
i. iceenuKraTBH
JtlCR«CMH»IITEKS

MICIWCOMPUTEKS
jm c m c o m p iit e k s

P ublication N u m b er 6500-50A

MCS6500
MICROCOMPUTER FAMILY
PROGRAMMING MANUAL

JANUARY 1976

T he in fo rm a t io n in this m anua l has b een reviewed an d is believed to be en t i re ly reliable . How ever ,
no responsib i l i ty is a ssum ed fo r inaccurac ies . The materia l in this m an u a l is fo r in fo rm a t io n a l
pu rp o se s on ly a n d is sub jec t to change w i th o u t not ice .

Second Edition
© M O S T E C H N O L O G Y , INC. 1976

“ All Rights R ese rved”

MOS TECHNOLOGY, INC.
950 Rittenhouse Road
Norristown, PA 19401

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTORY REMARKS
1.0 Manual Introduction... 1
1.1 Microprocessor Architecture................................. 2

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT
2.0 The Data B u s ... 3
2 .1 The Accumulator... 4
2.1.1 LDA— Load Accumulator with Memory..........................4
2.1.2 STA— Store Accumulator in Memory 5
2.2 The Arithmetic Unit... 6
2.2.1 ADC— Add Memory with Carry to Accumulator..................7
2.2.1.0 Multiple Precision Addition............................. 8
2.2.1.1 Signed Arithmetic....................................10
2.2.1.2 Decimal Addition....................................13
2.2 .1.3 Add Summary....................................... 14
2.2.2 SBC— Subtract Memory from Accumulator with Borrow. . . . 14
2.2.2.0 Multiple Precision Subtraction 16
2.2.2.1 Signed Arithmetic....................................18
2.2.2.2 Decimal Subtract....................................19
2.2.3 Carry and Overflow During Arithmetic Operations......... 20
2.2.4 Logical Operands 20
2.2.4.1 AND— "AND" Memory with Accumulator 20
2.2.4.2 ORA— "OR" Memory with Accumulator.................... 21
2.2.4.3 EOR— "Exclusive OR" Memory with Accumulator.......... 21

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER
3.0 Carry Flag (C)........ 24
3.0.1 SEC— Set Carry Flag....................................24
3.0.2 CLC— Clear Carry Flag.................................. 25
3.1 Zero Flag (Z)..25
3.2 Interrupt Disable (I).................................... 25
3.2.1 SEI— Set Interrupt Disable 26
3.2.2 CLI— Clear Interrupt Disable 26

3.3 Decimal Mode Flag (D)................ 26
3.3.1 SED— Set Decimal Mode.................................. 26
3.3.2 CLD— Clear Decimal Mode................................ 27
3.4 Break Command (B)..27
3.5 Expansion Bit..27
3.6 Overflow (V) ..27
3.6.1 CLV— Clear Overflow F lag.............................. 28
3.6.2 Determination of Overflow.............................. 28
3.7 Negative Flag (N)..29
3.8 Flag Summary..30

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS
4.0 Concepts of Program Sequence 31
4.0.1 Use of Program Counter to Fetch an Instruction 33
4.0.2 JMP— Jump to New Location.............................. 36
4.1 Branching..37
4.1.1 Basic Concept of Relative Addressing 38
4.1.2 Branch Instructions.................................... 40
4.1.2.1 BMI— Branch on Result Minus..........................40
4.1.2. 2 BPL— Branch on Result P l u s40
4.1.2.3 BCC— Branch on Carry Clear 40
4.1.2.4 BCS— Branch on Carry S e t40
4.1.2.5 BEQ— Branch on Result Zero..........................41
4.1.2.6 BNE— Branch on Result Not Z e r o41
4.1.2.7 BVS— Branch on Overflow Set..........................41
4.1.2.8 BVC— Branch on Overflow Clear........................41
4.1.3 Branch Summary.. 42
4.1.4 Solution to Branch Out of Range........................42
4.2 Test Instructions.. 45
4.2.1 CMP— Compare Memory and Accumulator.................... 45
4.2.2 Bit Testing..47
4.2.2.1 BIT— Test Bits in Memory with Accumulator. 47

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES
5.0 Addressing Techniques.................................... 50
5.1 Concepts of Pipelining and Program Sequence.............. 52
5.2 Memory Utilization 56
5.2.1 1/0 Control.. 56
5.2.2 Memory Allocation...................................... 57
5.3 Implied Addressing 57
5.4 Immediate Addressing 59
5.5 Absolute Addressing...................................... 59
5.6 Zero Page Addressing.................................... 61
5.7 Relative Addressing...................................... 63

iii

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS
6.0 General Concept of Indexing.............................. 69
6.1 Absolute Indexed .. 79
6.2 Zero Page Indexed..81
6.3 Indirect Addressing...................................... 83
6.4 Indexed Indirect Addressing.............................. 85
6.5 Indirect Indexed Addressing.............................. 87
6.6 Indirect Absolute.. 92
6.7 Application of Indexes..................................92

