Previous
OP CODE Operation; Increment
PC to 101
2 101 Next Fetch Dis- Decode Current In-
QP CODE carded OP CODE struction; Hold P-
Counter
3 101 Next Fetch Next Shift Through the
OP CODE OP CODE Adder
4 102 ? Fetch Second Store Results into A;
Byte Interpret Next OP CODE

As we can see, the accumulator instructions have the same effect as
the single-byte non-stack instructions in the sense that the instruction con-
tains both the OP CODE and the register in which the operations are going

to be performed; therefore, in cycle 2, the microprocessor holds the pro-

150

gram counter and in cycle 3, fetches the same program counter location and
starts the next instruction operation. At the same time, it is transferring
the results from the adder into the accumulator; this is because of the look-
ahead and pipelining characteristics of the MCS650X. . The accumulator shift

and rotate operations take only 2 cycles and 1 byte of memory.

10.6 READ/MODIFY/WRITE INSTRUCTIONS

The MCS650X has a series of instructions which allow the user to
change the contents of memory directly with a single instruction. These
instructions include all of the shift, rotate, increment and decrement mem-
ory instructions. The operation of each of these instructions is the same
in that the addressing mode that is defined for the instruction is imple-
mented the same way as if for normal instructionms. .After the address has
been calculated, the effective address is used to read the memory location
into the microprocessor arithmetic unit (ALU). The ALU performs the opera-

// tion and then the same effective address is used to write the results back
into memory. The most difficult operation is the addressing mode Absolute
Indexed which is illustrated in Example 10.3 for the rotate left instruc-

tion, ROL:

Example 10.3: Rotate memory left Absolute,X

External Internal
Cycles Address Bus Data Bus Operation Operation
1 100 OP CODE Fetch Finish Previous
OP CODE Operation, Incre-
ment PC to 101
2 101 ADL Fetch ADL Decode Current In-
struction, Increment
PC to 102
3 102 ADH Fetch ADH Add ADL + X, Incre-
ment PC to 103
4 ADH, ADL + X ? False Read Add Carry from
Previous Add to ADH
5 ADH + C, Data Fetch Value
ADL + X
6 ADH + C, ? Destroy Perform Rotate,
ADL + X Memory Turn on Write
7 ADH + C, Shifted Store Set Flags
ADL + X Data Results
8 103 OP CODE Fetch Next Increment PC to 104
OP CODE

151

e A N - 5 A X A G50 T

T A At Y N8 Ot G TR L A

Cycle 4 is a wasted cycle because read/modify/write instruction should
wait until the carry had been added to the address high in order to avoid
writing a false memory location. This is the same logic that is used in
the store instruction in which the look-ahead or the short cut addressing
mode is not taken advantage of. Cycle 4 is an intermediate read, and
cycle 5 is when the actual data that is going to be operated on is read.

The address lines now hold at that address for cycles 5, 6 and 7. The
microprocessor signals both itself and the outside world those operations
during which it will not recognize the ready line. It does this by pulling
the Write line. The Write line is puIIéd\in cycle 6 because data is writ-
ten into the memory location that is goingrto be written into again in

cycle 7 with correct data.

Because data bits read from memory have to be modified and returned,
there is no pipelining effect other than the overlap of the adding in the
address low and index register. The 7 cycles it takes to perform read/
modify/write Absolute Indexed,X instruction is the worst case in timing
for any section of the machine except for interrupt. This unique ability
to modify memory directly is perhaps best illustrated by the coding in
Example 10.4 which is used to shift a 4-bit BCD number, which has been
accumulated in the high 4 bits of the accumulator as part of the decoding
operation, from the accumulator: into a memory field. Figure 10.1 is a
flow chart of this example. Examples such as this often occur in point-
of-sale terminals and other machines in which BCD data is entered sequen-
tially. This example assumes that the value is keyboard entered, through
which data is entered into the accumulator from left to right but has to
be shifted into memory from right to left. The value in the field before

the shift is a 1729 which after the shift will be a 17,295.

152

Set Y = 4
for counting
of bits moved

'

Set X = 4
to move all eight
digits, two digits
at a time

Move one bit from
accumulator into carry

Rotate data once
into next value

|
Y

Decrement X
to point at next value

No

= Zero

Yes

Decrement Y

No

Flow Chart for Moving in a New BCD Number
FIGURE 10.1

153

Example 10.4: Move a new BCD number into field

Before After
Field 00 00
00 01
17 72
29 95
Accumulator 50 00

Coding
Bytes Instruction
2 LDY 4 ¢ £ 4
9 LOOP-2 LDX 4 set up for moves
1 ASL
3 LOOP-1 ROL Price -1, X
1 DEX shift the field 1 bit
2 BNE LOOP-1
1 DEY shifts four times.
2 BNE LOOP-2
14 bytes

There are several new concepts introduced in this example; the first
is the use of index register Y as just a counter to count the number of
times the character has been bit-shifted. It is a common approach to use
bit shifts, as is implemented in the MCS650X family, to shift data into
memory. The power of being able to communicate directly in memory is shown
by shifting bits from one byte to the next byte using a single ROL indexed
instruction. This example uses a loop within a loop and it should be
noted that LOOP 1 occurs 4 times for every time LOOP 2 occurs. The in-
ternal loop is very important in the sense that this loop executes 16
times for the problem; therefore, its execution time should be optimized.

In addition to having the ability to shift and rotate memory, the

MCS650X has the ability to increment and decrement memory locations.

154

10.7 INC — INCREMENT MEMORY BY ONE

This instruction adds 1 to the contents of the addressed memory loca-
tion.

The symbolic notation is M + 1 > M.

The increment memory instruction does not affect any internal registers
and does not affect the carry or overflow flags. If bit 7 is on as the
result of the increment,N is set, otherwise it is reset; if the increment
causes the result to become 0, the Z flag is set on, otherwise it is reset.

The addressing modes for increment are: Zero Page; Zero Page,X; Abso-

lute; Absolute,X.

10.8 DEC — DECREMENT MEMORY BY ONE

This instruction subtracts 1, in two's complement, from the contents
of the addressed memory location.

Symbolic notation for this instruction is M - 1 » M,

The decrement instruction does not affect any inEernal register in the
microprocessor. It does not affect the carry or overflow flags. If bit 7
is on as a result of the decrement, then the N flag is set, otherwise it
is reset. If the result of the decrement is 0, the Z flag is set, other-

wise it is reset.

The addressing modes for decrement are: Zero Page; Zero Page,X;
Absolute; Absolute,X.

In many examples through the report, we have used the ability to incre-
ment and decrement registers in the microprocessors. The advantages of
incrementing and decrementing in memory are that it is possible to keep
external counters or to directly influence a bit value by means of these

instructions., It is sometimes useful during I/0 instructions.

10.9 GENERAL NOTE ON READ/MODIFY/WRITE INSTRUCTIONS

The ability to read, modify and write memory is unique to MCS6500
class microprocessors. The usefulness of the instructions is limited only
by the user's approach to organizing memory. Even though the instructionms
are fairly long in execution, they are significantly shorter than having
to load and save other registers to perform the same function. Experience
in organizing programs to take advantage of this manipulation of memory

will allow the user to fully appreciate the power of these instructionms.

155

CHAPTER 11
PERIPHERAL PROGRAMMING

11.0 REVIEW OF MCS6520 FOR I/O OPERATIONS

It should be noted that in the following discussions, the major
difference between the MCS6530 1/0 and the main register of the MCS6520
is that the extra bit in the control register need not be used in the

MCS6530. All registers in the MCS6530 are directly addressable.

Example 11.1: The MCS6520 Register Map

r-—--——-—-—--- 1 [T T
| A DATA DIRECT- .B DATA DIRECT-I
I0 A | 0 i
* = Base Address ! N (AD) { ! ION (BD) (
| ' T
PIAD * = % + 1 b e~ — - b e e e J
PIAC * =% + 1 A DATA (AD B DATA (BD)
PIBD * = % + 1
PIBC * =%+ 1
A CONTROL (AC) B CONTROL (BC)
A SIDE B SIDE

In Example 11.1 a programming form to describe the PIA is shown.
The programming form is used in the Cross—-Assembler and Resident
Assembler with the MCSSSOX product family. The notation * = is used
to define any location. The notation means that the assembler instruct-
ion counter is set equal to the value following the equal sign. The
expression * = * + 1 causes the assembler to recognize that there is
one byte of memory associated with the term; therefore, we can see
that the definition of the four registers PIAD, PIAC, PIBD and PIBC

are consecutive memory locations starting at some base address, with

156

the first byte addressed as PIAD, the second byte addressed as PTIAC, the
third byte addressed as PIBD, and the fourth byte as PIBC. This is

a normal way a MCS6520 would be organized and this is the way the
programming form should be set up. The base address is picked up by

an algorithm described in the hardware manual but normally it is a

value between 4004 and 4080 Hex. Each MCS6520 is given a base address

which works progressively up from 4004 Hex.

In Example 11.1 two registers are shown in dotted lines. This is
because each of the A DATA (AD) and B DATA (BD) parts of the MCS6520
are actually two registers having the same address, one which specifies
the direction of each of the input/output paths (the Data Direction
Register), the second one which is actually the connection to the in-
put/output paths (the Data Register). Because of pin limitations on
the MCS86520, the microprocessor can only directly address one of the
registers at a time. Differentiation as to which register is being con-
nected to the microprocessor is a function of bit 2 in the respective
control register (AC and BC). If bit 2 is off, the Data Direction Reg-
ister is being addressed; if it is on, the Data Register is being ad-

dressed.

During the initialization sequence, therefore, the MCS6520 starts
out with all registers at zero. This means that the microprocessor is
addressing the Data Direction Register. The PIA initialization is done
by writing the direction of the pins into the Data Direction Register
(AD, BD) and then setting on the control flag as described below. After

that, the program will normally be dealing with the data registers.

Example 11.2: General PIA Initialization

LDA # DIRECT Initialize Direction
STA PIAD
LDA # CONTR

STA PIAC Initialize Control

157

Example 11.2 illustrates a general form of initialization and can

be completed for as many PIA's as there are in the system.

11.1 MCS6520 INTERRUPT CONTROL

The MCS6520 has a basic interrupt capability which ig under control
of the programmer. Almost all MCS6500 I1/0 devices that allow ihterrupts
have an interrupt control register that allows the uséf_to diéable the
interrupt. This will keep inputs which are not necessarily active from
causing spurious interrupts which must be handlgd by the microprocessor.
Examples of this are open tape loops or othef‘signalg ﬁhich§have high
impedance noise sensitive inputs except when cqpquted to some kind of
media. In this type of application, normally the interruptAis-enabled
by some physical action from the person_using the device such.as load-
ing of: the cassette, pushing the power-on switch, etc. In the case of
the MCS$6520, there are two interrupt causing condition§‘for:each

control register.

Each of these interrupts concern themselves with one input pin.
The Control Register allows the programmetr to decide whether or not the
pin is sensitive to positive edge signals or negative edge signals and
whether or not an interrupt shall occur-when the selected transition

has occurred.

It should be noted that, therefore, it is possible for a line to
cause a status bit to be set without causing an interrupt. The com-

prehensive I/0 Program in Section 11.5 uses this combination.

158

Example 11.3:

Interrupt Mode Setup

Bit

7 Status Bit:

Set
Set
Set
Set

Bit

on Negative Edge
on Negative Edge
on Positive Edge
on Positive Edge

6 Status Bit:

Set
Set
Set
Set

*if bit 5 equals zero

on Negative Edge
on Negative Edge
on Positive Edge
on Positive Edge

Bits

1

Interrupt

Bits

[l ol = R e

0

0 No
1 Yes
0 No
1 Yes

* Interrupt

[y -X=]F-3

3

0 No
1 Yes
0 No
1 Yes

The proper combination of bits are usually determined during the

design of the MCS6520 interconnection and form the constant which

is loaded in the control register.

The constant that is loaded in

the control register should contain bit 2 on. For example, to allow

bit 7 to be set on negative going signals with interrupt enable and

bit 6 to be set on positive signals with interrupt disable, the

control value would be Hex 15.

With bit 5 on, the pin that controls bit 6 can be set as an

output pin.

The output pin is either controllable by the microprocessor

directly or acts as a handshake to reflect the status of reads and

writes of the data register.

depends on how bits 5, 4, and 3 are programmed, as shown in Example 11.4.

Example 11.4:

The operation of the output pins CA2, CB2

CA2, CB2 Output Control

CA2 Output With:

Low on read or write until

bit 7 on

Low on read or write for

one cycle

Always O

Always 1

159

Bit 5 on

Bit 4 Bit 3
0 0
0 1
1 0
1 1

The decision as to whether or not to use the one cycle low until
bit 7 comes on is a hardware decision, depending on the device which

is hooked to the pin.

It should be of interest to the programmer to note that bit 6 con-
trols pins known as CA2 or CB2 which can be considered to be auxiliary
outputs which are controlled by bit 3 assuming the processor is
initialized so that bit 5 and bit 4 are ones.

Example 11.5 shows the use of controlling bit 3 using AND and

OR instructions; however, it should be noted that this technique
applies for any individual bit in the PIA data direction register also:

Example 11.5: Routine to Change CA2 or CB2 Using Bit 3 Control

Set CA2

LDA PIAC
QRA #3508
STA PIAC
Clear CA2

LDA PIAC
AND #$F7
STA PTIAC

Note: § - Direction to Assembler for Hex Notation
- Direction to Assembler for Production Operator

By similar techniques, every pin in the microprocessors of the

MCS6520 can be controlled. There are two particular notes to remember:

1. In the MCS6520, both bit 6 and bit 7 are cleared on either
side by reading of the corresponding data register if bit 6 has
been set up as an input. This means that polling sequences
for 1/0 instructions should only read the status registers and
then read the data registers after the status has been determined,

otherwise false clearing of the status data may occur.
2. Even though the handshake for the CB2 pin is on write of B

data, a read of B data must be done to clear bit 7.

160

11.2 IMPLEMENTATION TRICKS FOR USE OF THE MCS6520 PERIPHERAL
INTERFACE DEVICES

11.2.1 Shortcut Polling Sequences

In section 9.7, the techniques for using a LOAD A to poll for
interrupts was covered; however, the I/0 devices on the MCS6520
can either set bit 6 or bit 7 on to cause an interrupt; therefore,
a different technique needs to be. used to analyze the MCS6520 tc
poll a series of 6520's each one of which could have caused the
interrupt. It is for this purpose that .the BIT instruction senses
both bit 6 and bit 7. ~Coding for a full poll of a PIA is as

shown:

Example 11.6: Polling the MCS6520

Interrupt Vector JMP STORE

LDA #CO Set up Mask for 6 and 7
BIT PIAAC Check for neither 6 or 7
BEQ NXT1 :

BMI SEVEN If 7,.g0 to save——

otherwise clear

Process BIT
6 INTERRUPT
NXTI BIT PIABC
BEQ NXTZ
etc.

This program takes full advantage of the BIT instruction by
checking for both bit 7 and 6 clear. BMI to SEVEN just checks N is
on and that N is a higher priority. If bit 6 is one, tﬂe overflow
bit will also be set, aliﬁwing the finish of the process seven
routine to test the:overflow‘and jump back to the process bit 6

coding.

161

Bit 6 and bit 7 were sampled by the single BIT instruction.
Speed was accomplished by loading the mask for just bit 6 and 7 into
the register which allows the BEQ instruction to determine that

neither of the two flags is on.