CHAPTER 7 INDEX REGISTER INSTRUCTIONS
7.0 LDX— Load Index Register X from Memory.................. 96
7.1 LDY— Load Index Register Y from Memory.................. 96
7.2 STX— Store Index Register X in Memory.................... 97
7.3 STY— Store Index Register Y in Memory.................... 97
7.4 INX— Increment Index Register X by O n e 97
7.5 INY— Increment Index Register Y by O n e 97
7.6 DEX— Decrement Index Register X by O n e 98
7.7 DEY— Decrement Index Register Y by O n e 98
7.8 CPX— Compare Index Register X to Memory.................. 99
7.9 CPY— Compare Index Register Y to Memory.................. 99
7.10 Transfers Between the Index Registers and Accumulator. . . 100
7.11 TAX— Transfer Accumulator to Index X 100
7.12 TXA— Transfer Index X to Accumulator.................. 100
7.13 TAY— Transfer Accumulator to Index Y 101
7.14 TYA— Transfer Index Y to Accumulator.................. 101
7.15 Summary of Index Register Applications and Manipulations . 102

CHAPTER 8 STACK PROCESSING
8.0 Introduction to Stack and to Push Down Stack Concept . . . 103
8.1 JSR— Jump to Subroutine................................ 104
8.2 RTS— Return from Subroutine............................ 108
8.3 Implementation of Stack in MCS6501 Through MCS6505 112
8.3.1 Summary of Stack Implementation........................115
8.4 Use of the Stack by the Programmer.................... 116
8.5 PHA— Push Accumulator on S t a c k 117
8.6 PLA— Pull Accumulator from Stack...................... 118
8.7 Use of Pushes and Pulls to Communicate Variables Between

Subroutine Operations 119
8.8 TXS— Transfer Index X to Stack Pointer.................. 120
8.9 TSX— Transfer Stack Pointer to Index X 122
8.10 Saving of the Processor Status 122
8.11 PHP— Push Processor Status on Stack...................... 122
8.12 PLP— Pull Processor Status from Stack.................... 123
8.13 Summary on the Stack.................................. 123

iv

9.0 Vectors..124
9.1 Reset or Restart.. 125
9.2 Start Function.. 126
9.3 Programmer Considerations for Initialization Sequences . . 127
9.4 Restart..129
9.5 Interrupt Considerations 129
9.6 RTI— Return from Interrupt.............................. 132
9.7 Software Polling for Interrupt Causes..................... 137
9.8 Fully Vectored Interrupts................................ 140
9.8.1 JMP Indirect........................ 141
9.9 Interrupt Summary.. 142
9.10 Non-Maskable Interrupt 142
9.11 BRK— Break Command...................................... 144
9.12 Memory M a p 146

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS
10.0 Definition of Shift and Rotate.......................... 147
10.1 LSR— Logical Shift Right 148
10.2 ASL— Arithmetic Shift L e f t 149
10.3 R0L— Rotate L e f t .. 149
10.4 ROR— Rotate Right.. 150
10.5 Accumulator Mode Addressing.............................. 150
10.6 Read/Modify/Write Instructions 151
10.7 INC— Increment Memory by O n e 154
10.8 DEC— Decrement Memory by O n e 155
10.9 General Note on Read/Modify/Write Instructions 155

CHAPTER 11 PERIPHERAL PROGRAMMING
11.0 Review of MCS6520 for 1/0 Operations.................... 156
11.1 MCS6520 Interrupt Control................................ 158
11.2 Implementation Tricks for Use of the MCS6520 Peripheral

Interface Devices 161
11.2.1 Shortcut Polling Sequences 161
11.2.2 Bit Organization on MCS6520s 162
11.2.3 Use of READ/MODIFY/WRITE Instruction for Keyboard

Encoding................................... 163
11.3 MCS6530 Programming.............................. . 166
11.3.1 Reading of the Counter Register................ . 166
11.4 How to Organize to Implement Coding.............. . 166
11.4.1 Label Standards.. 168
11.5 Comprehensive 1/0 Program................................ 170

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS

v

APPENDICES

A. Instruction List, Alphabetic by Mnemonic, Definition
of Instruction Groups......................... A-l

MCS6501 - MCS6505 Microprocessor Instruction Set—
Alphabetic Sequence................................... A-2