This routine depends on the fact that in the MCS6520, if

CA2 or CB2 is an output, bit 6 is always zero.

11.2.2 Bit Organization on MCS6520's

In the microprocessor, there is a definite positional pref-
erence for the testing of single bits. In the MCS6520 Data Direct-
ion Register, it is possible to select any combinations of input/
output pins by the patterm that is loaded in the Data Direction
Register. A one bit corresponds to an output and a zero bit
corresponds to an input. The natural tendency would be to use
MCS6520s with all eight bits organized into a byte. There is
relatively little advantage to organizing this way unless the
eight bits are to be treated as a single byte by the program. This
is often not the case, more often the bits are a collection of

switches, coils, lights, etc.

On such combinations, advantage should be taken of the fact
that bit 7 is directly testable so that a more useful combination
of eight pins on one MCS6520 register would be seven outputs and
a single input with the single input on-bit 7. This organization
allows the programmer to load and branch on that location without
ever having to perform a bit or shift instruction to isolate a

particular bit.

A slmllar capablllty for settlng a s1ngle bit involves the
organlzatlon of data w1th seven 1nputs and a single output with a
single output located in bit 0. This bit may be set or cleared by
an INC or DEC instruction without éffecting‘the rest of the bits
in the register because the input pins ignore signals written from
the microprocessor. Therefore, the more skilled MCS6500 programmer
will often mix single outputs on bit 0 and a single input om bit 7

with bits of the corresponding opposite type.

162

11.2.3 Use of READ/MODIFY/WRITE Instruction For Keyboard Encoding

A rather unique use of the memory with a READ/MODIFY/WRITE
operation involves setting the data register at all zeros, then
using the three state output of the B side to sample a keyboard.

The following Figure 11.1 shows the connection for a 64 key key-

board organized 8 x 8:

B Side BD

PR NEE NN

Decode
Matrix

AD

A SIDE

Keyboard Encoding Matrix Diagram
FIGURE 11.1

163

The B side is set up to act as a strobe so that each of
the output lines will have a ground on it during one scan cycle.
The eight A side data inputs are then sampled and decoded by the
microprocessor giving a 64 key keyboard which is directly trans-

latable into code.

Figure 11.1 and Example 11.7 make use of the capability
of the microprocessor to move a bit through the MCS6520 register
location. This program also uses the compare instruction and the

ability to detect a carry during a shift.

Example 11.7: Coding for Strobing an 8 x 8 Keyboard

Qutput Strobe is indicated by a one in Data Director Register.

Any connection is indicated by a zero in register bit.

ggﬁ ggABD Initialize B Data Register
LDA PIABC
AND #FB Initialize Control Register to
STA PIABC Address Data Direction Register
STX PIABC
SEC Set low end bit on
LOOP - ROL PIABD Shift for Strobe
?;i ggiiD if all sampled, exit
CMP {IFF Check for no zeros
BEQ LOOP
DONE ———emm- If any zeros, then process them.

A and PIABD can now be used to find out just what key is
depressed.

164

Done

Set Data Register

To All Zeros

Y

Set Control Register
To Point At
Data Direction Register

Y

Set Up Direction Register
Equal To All Zeros
And Set Carry

Shift Left
Strobing Register (BD)

Carry

For Done
By Checking if

On

Shift Has Moved
Bit Off End of
Register

Carry

Load Keyboard Input Register

Any Zero

Yes

Then process Acémulator
for Zero Bits
Keyboard Strobe Sequence
FIGURE 11.2

165

Initialize
For

Strobing

11.3 MCS56530 PROGRAMMING

Although they have separate addressing, the Data Direction and
Input/Output Registers operate the same as on the MCS6520.

Programming of the Interval Timer has some special problems.
First of all, the time is effectively located in all addresses from
XXX4-XXXF. By picking the proper address, the programmer is able to
control the P scale for the timeout. Initialization of the Interval
Timer is done by a LOAD A followed by STORE A into the timing count.
The value stored in the timing counter represents the number of states
which the counter will count through. The address used to load will
determine how many additional divisions of the basic clock cycle will

be counted.

When the counter finally counts to zero, it continues to count
past zero at the ome cycle clock rate in order to give the user an
opportunity to sample the Status Register, then come back and read
the Count Register to determine how long it has been since an

interrupt occurred..

Servicing an interrupt is the same for ‘this Control Register as
for any other interrupting register. Bit 7 is set on in the Status
Register to indicate that the Interval Timer is in the interrupt

state and bit 7 is reset by the reading of the Counter.

11.3.1 Reading of the Counter Register

Because of the nature of counting past zero, the number
in the Count Register is in two's complement form. It can be
added directly to and used to correct the next count in a
sequential string of counts or for correction for one cycle

accuracy.

114 HOWTO ORGANIZE TO IMPLEMENT CODING

The specific details of organizing to get coding assembled is a
function of the software that is used to implement the coding. Two
software programs are currently available for the MCS650X family.

The Cross Assembler is available on various time share systems

or for batch use on the user's system. Its documentation is covered in

166

the Cross-Assembler Manual, publication number 6500-60. The Resident
Assembler is available in the Microcomputer Development Terminal,
as well as for sale in ROMs. The documentation for this is covered in

the Resident Assembler Manual, publication number 6500-65.

The major advantages of using an assembler are that the assembler
takes mnemonics and labels and calculates the fixed code. Reference
to the OP CODE tables in the appendix shows that coding in Hex is
quite difficult because there is no ordered pattern to the instruction

Hex codes.

The Cross Assembler or Resident Assembler allows one to specify all
inputs and outputs in symbolic form on a documented listing. Symbolic
addressing is a technique which has the following advantages over

numerical addressing:

1. It allows the user to postpone until the last minute actual
memory allccation in a program which is being developed. In
a microprocessor that has memory-oriented features such as
Zero Page, memory management is important. It is desirable
to have as many as possible of the read/write values in the
Zero Page. However, until the coding is complete, the organi-

zation of Zero Page may be in doubt. Values which are

originally assigned in Zero Page may not be as valuable there
;E‘r after some analysis of the coding either indicates that the
applications of these values use indirect references or index-
ing by Y which does not allow the program to really take
advantage of Zero Page locations whereas some other code
which may not be as frequently used might still result in a
code reduction by use of Zero Page. This allocation, if all
the fields are defined symbolically, can be done on the

final assembly without any changing in the user's codes.

2. Use of symbolic addresses for programming branches leads to
a better documented program and as one soon determines

calculation of relative branches is difficult and subject

167

to change any time a coding change is made. For example,
if one has organized a program with a loop in which three
or four branches all return to the same point and then
discovers a programming error which requires a single
instruction to be added between the return point and
various branches, each branch would have to be edited

and recalculated. The symbolic assembler accomplishes

this automatically on the next assembly pass.

11.4.1 Label Standards

The MCS650X assemblers have been done on a reserve word
basis in which the various mnemonics which have been described
are always considered to be OP CODE mnemonics. If any three
character fields exactly match a mnemonic then the assembler
assumes that the field is an OP CODE and proceeds to evaluate
the addressing. Any other label may be located in free form
anywhere in the coding. This means that one should organize
one's labels such that he never has a three character label
which inadvertently might be considered an OP CODE. The easiest

way to accomplish this is to always follow a pattern on labels.

Good programming practice requires that the user develop
a systems flow chart for his own basic program and individual
flow charts for subroutines before starting the coding. From
the time the routine is flow charted, it is very easy for the

user to then assign a mnemonic label to the basic subroutine.

In this text, notations like LOOP, LOOP 1, etc. are used.
In an ADD, loop would be ADLP.

The MCS650X assembler allows six spaces for
labels. It is good practice to use two characters to generally
identify the subroutine, two more characters for mnemonic purposes
and then a numbering system which allows correlation between
various addresses within a LOOP within a subroutine. By strictly
numbering such that ADLPl is different from ADLP3, each

can be addresses within the same LOOP.