A.l Introduction................................ A-3
A.2 Group One Instructions...................... A-3
A. 3 Group Two Instructions.............................. A-4
A. 4 Group Three Instructions.................... A-5

B. Instruction List, Alphabetic by Mnemonic, with OP CODEs,
Execution Cycles and Memory Requirements. B-l

C. Instruction Addressing Modes and Related Execution Times. . C-l

D. Operation Code Instruction Listing Hexidecimal Sequence . . D-l

E. Summary of Addressing Modes

E.l Implied Addressing.......................... E-2
E.2 Immediate Addressing........................ E-3
E.3 Absolute Addressing........................ E-3
E.4 Zero Page Addressing........................ E-4
E.5 Relative Addressing.......... E-4
E.6 Absolute Indexed Addressing E-5
E.7 Zero Page Indexed Addressing................ .. E-6
E.8 Indexed Indirect Addressing E-7
E.9 Indirect Indexed Addressing E-8

F. MCS650X Programming Model F-l

G. Discussion— Indirect Addressing G-l

H. Review of Binary and Binary Coded Decimal Arithmetic. . . . H-l

vi

I nLb

LIST OF EXAMPLES

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT
2.1 Add 2 Numbers with Carry; No Carry Generation............ 7
2.2 Add 2 Numbers with Carry; Carry Generation 8
2.3 Adding Two 16-Bit Numbers......................... .. 9
2.4 Add Two 16-Bit Numbers, No Carry from Low Order Add...... 9
2.5 Add Two 16-Bit Numbers, with Carry from Low Order Add. . . 10
2.6 Add 2 Positive Numbers with No Overflow........... .. 11
2.7 Add 2 Positive Numbers with Overflow................... 12
2.8 Add Positive and Negative Number with Positive Result. . . 12
2.9 Add Positive and Negative Number with Negative Result. . . 12
2.10 Add 2 Negative Numbers without Overflow................. 12
2.11 Add 2 Negative Numbers with Overflow................... 13
2.12 Decimal Addition 13
2.13 Subtract 2 Numbers with Borrow; Positive Result.......... 15
2.14 Subtract 2 Numbers with Borrow; Negative Result.......... 16
2.15 Subtracting Two 16-Bit Numbers 16
2.16 Subtract in Double Precision Format; Positive Result . . . 17
2.17 Subtract in Double Precision Format; Negative Result: . . . 18
2.18 Decimal Subtraction.....................................19
2.19 Clearing a Bit with "AND"...........21
2.20 Setting a Bit with "OR"..........................21
2.21 Complementing a Byte with "EOR"..................

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS
4.1 Accessing Instructions with the P-Counter Value......... 33
4.2 Accessing Data Addressing with P-Counter Value 34
4.3 Use of JMP Instruction................................. 36
4.4 Illustration of "Branch on Carry Set"................... 38
4.5 Sequencing Two Branch Instructions 39
4.6 Use of JMP to Branch Out of Range....................... 43
4.7 Using the CMP Instruction............................... 46
4.8 Sample Program Using the BIT Test....................... 48

vii

5.1 Using Absolute Addressing................................ 51
5.2 Demonstration of "Pipelining" Effect 54
5.3 Illustration of Implied Addressing 58
5.4 Illustration of Immediate Addressing 59
5.5 Illustration of Absolute Addressing...................... 60
5.6 Illustration of Zero Page Addressing.................... 62
5.7 Illustration of Relative Addressing; Branch Not Taken. . . 63
5.8 Illustration of Relative Addressing; Branch Positive

Taken, No Crossing of Page Boundaries................64
5.9 Illustration of Relative Addressing; Branch Negative

Taken, Crossing of Page Boundaries....................65

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS
6.1 Moving Five Bytes of Data with Straight Line Code........ 70
6.2 Moving Five Bytes of Data with Loop...................... 72
6.3 Coded Detail of Moving Fields with Loop.................. 73
6.4 Moving Five Bytes of Data with Index Register............ 76
6.5 Moving Five Bytes of Data by Decrementing the Index

Register. 77
6.6 Absolute Indexed; with No Page Crossing............. 79
6.7 Absolute Indexed; with Page Crossing.............. .. 80
6.8 Illustration of Zero Page Indexing................ .. 82
6.9 Demonstrating the Wrap-Around............................ 83
6.10 Illustration of Indexed Indirect Addressing........ .. 86
6.11 Indirect Indexed Addressing (No Page Crossing) 88
6.12 Indirect Indexed Addressing (with Page Crossing) 89
6.13 Absolute Indexed Add— Sample Program 90
6.14 Indexed Indirect Add— Sample Program 90
6.15 Move N Bytes (N < 256).......................... . 94
6.16 Move N Bytes (N > 256).......................... . 95

CHAPTER 8 STACK PROCESSING
8.1 Basic Stack Map for 3-Deep JMP to Subroutine............ 104
8.2 Basic Stack Operation. 105
8.3 Illustration of JSR Instruction.......................... 106
8.4 Illustration of RTS Instruction.......................... 109
8.5 Memory Map for RTS Instruction.......................... Ill
8.6 Expansion of RTS Memory Map.............................. Ill
8.7 Call-a-Move Subroutine Using Preassigned Memory Locations. 116
8.8 Operation of PHA, Assuming Stack at 01FF................118
8.9 Operation of PLA Stack from Example 8.8..................119
8.10 Call-a-Move Subroutine Using the Stack to Communicate. . . 119
8.11 Jump to Subroutine (JSR) Followed by Parameters.......... 121

viii

9.1 Illustration of Start Cycle.............................. 127
9.2 Interrupt Sequence 131
9.3 Return from Interrupt.................................... 133
9.4 Illustration of Save and Restore for Interrupts...........133
9.5 Interrupt Polling.. 137
9.6 Illustration of JMP Indirect............................ 141
9.7 Break-Interrupt Processing 145
9.8 Patching with a Break Utilizing PROMs.................... 146

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS
10.1 General Shift and Rotate................................ 147
10.2 Rotate Accumulator Left. 150
10.3 Rotate Memory Left Absolute,X............................ 151
10.4 Move a New BCD Number into Field........................ 154

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS

CHAPTER 11 PERIPHERAL PROGRAMMING
11.1 The MCS6520 Register M a p 156
11.2 General PIA Initialization........................ .. 157
11.3 Interrupt Mode Setup.............................. .. 159
11.4 CA2; CB2 Output Control. 159
11.5 Routine to Change CB1 or CB2 Using Bit 3 Control 160
11.6 Polling the MCS6520................................ .. 161
11.7 Coding for Strobing an 8 x 8 Keyboard................. 164
11.8 Polling for Active Signal.......................... . 172

rr

LIST OF FIGURES

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT
2.1 Partial Block Diagram of MCS650X............................. 3
2.2 Partial Block Diagram Including Arithmetic logic Unit

of MCS650X.. 6
2.3 Byte Orientation with Sign Position........................ 11
CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER
3.1 Partial Block Diagram of MCS650X Including P-Register . . . 23
3.2 Processor Status Register, "P"............................. 24
CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS
4.1 Partial Block Diagram of MCS650X Including Program

Counter and Internal Address Bus 31
4.2 Use of Conditional T e s t 37
CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES
5.1 Address Bus and Relation to Memory Field.................... 54
5.2 Example of Timing— MCS650X Family 55
CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS
6.1 Moving Five Bytes of Data with Loop 72
6.2 Moving Five Bytes of Data with Counter...................... 75
6.3 Partial Block Diagram of MCS650X Including Index Register 78
6.4 Indirect Addressing— Pictorial Drawing...................... 84
6.5 Indexed Indirect Addressing 85
6.6 Indirect Indexed Addressing 87
CHAPTER 8 STACK PROCESSING
8.1 Partial Block Diagram of MCS650X Including Stack

Pointer, S ... 113
CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS
10.1 Flow Chart for Moving in a New BCD Number.............. 153
CHAPTER 11 PERIPHERAL PROGRAMMING
11.1 Keyboard Encoding Matrix Program........................ 163
11.2 Keyboard Strobe Sequence................................ 165
11.3 Program Flow-Polling for Active Signal.................. 171

I

CHAPTER 1

INTRODUCTORY REMARKS

1.0 MANUAL INTRODUCTION

Welcome to the MCS650X product family. This manual is designed to
work in conjunction with the Hardware Manual which describes the basic
hardware considerations when using the MOS Technology, Inc. microcomputer
family.

Before reading this manual, it is suggested that the reader acquaint
himself with the Hardware Manual in order to understand the components
available in this system, how these components are interconnected, and
their basic architecture. Developed in this manual is the concept of
microprocessor internal architecture and how it is used, with attention
given to input/output considerations. Familiarity with the hardware will
facilitate easier understanding of these important concepts.

In order to best serve the total customer base, this manual is written
in two levels. The first is a very basic introduction to the MCS650X fam­
ily, and the second level is for the user who has to refer to the manual
on more than an occasional basis and who wants to rapidly scan and find
specific sections. For the user who is quite familiar with programming
and the MCS650X instruction set, the appendices are the best reference in
the sense that all the data which is discussed in detail in the manual is
summarized in a series of tables for convenience.