168

It is assumed that the PIA's are connected in the normal manner

g of Status Register Address equal to Data Register Address + 1.

The following table and flow chart defines the program implemented

in the example.

Table #1 contains the address of all of the MCS6520 Status Registers.

Table #2 contains the address of the put-away location for the

respective data.

Table #1 - : PIA #1
PIA #1 ADL
: DATA
—
: »
ADH STATUS
j Table #2 List
é? ADL Value 1
{ — EE— Value 2
' ADH Value 3
etc.

169

Using six character labels, there are a hundred com-
binations of code which could be used in a given routine or
loop without the user having to think through the rest of
mnemonic notation. The use of characters plus a numeric for
all references is sound programming practice. The advantage
of using this technique allows one to use three character
mnemonics without ever interfering with the reserve word of
the microprocessor OP CODE mnemonics because they never have a

numeric in the mnemonic.

11.5 COMPREHENSIVE I/O PROGRAM

Figure 11.3 demonstrates the program flow in support of the Cross-
Assembler listing (Example 11.9) of a time-sharing routine of a program
which illustrates the use of the indexed indirect to perform a search of
eight devices which have active signals for servicing. The implementa-
tion of the eight devices is done in MCS6520's where the MCS6520 status

is set up to be a flag in bit 7 of a Control Register.

170

3

Initialize Index to End of Table

Fetch Next Status Register

Tes Status
On
Decrement X by 2
No

Decrement Tabile 1 as Indexed
to point at Data Register

Y

Fetch Data using
Table 1, Indexed

Y

Store Data using
Table 2, Indexed

v

Increment Table 2 Pointer
to point at Next Address

y

Increment Table 1 to point
back at Status

T

[}

Program Flow - Polling for Active Signal
FIG URE 11.3

171

Example 11.8: Polling for Active Signal

CARD = LOC CODE CARD
: CARD SERIAL NUMBER
5 AH SYSTEMS BENCHMARK =S - POLLING 8 PERIPHERALS
7 MEMORY LOCATION
8
9 SET TABLES AND STORAGE AREAS
10 COMMENT
11 *=502 INITIALIZE PC
12 0002 05 40 TABLEI .WORD PIAlAC (TABLE OF PIA FERIPHERAL CONTM
13 0004 07 40 .WORD PIA1BC
16 0006 09 40 WORD PIAZAC
15 0008 OB 40 .WORD PIA2BC
16 000A 11 40 .WORD PIAJAC
17 000C 13 40 _WORD PIA3AC
18 O0OOQE 21 40 .WORD PIA4AC
19 0010 23 40 “WORD PIA4BC
20 0012 00 02 TABLE2 .WORD STORE1 POINTERS TO STORE INPUT DATA FROM PERIPHERALS
21 0014 50 02 _WORD STORE2
22 0016 A0 02 _WORD STORE3
23 0018 FO 02 _WORD STORE4
26 001A 40 03 UORD STORES
25 001c 90 03 "WORD STORE6
26 00lE EQ 03 .HORD STORE7
27 0020 30 04 WORD STORES
28
29 0022 *=5200 SET SPACE FOR DATA INPUT ON PAGE 2
30 0200 STOREL *=*+80 FOR EACH DEVICE SET BUFFER 80 CHARACTERS LONG
31 0250 STORE2 *=#+§0
32 020 STORE3 #=#+80
33 0280 STOREG *=*+80
36 0340 STORES *=*+80
35 0390 STORE6 *=*+80
36 03£0 STORE7 #=++80
37 0430 STOREB *=#+80
38
39

40 MAIN PROGRAM PROGRAM LOCATION
41

OPCODE <LABEL

43 Fcoo (a0 LDX =016 INITIALIZE INDEX REGISTER X WITH 16
44 Fco2 PLOPZ LDA (TABLEL-2,X) INDIRECT ADDRESSING OF PERIPHERAL CONTROL
45 Fcos 30 06 VALUE BML DOIT IF FLAG SET BRANCH AND SERVICE THE DEVICE
46 Fco6 cA IF NOT SEARCH NEXT ONE

47 Fco7 cA OEX

48 FCOB po F8 ADDRESS pyg(PLop2) MNEMONIC

49 FCOA FO F4 BEQ PLOPL START AGAIN TO POLL FROM THE BEGINNING
50

51 SERVICE ROUTINE SYMBOLIC ADDRESS

52

53 Fcoc D6 00 DOIT DEC TABLE1-2,X MOVE THE POINTER TO PIA DATA REGISTER
54 FCOE AL 00 LDA (TABLEL-2,X) READ DATA IN

55 FC10 81 10 STA (TABLE2-2,X) STORE THE DATA INTO THE BUFFER

56 FC12 F6 10 INC TABLE2-2,X SET BUFFER POINTER TO NEXT LOCATION
57 Fcle F6 00 INC TABLEI-2,X

58 FCL6 D0 E8 8NE PLOP1 WHEN DONE START FROM BEGINNING ACAIN
59

60

61 ASSICN PIA LOCATION

62

63 FC18 *=34004

64 4004 PIALAD #mi+1 FIRST PERIPHERAL

85 4005 PIALAC #~h+]

66 4006 PIALBD #=41 SECOND

67 4007 PIALBC #*=#+1

68 4008 *=54008

69 4008 PIAZAD #=t+] THIRD

70 4009 PIA2AC #m#+]

71 400a PIAZBD *=t+1 FOURTH

72 400B PIA2BC #=+1

73 400C *=$4010

74 4010 PIAJAD *wt+1 FIFTH

75 4011 PIAIAC hekd)

76 4012 PIAJBD *=h+] SIXTH

77 4013 PIAJBC #=a+]

78 4014 *=$4020

79 4020 PIALAD #=t4] SEVENTH

80 4021 PTAGAC *=#4+1

81 4022 PIAGBD #=h+]l EICHTH

82 4023 PIA4BC #mhtl

83 .END END OF PROGRAM

172

APPENDIX A

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

DEFINITION OF

INSTRUCTION GROUPS

A-1

JOIRINWINDDY 0} A X3pu| Jajsue.]
J31Ul0 >OB1S 031 X Xapu| Jajsuel |
JOIB|NWNIDY 01 X Xapuj Jajsued |
X Xapu| 01 131uiod X2e1g Jajsuel |
A X38pu| 0} JO1B|NWINDIDY Jajsuel|
X Xapu| 01 J01B|NWNDDY Jaysuel |

AJoway Ul A xapu| aJ01§

Alowapy U1 X xapu} 2J01§

AJOWwa N Ul J01BINWNIOY 301G

snielg ajqesiq 1dnJasa1u| 18S

apo |ew 123 18S

be)4 AsieD 188

M0JI0g YlIM JO1[NWNDJY WoJ AJowapy 10e1qns

aulnoJgng woJuj uiniay

1dnuislu| wouy uinlay

(4018|NWN22Y 4O Asoway) 1ybiy 1i1g suQ a1e10y
(401e|NWN22Y JO AJOWBaN) Lo 11g SuQ a1e1o0y

30B1S WOy SN1e1S J0Ssadoud find
0B1S WOJ} JOIRINWNIDY |)Nd
981G UO SN1L1S J0SSa00.4d Usnd
30B1S UO JO1B|NWNIDY Yshng

JO1B|INWNDOY Ylim AJoway ,,HO,,
uonesadQ oN

(4o18INWN22Y 40 AJowan) 1g auQ 1ybiy 1IYS
AJOWa\ yim A xapuj peon)

AJOWBN Ylim X Xapu| peoT]

AJOWAN Y1IMm 1018 INWNDJYy peoT]

ssaJppy uimay buiaes uoileso-] map 01 dwnp

FONANOHS JILAIVHATY — L3S NOILONYLSNI YOSSADOYdOUIIN SO0SISON-10SISON

uo131e207 MapN 03 dwnp

au(Q AgQ A X8pu| JuawBIou|
au AQ X Xapuj 1uawaIou)
auQ Aq AJoWwaly 1uswIaIou)

JOIe[NWNIJY YlMm Alowap , 40-9AISNoX],,

auQ Aq A xapu| luawaloag
auQ AQ X xapuj juawauda(
auQ Ag AJowsy 1uawWaldag

A X3pu| pue AJowaly aJedwo)

X Xapu| pue AJowsay ajedwo)
1018|nWNdoYy pue Alows|y aiedw o)
be|4 mopianQ 18310

11g a|qesig 1dnuagiuf 1es|)

3po {ewoa 483D

bej4 Asien aea|n

18§ MO|JJaAQ Uo Yyoueug

183|D MO|}IBAQ UO Youesg

Jealg 82404

sn|d 3|nsay uo youeug

0Jaz 1ou 1insay uo youeigq

SNUI 3Nsay uo youeug

JO1B|NWINDOY Ylim AJowaly Uy s1ig 159
0Jaz 1|nsay uo youe.q

18§ Auted uo youeug

Jesjn Aled uo youeug

(1018|NWN22Y 40 AJoWBN) 11g suQ 1487 HIYS
1018(NWN20Y yum AJows iy ,,adNV..
AJieD yum Jole|nwnady 01 AJIOWS3N PpPY

A.1 INTRODUCTION

The microprocessor instruction set ‘is divided into three basic groups.
The first group has the greatest addresging flexibility and consists of
the most general purpose instructions such as Load, Add, Store, etc.
The second group includes the Read, Modilfy, Write instructions such as
Shift, Increment, Decrement and the Regilster X movement instructions. The
third group contains all the remaining instructions, including all stack
operations, the register Y, compares for X and Y and instructions which do
not fit naturally into Group One or Group Two.

There are eight Group One instructilons, eight Group Two instructions,
and all of the 39 remaining instructions are Group Three instructions.

The three groups are obtained by organizing the OP CODE pattern to
give maximum addressing flexibility (16 addressing combinations) to Group
One,to give eight combinations to Group Two instructions and the Group

Three instructions are basically individually decoded.

A.2 GROUP ONE INSTRUCTIONS

These instructions are: Add With Carry (ADC), (AND), Compare (CMP),
Exclusive Or (EOR), Load A (LDA), Or (ORA), Subtract With Carry (SBC), and
Store A (STA). Each of these instructiohs has a potential for 16 addressing
modes. However, in the MCS6501 through MCS6505, only eight of the available
modes have been used.

Addressing modes for Group One are: Immediate, Zero Page, Zero Page
Indexediby X, Absolute, Absolute Indexed by X, Absolute Indexed by Y,
Indexed Indirect, Indirect Indexed. The unused eight addressing modes are
to be used in future versions of the MCS650X product family to allow
addressing of additional on-chip registers, of on-chip I/0 ports, and to

allow two byte word processing.

NSRS prm Y i mpais . " e s A s

A3 GROUP TWO INSTRUCTIONS

Group Two instructions are primarily Read, Modify, Write instructions.
There are really two subcategories within the Group Two instructions.

The components of the first group are shift and rotate instructions and
are: Shift Right (LSR), Shift Left (ASL), Rotate Left (ROL), and Rotate
Right (ROR).

The second subgroup includes the Increment (INC) and Decrement (DEC)
instructions and the two index register X instructions, Load X (LDX) and
Store X (STX). These instructions would normally have eight addressing
modes available to them because of the bit pattern. However, to allow
for upward expansion, only the following addressing modes have been de-
fined: Zero Page, Zero Page Indexed by X, Absolute, Absolute Indexed
by X, and a special Accumulator (or Register) mode. The four shift in-
structions all have register A operations; the incremented or decremented
! Load X and Store X instructions also have accumulator modes although the
: Increment and Decrement Accumulator has been reserved for other purposes.
Load X from A has been assigned its own mnemonic, TAX. Also included in
this group are the special functions of Decrement X which is one of the

special cases of Store X. Included also in this group in the X decodes

are the TXS and TSX instructionms.

All Group One instructions have all addressing modes available to
each instruction. In the case of Group Two instructions, another address-
ing mode has been added; that of the accumulator and the other special de-
codeé have also been implemented in this basic group. However, the primary
function of Group Two instructions is to perform some memory operation using
the appropriate index.

It should be noted for documentation purposes that the X instructions
have a special mode of addressing in which register Y is used for all in-
dexing operations; thus, instead of Zero Page Indexed by X, X instructions
have Zero Page Indexed by Y, and instead of having Absolute Indexed by X,

X instructions have Absolute Indexed by Y.

A.4 GROUP THREE INSTRUCTIONS

There are really two major classifirations of Group Three in-
structions; the modify Y register instrugtions, Load Y (LDY), Store Y
(STY), Compare Y (CPY), and Compare X (CPX), instructions actually
occupy about half of the OP CODE space for the Group Three instructions.
Increment X (INX) and Increment Y (INY) are special subsets of the Compare X
and Compare Y instructions and all of the branch instructions are in the
Group Three instructions.

Instructions in this group consist of all of the branches: BCC, BCS,
BEQ, BMI, BNE, BPL, BPC and BPS. Ali of i the flag operations are also de-
voted to one addressing mode; they are: .CLC, SEC, CLD, SED, CLI, SEI and
CLV. All of the push and pull instructi¢ns and stack operation instructions
are Group Three instructions. These include: BRK, JSR, PHA, PHP, PLA and
PLP. The JMP and BIT instructions are also included in this group. There
is no common addressing mode available to members of this group. Load Y,
Store Y, BIT, Compare X and Compare Y ha&e Zero Page and Absolute, and all

of the Y and X instructions allow Zero Page Indexed operations and Immediate.

APPENDIX B

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

WITH OP CODES, EXECUTION CYCLES

AND MEMORY REQUIREMENTS

Note:

The following notation applies to this summary:

A Accumulator

X, ¥ Index Registers

M Memory

P Processor Status Register
S Stack Pointer

v/ Change

_ No Change

+ Add

A Logical AND

- Subtract

¥ Logical Exclusive Or
4 Transfer from Stack
\ Transfer to Stack

> Transfer to

« Transfer to

A Logical OR

PC Program Counter

PCH Program Counter High
PCL Program Counter Low
OPER OPERAND

IMMEDTATE ADDRESSING MODE

At the top of each table is located in parentheses a
reference number (Ref: XX) which directs the user to
that Section in the MCS6500 Microcomputer Family
Programming Manual in which the instruction is defined

and discussed.

B-2

ADC ADC

Add memory to accumulator with carry

Operation: A+ M+ C > A, C NZCIDV
(Ref: 2.2.1) IS ==
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Immediate ADC {f Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X /D 3 4x
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), ¥ 71 2 5%

Add 1 if page boundary is crossed.

AND

Logical AND to the accumulator

AND

“AND’’ memory with accumulator

Operation: AN M-~ A NZCIDV
(Ref: 2.2.3.0) o/ —— ==

Addressing Assembly Language 0)5 No. No.

Mode Form CODE Bytes Cycles

Immediate AND {f Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4

Absolute, X AND Oper, X 3D 3 4%

Absolute, Y AND Oper, Y 39. 3 4%
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 if page boundary is crossed.