It is recommended that the user who is an experienced programmer and
familiar with microprocessors still take the time to read through the
manual in detail. Some of the architectural concepts are different from
those found in second generation machines and this manual instructs the
user how to optimize the utilization of the microprocessor while providing
an introduction of its basic concepts.

1

Criticism of this manual is welcomed at all times. Of particular
interest are cases where one could not, by use of the index and appendix,
rapidly find the answer to a question which developed in the course of
designing a microprocessor system. Welcomed are any comments which will
enhance the content and format of this manual in future editions or adden-
dums.

1.1 MICROPROCESSOR ARCHITECTURE
The MCS6501, MCS6502, MCS6503, MCS6504, and MCS6505 are all 8-bit

microprocessors. That means that 8 bits of data are transferred or oper­
ated upon during each instruction cycle or operation cycle.

All devices in the MCS650X family operate on data 8 bits at a time,
although some of the operations will look like serial or 16-bit wide oper­
ations. In a future section, discussed will be the use of sequential
operations on an 8-bit basis and how one can accomplish 16-bit effective
operands and addressing.

The computer industry, for some time, has been treating 8-bit combina­
tions of data by a term known as a "byte." In many large computers which
operate simultaneously on multiple bytes of data, the number of bytes which
are transferred and operated on by the machine in parallel are called a
"word." Because these microprocessors are 8-bit microprocessors, the words
and bytes are of equal length. Therefore, for convenience through the dis­
cussion of the basic 8-bit processors, "byte" and "word" will be used
synonymously although in some of the expanded versions there will exist a
16-bit word composed of two 8-bit bytes.

2

CHAPTER 2

THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 THE DATA BUS

Although most of the following discussion will consider how one
operates with a general purpose register called the accumulator, it must
be understood that data has to transfer between the accumulator and out­
side sources by means of passing through the microprocessor to 8 lines
called the data bus. The outside sources include the program which con­
trols the microprocessor, the memory which will be used as interim stor­
age for internal registers when they are to be used in a current opera­
tion, and the actual communications to the world through input/output
ports. Later in this document performance of transfers to and from each
of these devices will be discussed. However, at present, discussion
will center on the microprocessor itself.

Partial Block Diagram ofM CS650X
FIGURE 2.1

The only operation of the data bus is to transfer data between mem­
ory and the processor's internal registers such as the accumulator. Fig­
ure 2.1 displays the basic communication between the accumulator, A, and
the memory, M, through the use of 8 bi-directional data lines called the
data bus.

3

2.1 THE ACCUMULATOR

The accumulator is a register in which data is kept on which opera­
tions are performed. All operations between memory locations must be
communicated through the accumulator or one of the auxiliary index reg­
isters. The accumulator is used as a temporary storage in moving data
from one memory location to another. Therefore, the first use for the
accumulator (A) is just in transferring data from memory to the accumu­
lator or from the accumulator to memory. One can bring data into the
accumulator, perform operations such as AND/OR on it, test the results
of those operations, set new bits into it, or transfer it back out to
the outside world. It serves as an interim storage for a series of oper­
ations such as adding 2 values together; where one of them is loaded into
the accumulator, the second one added to it, and the results stored in
the accumulator. The accumulator really acts as two functions: 1) It
is one of the primary storage points for the machine; 2) It is the point
at which intermediate results are normally stored.

2.1.1 LDA— Load Accumulator with Memory

When instruction LDA is executed by the microprocessor, data
is transferred from memory to the accumulator and stored in the
accumulator.

Rather than continuing to give a word picture of the opera­
tion, introduced will be the symbolic representation M -* A, where
the arrow means "transfer to." Therefore the LDA instruction sym­
bolic representation is read, "memory transferred to the accumulator."

LDA affects the contents of the accumulator, does not affect
the carry or overflow flags; sets the zero flag if the accumulator
is zero as a result of the LDA, otherwise resets the zero flag;
sets the negative flag if bit 7 of the accumulator is a 1, other­
wise resets the negative flag.

Although yet to be developed is the concept of addressing
modes, for reference purpose, LDA is a "Group One" instruction and
has all of the major addressing modes of the machine available to
it as stated in Appendix A. These addressing modes include Immed­
iate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

4

2.1.2 STA— Store Accumulator In Memory

This instruction transfers the contents of the accumulator to
memory.

The symbolic representation for this instruction is A -* M.
This instruction affects none of the flags in the processor

status register and does not affect the accumulator.
It is a "Group One" instruction and has the following address­

ing modes available to it: Absolute; Zero Page; Absolute,X; Abso­
lute,Y; Zero Page,X; Indexed Indirect; and Indirect Indexed.