B-3

ASL

ASL Shift Left One Bit (Memory or Accumulator)

ASL

Operation: C « |7|6(5|4]|3|2|1|g| +«¢ NZCIDYV
‘ VT ——
(Ref: 10.2)
—
Addressing Assembly Lhnguage opr No. No.
Mode Fo CODE Bytes Cycles
Accumulator ASL A 1Y 1 2
Zero Page ASL Oper @6 2 5
Zero Page, X ASL Oper, B 16 2 6
Absolute ASL Oper | 1) 3 6
Absolute, X ASL Oper, X 1E 3 7
BCC BCC Branch dn Carry Clear Bcc
Operation: Branch on C = @ NZCIDV
(Ref: 4.1.1.3)
% Addressing Assembly Language OoP No. No.
. Mode Form CODE | Bytes | Cycles
Relative BCC Oper 9¢ 2 2%

i * Add 1 if branch occurs

=T

to same page.

* Add 2 if branch occurs to different page.

B-4

Bcs BCS Branch on carry set Bcs

Operation: Branch on C =1 NZCIDV

(Ref: 4.1.1.4)

Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes Cycles
Relative BCS Oper B¢ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page,

BEQ BEQ Branch on result zero BEQ

Operation: Branch on Z = 1 NZCIDV
' (Ref: 4.1.1.5) . . _ _ _ _
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BEQ Oper F@ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

B-5

BIT BIT Test bits in memo:vy with accumulator BIT

Operation: AN M, M7 -+ N, M6 >V
| Bit 6 and 7 are transferred to the status register. N Z C I DV

If the result of AAM is zero then Z = 1, otherwise M7/-—-—-— M6

z=19 (Ref: 4.2.1.1)
Addressing Assembly Lanuage op No. No.

Mode Form CODE | Bytes Cycles

Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4

BMI BMI Branch orn résult minus BMI

Operation: Branch on N = 1 ‘ NZCIDV

(Ref: 4.1.1.1)

|-

Addressing Assembly ’anguage oP . No. No.
Mode Form CODE Bytes Cycles
Relative BMI Oper: 3¢ 2 2%

* Add 1 if branch occurs to same page.

% Add 2 if branch occurs to different page.

BNE Branch on resylt not zero

Operation: Branch on Z = 0 NZCIDV
(Ref: 4.1.1.6)
Addressing Assembly Language or No. No.
Mode Form CODE | Bytes | Cycles
Relative BNE Oper DY 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BPI. BPL Branch on result plus BPI.
Operation: Branch on N = ¢ NZCIDV
(Ref: 4.1.1.2)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Relative BPL Oper 19 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

B-7

BRK BRK Force Break BRK
Operation: Forced Interrupt PC + 2 4 P 4 NZCIDV
! e 1 o
(Ref: 9.11)
Addressing Assembly [Language oP No. No.
Mode Form CODE Bytes Cycles
Implied BRK ‘ @9 1 7
|

!
1. A BRK command cannot be masked bj setting I.

BVC BVC Branch onj overflow clear Bvc

Operation: Branch on V =0 ‘ NZCIDV

(Ref: 41.1.1.8)
1

Addressing Assembly |Language opP No. No.
Mode Form CODE [Bytes Cycles
}
Relative BVC Oper 59 2 2%
i

% Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BVS BVS Branch on overflow set BVS

Operation: Branch on V = 1 NZCIDYV

(Ref: 4.1.1.7)

Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BVS Oper 70 2 2%

Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

| CLC CLC Clear carry flag CI-C

i
; Operation: @ > C NZCIDV
—_——f — — —
(Ref: 3.0.2)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied CLC 18 1 2

CI.D (CLD Clear decimal mode CI.D

Operation: ¢§ - D NZCIDV
—_———— —
(Ref: 3.3.2)
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied CLD D8 1 2
i
i
CI_I CLI Clear interrupt disable bit CI.I
Operation: @ - I NZ2CIDV
(Ref: 3.2.2) i
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied CLI 58 1 2

B-10

LY

Operation: @ + V

CLV Clear overflow flag

CLV

NZCIDUV
. 2.1 T TT T @
(Ref: 3.6.1)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied CLV B8 1 2

CMP

CMP Compare memory and accumulator

Cmp

Operation: A - M NZCIDV
A A ——
(Ref: 4.2.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate CMP #Oper C9 2 2
Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper)] 3 4
Absolute, X CMP Oper, X DD 3 4%*
Absolute, Y CMP Oper, Y D9 3 4%
(Indirect, X) CMP (Oper, X) cl 2 6
(Indirect), Y CMP (Oper), Y D1 2 5%

* Add 1 if page boundary is crossed.

CPX

CPX Compare Memory and Index X

CPX

! Operation: X - M NZCIDV
: S = —
; (Ref: 7.8)
' Addressing Assembly Language oP No. No.
‘ Mode Form CODE | Bytes | Cycles
Immediate CPX #Oper E@ 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY CPY Compare memory and index Y CPY
Operation: Y - M NZCIDYV
y VA ===
(Ref: 7.9)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Imuediate CPY #Oper o) 2 2
Zero Page CPY Oper C4 2 3
Absolute CPY Oper CC 3 A
- B-12

ol

DEC DEC Decrement memory by one DEC

Operation: M - 1 ~ M NZCIDYV
/S —— =
(Ref: 10.7)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Zero Page DEC Oper Ccé 2 5
' Zero Page, X DEC OQper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7

DEX DEX Decrement index X by one DEX

Operation: X - 1 » X NzZCIDYV
(Ref: 7.6) i
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied DEX CA 1 2

B-13

DEY

DEY Decrement index Y by one

DEY

Operation: Y - 1 > Y NZCIDV
S A -
(Ref: 7.7)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
. Implied DEY 88 1 2
EOR EOR “Exclusive—Or’” memory with accumulator EOR
Operation: A ¥ M > A NZCIDV
(Ref: 2.2.3.2) A=
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate EOR #Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4%
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect),Y EOR (Oper), Y 51 2 5%

* Add 1 if page boundary is crossed.

B-14

INC INC Increment memory by one INC

Operation: M+ 1 » M NZCIDV
y /- ==
(Ref: 10.6)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INx INX Increment Index X by one INx
Operation: X + 1 > X NA2CIDV
VA ———
(Ref: 7.4)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied INX E8 1 2

B-15

|NY INY Increment Index Y by one lNY

Operation: Y+ 1 > Y NZCIDV
(Ref: 7.5) I
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied ' INY c8 1 2

JMP IMP Jump to new location JMP

Operation: (PC + 1) - PCL NZCIDYV

(Ref: 9.8.1)
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Absolute JMP Oper 4C 3 3
Indirect JMP (Oper) 6C 3 5 '

B-16

jSR JSR Jump to new location saving return address jSR
Operation: PC + 2 ¢, (PC + 1) » PCL NZCIDV

(PC + 2) - PCH e

(Ref: 8.1)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Absolute JSR Oper 20 3 6
I.DA LDA Load accumulator with memory I.DA
Operation: M > A NZ2CIDV
VY ————
(Ref: 2.1.1)
Addressing Assembly Language (013 No. No.
Mode Form CODE Bytes Cycles
Immediate LDA # Oper A9 2 2
Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4%
Absolute, Y LDA Oper, Y B9 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y Bl 2 5%

* Add 1 if page boundary is crossed.

B-17

; I.Dx LDX Load index X with memory le

Operation: M » X NZ2CIDYV
| (Ref: 7.0) VY
% Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Immediate LDX # Oper A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 4%
*# Add 1 when page boundary is crossed.
lDY LDY Load index Y with memory I_DY
Operation: M » Y NZCIDV
VA
(Ref: 7.1) e
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Immediate LDY #Oper AQ 2 2
Zero Page LDY Oper A4 2 3 :
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4 .
Absolute, X LDY Oper, X BC 3 4%

* Add 1 when page boundary is crossed.