5

One of the functions to be expected from any computer is the ability
to compute or perforin arithmetic operations. Even in a simple control
problem, one often finds it useful to add 2 numbers in order to determine
that a value has been reached, or subtract 2 numbers to calculate a new
value which must be obtained. In addition, many problems involve some
rudimentary form of decimal or binary arithmetic; certainly many applica­
tions of the microprocessor will involve both. The MCS650X has an 8-bit
arithmetic unit which interfaces to the accumulator as shown in Figure 2.2

2.2 THE ARITHMETIC UNIT

Partial Block Diagram including Arithmetic Logic Unit o f MCS650X
FIGURE 2.2

The arithmetic unit is composed of several major parts. The most
important of these is the circuitry necessary to perform a two's comple­
ment add of 8-bit parallel values and generate an 8 parallel bit binary
result plus a carry. A review of binary and binary coded decimal (BCD)
arithmetic is presented in Appendix H. However, a quick review of the
concept of "carry" is in order. The largest range than can be repre­
sented in an 8-bit number is 256 with values ranging between 0 and 255.
If we add any 2 numbers which result in a sum which is greater than 255,
we represent the result with a ninth bit plus the 8 bits of the excess
over 255. The ninth bit is called "carry."

6

2.2.1 ADC— Add Memory to Accumulator with Carry

This instruction adds the value of memory and carry from the
previous operation to the value of the accumulator and stores the
result: in the accumulator.

The symbolic representation for this instruction is
A + M + C A.

This instruction affects the accumulator; sets the carry flag
when the sum of a binary add exceeds 255 or when the sum of a decimal
add exceeds 99, otherwise carry is reset. The overflow flag is set
when the sign or bit 7 is changed due to the result exceeding +127
or -128, otherwise overflow is reset. The negative flag is set if
the accumulator result contains bit 7 on, otherwise the negative
flag is reset. The zero flag is set if the accumulator result is 0,
otherwise the zero flag is reset.

It is a "Group One" instruction and has the following address­
ing modes: Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y;
Zero Page,X; Indexed Indirect; and Indirect Indexed.

The ninth bit of the result is stored in the carry flag and
the remaining 8 bits reside in the accumulator. The carry flag can
be thought of as a flag bit which is remote from the accumulator it­
self but which is directly affected by accumulator operations as
though it were a ninth bit in the accumulator. The primary reason
for not viewing the carry bit as merely a ninth bit in the accumu­
lator is that one has program control over its state by being able
to set (to "1") or clear (to "0") the bit and, of course, it is not
part of the 8-bit accumulator in data transfer operations. Examples
employing the Add with Carry operation follow.

Example 2.1: Add 2 numbers with carry; no carry generation

0000 1101 13 = (A)*
1101 0011 211 = (M)*

__ __________ 1 _____1 = CARRY
Carry = /0/ 1110 0001 225 = (A)

*(A) and (M) refer to the "contents" of the accumulator and
"contents" of memory respectively.

Example 2.2: Add 2 numbers with carry; carry generation

1111
0000

Carry = flf 0000

1110 254 = (A)
0110 6 = (M)
___1 _1 = CARRY
0101 5 = (A)

While the accumulator contains "5," the carry flag signals
the user that the result exceeded 255 and, therefore, the result can
be properly interpreted as 256 + 5 = 261.

2.2.1.0 Multiple Precision Addition

To perform the addition of 2 numbers, one issues to the
microprocessor an ADC instruction which adds the memory and the accu­
mulator and stores the results in the accumulator with the carry bit
going set if the results exceeded 255.

To add numbers which had significantly higher value than
255, it would be necessary to represent these numbers by a series of
serial 8-bit numbers. With the 16 bits in 2 serial 8-bit numbers,
it is possible to represent binary numbers of greater than 65,000 in
value. In order to add two 16-bit numbers together and thus accomplish
double precision addition, one first loads the lowest byte of one
number into the accumulator, clears the carry flag and then adds the
second number to the first number in the accumulator using the ADC
command. One would then store this result into another memory loca­
tion using the STA command. The carry flag would now represent the ,
carry from the lowest byte to the highest byte. One could then load
the high order byte of the first number, add with carry again to the
high value of the second number, and store the result in the high
order byte of the result. Thus, it can be seen that the carry allows
us to perform as much precision arithmetic as is necessary. The
example listing below displays the commands used to execute the addi­
tion of two 16-bit numbers.

8

High Order Byte Low Order Byte
First Number HI LI
Second Number H2 L2
Result of Addition H3 L3
LDA LI Load low order byte, first number
CLC Clear carry flag (carry = 0)
ADC L2 Add Ll to low order byte, second num­

ber
STA L3 Store result in memory, carry flag is

still set if set in ADC operation
LDA HI Load high order byte, first number
ADC H2 Add HI and carry value from first ADC

operation to high order byte, second
number

STA H3 Store result in memory

In this example it was necessary to clear the carry flag
before starting the add instruction. This, of course, means that
commands exist that set and clear the carry flag allowing for addi­
tion without values generated from the prior operation. One could
also, at the end of the program, check to see if the result exceeded
16 bits by testing the carry flag. Exactly how one alters and tests
flags will be discussed in the Flag and Branches Section. The
examples below display the concept of carry from the addition of the
low order bytes.

Example 2.4: Add two 16-bit numbers, no carry from low
order add

0000 0001 0000 0010 258
0001 0000 0001 0000 4112
Add low order bytes: (clear carry)

0000 0010 (A)
__ 0001 0000 (M)

Carry = /0/ 0001 0010 (A)
Add high order bytes (carry = 0):

0000 0001 (A)
0001 0000 (M)

__ __________0 CARRY
Carry = _/0/ 0001 0001 (A)

Result = 0001 0001 0001 0010 = 4370

Example 2.3: Adding two 16-bit numbers

9

Example 2.5: Add two 16-bit numbers, with carry from low
order add

0000 0001 1000 0000 384
0000 0000 1000 0000 128
Add low order bytes: (clear carry)

1000 0000 (A)
__ 1000 0000 (M)

Carry = /1/ 0000 0000 (A)
Add high order bytes: (carry = 1)

0000 0001 (A)
0000 0000 (M)

__ __________ 1 CARRY
Carry = [0/ 0000 0010 (A)

Result = 0000 0010 0000 0000 = 512

2.2.1.1 Signed Arithmetic

It is possible to look at the add operation and the way
data is represented in memory in a different way. If, in the 16-bit
problem (Examples 2.4 and 2.5), one were working with 15 bits of pre­
cision (in other words, 15 bits of valid data) plus 1 bit of sign (0
for positive and 1 for negative), it would be possible to perform
signed binary arithmetic without changing the adder, but by merely
changing the way the results are interpreted. In order to facili­
tate this concept, the microprocessor has the ability to represent
positive or negative numbers by means of a sign flag which will be
discussed at length in Section 3.7. In the MCS650X family, bit 7 is
the sign position bit. This means that the highest order byte in a
series of bytes should have the sign in the eighth position. If,
for simplicity, one talks about signed 8-bit numbers, it would mean
that one was allowed only 128 combinations of each sign because that
is the most that can be represented in 7 bits, with the eighth bit or
the highest bit reserved for the sign position.

7 6 5 4 3 2 1 0 ^BIT POSITION

T SIGN POSITION “T
“O’

= NEGATIVE
= POSITIVE

Byte Orientation with Sign Position
FIGURE 2.3

In the following examples of signed arithmetic it should be
noted that operations are occurring on a 7-bit field of numbers and
that any carry generated out of that field will reside in the eighth
bit— not in the carry flag discussed during the add operations. The
generation of a carry out of the field is the same as when adding
two 8-bit numbers, except for the fact that the normal carry flag
does not correctly represent the fact that the field has been ex­
ceeded,, This is because the true carry from adding the two 7-bit
numbers resides in the sign bit position. Therefore, the carry flag
has no real meaning. Instead, there is a separate flag, the over­
flow flag, used to indicate when a carry from 7 bits has occurred
and allows the user to write correction programs.

In each example, the negative numbers are in two's comple­
ment form. Also included in each result will be the status of the
carry and overflow flags. The overflow flag is set whenever the
sign bit (bit 7) is changed as a result of the operation.

Example 2.6: Add 2 positive numbers with no overflow

0000 0101 +5 (A)
__ 0000 0111 +7 (M)

Carry = /0/ 0000 1100 +12 (A)
Overflow = /0/ "0" in bit 7 indicates positive result.

Note that both the carry and overflow
flag remain cleared.

11

0111 1111 +127 (A)
0000 0010 + 2 (M)

Carry = /0/ 1000 0001 "-127" (A)
Overflow = /1/ "1" in bit 7 indicates negative result and

the two's complement of the result is 127;
however, the overflow flag is set indicat­
ing the allowable range was exceeded in the
addition.

Therefore, examination of the overflow indicated that the result was
in fact not negative but that the bit 7 position represented an over­
flow beyond the value of 127. Hence the user is flagged of an incor­
rect result and a correction routine (program) must follow.

Example 2.8: Add positive and negative number with posi­
tive result

0000 0101 +5 (A)
__ 1111 1101 ^3 (M)

Carry = /I/ 0000 0010 +2 (A)
Overflow = /0/ "0" in bit 7 indicates positive result.

(Recall that though the carry flag is set,
it has no meaning in signed operations.)