B~18

I'SR LSR Shift right one bit (memory or accumulator) I.SR

Operation: @ — |7]|6]|5|4|3]|2|1|0] — C NZCIDV
9/ ———
(Ref: 10.1)
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Accumulator LSR A 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X 5E 3 7
-
=
NOP No operation NOP
Operation: No Operation (2 cycles) NZCIDYV
Addressing Assembly Language 10)3 No. No.
Mode Form CODE Bytes Cycles
Implied NOP EA 1 2

ORA ORA “OR’ memory with accumulator ORA

Operation: A VM > A NZ2CIDUV
(Ref: 2.2.3.1) I
Addressing Assembly Language 0P No. No.
Mode Form CODE Bytes Cycles
Immediate ORA #Oper #9 2 2
| Zero Page ORA Oper @5 2 3
|
| Zero Page, X ORA Oper, X 15 2 4
| Absolute ORA Oper ¢D 3 4
Absolute, X ORA Oper, X 1D 3 4%
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) g1 2 6
(Indirect), Y ORA (Oper), Y 11 2 5

* Add 1 on page crossing

PHA PHA Push accumulator on stack PHA

Operation: A ¥ NZCIDV
(Ref: 8.5 T T
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied PHA 48 1 3

B-20

PHP

Operation: P+

PHP Push processor status on stack

PHP

NZCIDV
(Ref: 8.11) = @ ——————
Addressing Assembly Language oP No No
Mode Form CODE | Bytes Cycles
Implied PHP @8 1 3
PI.A PLA Pull accumulator from stack PLA
Operation: A 4 NZCIDV
VY-
(Ref: 8.6)
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied PLA 68 1 4

B-21

PLP

Operation: P ¢

PLP Pull processor status from stack PI.P
NZCIDV
From Stack
(Ref: 8.12)
Addressing Assembly Language (0] 4 No. No.
Mode Form CODE Bytes Cycles
Implied PLP 28 1 4

ROL

Operation:

ROL Rotate one bit left (memory or accumulator)

ROL

Mor A
[7]e[s]4[3]2]1[e] « L& < NZCIDYV
/A A ——
(Ref: 10.3)
Addressing Assembly Language opP No. No.
Mode Form CODE | Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

B-22

Ro R ROR Rotate one bit right (memory or accumulator) Ro R

Operation: C 7lels(a{3]2]1]¢ NZ2CIDYV
(Ref: 10.4) YA -
Addressing Assembly Language (0)3 No. No.
Mode Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper,X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute, X ROR Oper,X 7E 3 7
Note: ROR instruction will be available on MCS650X micro-
processors after June, 1976.
RT' RTI Return from interrupt RTI
Operation: P+ PC#4 NZCIDYV
(Ref: 9.6) From Stack
Addressing Assembly Language (0] No. No.
Mode Form CODE Bytes Cycles
Implied RTI 4@ 1 6

RTS RTS Return from subroutine RTS

Operation: PC+, PC + 1— PC NZCIDYV
(Ref: 8.2 T 7777
Addressing Assembly Language (0)3 No. No.
Mode Form CODE | Bytes Cycles
Implied RTS 69 1 6

B-23

SBC Subtract memory from accumulator with borrow SBC

Operation: A - M - C > A

NZ2CIDV
Note: C = Borrow (Ref: 2.2.2) A A——
Addressing Assembly Language op No. No.
Mode Form CODE Bvtes Cycles
Immediate SBC #Oper E9 2 2
Zero Page SBC Oper E5 2 3
Zero Page, X ,SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4%
Absolute, Y SBC Oper, Y F9 3 4%
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y F1 2 5%
* Add 1 when page boundary is crossed.
SEC Set carry flag SEC
Operation: 1 > C NZCIDV
(Ref: 3.0.1) -——1—-——
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied SEC 38 1 2

B-24

SED SED Set decimal mode SED

Operation: 1 - D NZCIDYV
—_——— — 1 —
(Ref: 3.3.1)
Addressing Assembly Language oP Neo. No.
Mode Form CODE Bytes Cycles
Implied SED F8 1 2
SE' SEL Set interrupt disable status SEI
Operation: 1 ~ I NZCIDYV
_—— —— l ——
(Ref: 3.2.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SEI 78 1 2

B-25

STA STA Store accumulator in memory STA
Operation: A > M NZ2CIDV

(Ref: 2.1.2)

Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STA Oper ‘ 85 2 3
Zero Page, X STA Oper, X 95 2 .4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 39 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6

STx ‘ STX Store index X in memory STx

Operation: X > M NZCIDUV
(Ref: 7.2)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8E 3 4

B-26

STY STY Store index Y in memory S T Y

Operation: Y > M NZCIDV
(Ref: 7.3)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8C 3 4
T Ax TAX Transfer accumulator to index X TAx
Operation: A > X NZCIDV
/S =
(Ref: 7.11)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied TAX AA 1 2

B-27

TAY TAY Transfer accumulator to index Y TAY

Operation: A - Y NZCIDV
VS -
(Ref: 7.13)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TAY A8 1 2
TYA TYA Transfer index Y to accumulator TYA
Operation: Y - A NZCIDYV
VAV
(Ref: 7.14)
Addressing Assembly Language 0] No. No.
Mode Form CODE Bytes Cycles
Implied TYA 98 1 2

B-28

TSX

Operation:

TSX

TSX Transfer stack pointer to index X

TXA

Operation:

TXS

Operation:

S > X NZCIDV
(Ref: 8.9) A e
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes | Cycles
Implied TSX BA 1 2
TXA Transfer index X to accumulator TXA
X > A NZCIDYV
(Ref: 7.12) =
Addressing Assembly Language opr No. No.
Mode Form CODE Bytes Cycles
Implied TXA 8A 1 2
TXS Transfer index X to stack pointer sz
X >S5 NZCIDYV
(Ref: 8.8 T T T T T 7
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TXS 9A 1 2

B-29

APPENDIX C

INSTRUCTION ADDRESSING

MODES AND

RELATED EXECUTION TIMES

Asepunogq abed sass0id uonesedo Buiyoueiq jiI jeUONIPPE U0 PPY ‘ueel S| Youelq 41 3|DAD 2UO PPY ..
Asepunoq abed ssosoe Buixapul jiI 9)9AD auo ppy
N <>.—- m . . . - - . m - mz—-
N wx-F N >z—
N <x-- N xz—
N xw-F h w . w m . - oz-
4 AVl TS 9 T Wy v ¥V E T 403
N x<-F N - « . » >mn
. v M v n **>-Fw s = - - N . - xma
v v - n A'.x._'w h w . w m . . omn
9 9 S S v ¥ ¢ V1S ooy M S A AdD
. N o M —mw v n N x&o
¢ . . ass WG 9 T Wb b T ¥ E T dWO~
N Umw N . . - >l-o
"5 9 S 2 2 2N NN S A J8s A 1o
SR 9 - - oo T siy R a1
w . —.—-m N OI—O .
. h w - m m N coc . . .‘iN . . . v m>m
L9 9§ "¢ plo}- T e T e JNE
v PO d1d LT s Nug
v vid T 48 -~
£ dHd - T T S aNg
£ o VHd - T T S S IWe-
+§ 9 S 2% 2 4 vy € ¢ vYdO . 2 19 J_
. z - . AN dON N L o3s O
’ L 9 g9 g c 487 T e T so8
v vy € ¢ ° AQl T sk T 08
v ¥ v € C xXan o L9 T 98§ 4 SY
+§ 9 v b € C vail "G 9 T Wby ¥ T Vv € T anv -
) 9 o usr +S 9 S NS 2 4 vy £ ¢ aav -~
== 3 35 » N N NI P == 3 3 N NNSZID
5 o 3 ® o 3 7 EIE - 2 o 3
memmwmwNmmmm wmmmmmmeoomm
c o < c € c c < € € c v
si2s%3:3888s¢ ZEEREERFEEE S
z <X <x %% g < X <x o
M = < X = & < X N
g 8
(saj9A9 >0 W) SIWIL NOILND3IX3 Q31v13H ANV SIAOW ONISSIHAAVY NOILONYLISNI

APPENDIX D

OPERATION CODE INSTRUCTION LISTING

HEXIDECIMAL SEQUENCE

09
Pl
92
93
P4
@5
96
@7
08
99
BA
@B
gc
¢D
gE
OF
19
11
12
13
14
15
16
17
18
19

1B
1C
1D
1E
1F

BRK

ORA - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page
ASL -~ Zero Page
Future Expansion
PHP

ORA - Immediate
ASL - Accumulator
Future Expansion
Future Expansion
ORA - Absolute
ASL - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page,X
ASL - Zero Page,X
Future Expansion
CLC

ORA - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA - Absolute,X
ASL - Absolute,X

Future Expansion

2¢)

22
23
24
25
26
27
28
29
2n
21
20
2D

34
35
35
37
33
39
3A
38

-
-

33
3E
3F

JSR

AND - (Indirect,X)
Future Expansion
Future Expansion
BIT - Zero Page
AND - Zero Page
ROL - Zero Page
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT - Absolute
AND - Absolute
ROL - Absolute
Future Expansion
BM1

AND - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND - Zero Page,X
ROL - Zero Page,X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND - Absolute,X
ROL - Absolute,X

Future Expansion

RTI

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR ~ Accumulator
Future Expansion
JMP - Absolute
EOR - Absolute
LSR ~ Absolute
Future Expansion
BVC

EOR - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page,X
LSR - Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR -~ Absolute,X

Future Expansion

6()

RTS

ADC - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Tmmediate
ROR -~ Accumulator
Future Expansion
JMP - Indirect
ADC - Absolute
ROR -~ Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion

ADC - Zero Page,X

- ROR - Zero Page, X
- Future Expansion
- SEI

- ADC - Absolute,Y

Future Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute,X

Future Expansion

8¢ Future Expansion Af LDY - Immediate
81 STA - (Indirect,X) Al LDA - (Indirect,X)
82 Future Expansion A2 LDX - Immediate
83 Future Expansion A3 Future Expansion
84 STY - Zero Page A4 LDY - Zero Page
85 STA - Zero Page A5 LDA - Zero Page
86 STX - Zero Page A6 LDX - Zero Page
87 Future Expansion A7 Future Expansion
88 DEY AR TAY

89 Future Expansion A9 LDA - Immediate
8A - TXA AA TAX

8B Future Expansion AB Future Expansion
8C STY - Absolute AC LDY - Absolute

8D STA - Absolute AD LDA - Absolute

8E STX - Absolute AE LDX - Absolute

8F Future Expansion AF Future Expansion
9¢ BCC B@ BCS

91 STA - (Indirect),Y Bl LDA - (Indirect),Y
92 Future Expansion B2 Future Expansion
93 Future Expansion B3 Future Expansion
94 - STY — Zero Page,X B4 - LDY - Zero Page,X
95 - STA - Zero Page,X B5 ~ LDA - Zero Page,X
96 - STX - Zero Page,Y B6 - LDX - Zero Page,Y
97 - Future Expansion B7 - Future Expansion
98 - TYA B8 - CLV

99 STA - Absolute,Y B9 LDA - Absolute,Y
9A - TXS BA TSX

9B Future Expansion BB Future Expansion
9C Future Expansion BC LDY - Absolute,X
9D STA - Absolute,X BD LDA - Absolute,X
9E Future Expansion BE LDX - Absolute,Y
9F Future Expansion BF Future Expansion

cg
Ccl
C2
Cc3
C4
Cc5
C6
c7
C8
C9
CA
CB
CC
CD
CE
CF
Dg
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

CPY - Immediate
CMP - (Indirect,X)
Future Expansion
Future Expansion
CPY - Zero Page
CMP - Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - TImmediate
DEX

Future Expansion
CPY - Absolute
CMP - Absolute
DEC - Absolute
Future Expansion
BNE

CMP - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CMP - Zero Page,X
DEC - Zero Page,X
Future Expansion
CLD

CMP - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
CMP - Absolute,X
DEC - Absolute,X

Future Expansion

E¢
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE

FQ

F1 -
F2 -
F3 -
F4 -

F5
Fé
F7
F8
F9
FA

FC
FD
FE
FF

CPX - Immediate
SBC - (Indirect,X)
Future Expansion
Future Expansion
CPX - Zero Page
SBC ~ Zero Page
INC ~ Zero Page
Future Expansion
INX

SBC - Immediate
NOP

Future Expansion
CPX - Absolute

SBC - Absolute
INC - Absolute
Future Expansion
BEQ

SBC -~ (Indirect),Y
Future Expansion
Future Expansion

Future Expansion

- SBC - Zero Page,X
- INC -~ Zero Page,X

- Future Expansion

SED

SBC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
SBC - Absolute,X
INC - Absolute,X

Future Expansion

APPENDIX E

SUMMARY OF ADDRESSING MODES

This appendix is to serve the user in providing a reference

for the MCS650X addressing modes. Each mode of address is shown

with a symbolic illustration of the bus status at each cycle

during the instruction fetch and execution. The example number

as found in the text is provided for reference purposes.

E 1 IMPLIED ADDRESSING

Example 5.3: Illustration of implied addressing

Clock
Cycle Address Bus Program Counter Data Bus
1 PC PC + 1 0> CODE
2 PC + 1 PC +1 Noew
02 CODE
3 PC + 1 PC + 2 New
0P CODE

Comments

Fetch OP CODE

Ignore New
OP CODE;
Decode 01d
OP CODE

Fetch New
OP CODE;
Execute 01d
OP CODE

F.2 IMMEDIATE ADDRESSING

Example 5.4: Tllustration of immediate addressing
Clock
Cycle Address Bus Program Counter Data Bus
1 PC PC + 1 OP CODE
2 PC + 1 PC + 2 Data
3 PC + 2 PC + 3 New
OP CODE

E.3 ABSOLUTE ADDRESSING

Example 5.5: TIllustration of absolute addressing
Clock
Cycle Address Bus Program Counter Data Bus
1 PC PC + 1 OP CODE
2 PC + 1 PC + 2 ADL
3 PC + 2 PC + 3 ADH
4 ADH, ADL PC + 3 Data
5 PC + 3 PC + 4 New
OP CODE

Comments

Fetch OP CODE

Fetch Data,
Decode OP CODE

Fetch New
OP CODE,
Execute 01d
OP CODE

Comments

Fetch OP CODE

Fetch ADL,
Decode OP CODE

Fetch ADH,
Retail ADL

Fetch Data

Fetch New
OP CODE,
Execute 01d
OP CODE

E.4 ZERO PAGE ADDRESSING

Example 5.6:

Illustration of zero page adlressing

Clock
Cycle

Address Bus

Program Counter

1
2

PC
PC + 1

00, ADL
PC + 2

PC + 1
PC + 2

PC + 2
PC + 3

Data Bus Comments
OP CODE Fetch OP CODE
ADL Fetch ADL, De-
code OP CODE
Data Fetch Data
New Fetch New
OP CODE OP CODE, Exe-
cute 01d
OP CODE

E.S5 RELATIVE ADDRESSING — (Branch Positive, no crossin of page boundaries)

Example 5.8:

Illustration of relative addressing--branch positive

Cycle

: 1

taken, no crossing of page bcundaries

Externel
Address Bus Data Bus Operation
0100 OP CODE Fetch
OP CODE
0101 +50 Fetch
Offset
0102 Next Fetch Next
OP CODE OP COD1L
0152 Next Fetch JVext
OP CODE OP COD?

Internal
Operation

Finish Previous Oper-
ation, Increment Pro-
gram Counter to 101

Interpret Instruction,
Increment Program
Counter to 102

Check Flags, Add Rela-
tive to PCL, Increment
Program Counter to 103

Transfer Results to
PCL, Increment Program
Counter to 153

E.6 ABSOLUTE INDEXED ADDRESSING — (with page crossirg)

Step 5 is delet<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>