Example 2.9: Add positive and negative number with negative
result

0000 0101 +5 (A)
__ 1111 1001 ^7 (M)

Carry = /£/ 1111 1110 -2 (A)
Overflow = /0/ "1" in bit 7 indicates negative result.

Example 2.10: Add 2 negative numbers without overflow

1111 1011 -5 (A)
__ 1111 1001 -7 (M)

Carry = /l/ 1111 0100 -12 (A)
Overflow = /0/ "1" in bit 7 indicates negative result.

Example 2.7: Add 2 positive numbers with overflow

12

Example 2.11: Add 2 negative numbers with overflow

1011 1110 -66 (A)
_ 1011 1111 -65 (M)

Carry = /l/ 0111 1101 "+125" (A)
Overflow = /!/ "0" indicates positive result, but the

overflow flag is set indicating that the
allowable range was exceeded in the opera­
tion. Without the overflow indication, the
result would be interpreted as +125. The
overflow, however, indicated that the result
was negative and exceeded the value -128.
Hence the user is flagged of an incorrect
result, indicating the need for a correc­
tion routine.

2.2.1.2 Decimal Addition

There is a way for the user to organize data for decimal
operations. The MOS Technology, Inc. MCS650X microprocessors have
a modified adder which allows the user to represent his numbers as
two 4-bit binary coded decimals (BCD) numbers packed into a single
byte. This is a unique feature of the MCS650X family in that the
operation in the following example can be performed.

Example 2.12: Decimal addition

CLC Clear Carry Flag
SED Set Decimal Mode
LDA 0111 1001 79
ADC 0001 0100 +14
STA 1001 0011 93

The microprocessor adder has the unique capability of per­
forming real time correction to the normal expected binary result
without any direct interference from the programmer. Other popular
microprocessors require a separate instruction (Decimal Adjust)
which corrects the direct binary result of the arithmetic unit to
obtain the same final results as are available on this microprocessor
directly.

In order to make the same arithmetic unit perform either as
a binary adder or as a decimal adder, the user chooses the mode in
which he is going to operate (either decimal or binary) by setting

13

another flip-flop in the microprocessor called the decimal flag. As
shown in this example, one not only initializes the adder by clearing
the carry flag, but also puts the processor into decimal mode with
the SED instruction. Even though this also requires 1 instruction,
it is possible to put the machine in decimal mode once and perform
many long strings of decimal numbers without further user interven­
tion. The "Decimal Adjust" feature on other microprocessors requires
programming subsequent to each binary operation.

2.2.1.3 Add Summary

In summary, the basic arithmetic unit is a binary adder
which, under control of the ADC command, performs binary arithmetic
on the accumulator and data, storing the result in the accumulator.
Depending on the way the user looks at the data which is presented to
the adder and the results which are obtained from it, the user can
determine whether or not the result exceeds 255 binary or 99 decimal;
he can perform precision arithmetic by use of the ninth bit or carry
flag; he can control whether or not the microprocessor is a decimal
adder by setting the decimal mode; and he can represent his numbers
as signed binary numbers by analyzing other flags that are set in the
machine.

2.2.2 SBC Subtract Memory from Accumulator with Borrow

This instruction subtracts the value of memory and borrow from
the value of the accumulator, using two's complement arithmetic, and
stores the result in the accumulator. Borrow is defined as the carry
flag complemented; therefore, a resultant carry flag indicates that a
borrow has not occurred.

The symbolic representation for this instruction is
A - M - C ■* A.

This instruction affects the accumulator. The carry flag is
set if the result is greater than or equal to 0. The carry flag is
reset when the result is less than 0, indicating a borrow. The over­
flow flag is set when the result exceeds +127 or -127, otherwise it

14

is reset. The negative flag is set if the result in the accumulator
has bit 7 on, otherwise it is reset. The Z flag is set if the result
in the accumulator is 0, otherwise it is reset.

It is a "Group One" instruction. It has addressing modes
Immediate; Absolute; Zero Page; Absolute,X; Absolute,!; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

In a binary machine, the classical way to perform arithmetic
is by using two's complement notation. In using two's complement
notation, any subtraction operation becomes a sequence of bit comple­
mentations and additions. This reduces the complexity of the circuits
required to perform a subtraction.

When the SBC instruction is used in single precision subtrac­
tion, there will normally be no borrow; therefore, the programmer
must set the carry flag, by using the SEC (Set carry to 1) instruc­
tion, before using the SBC instruction. The microprocessor adds the
carry flag to the complemented memory data, resulting in a true two's
complement form of the memory value with its sign inverted.

Example 2.13: Subtract 2 numbers with borrow; positive result

Assume a single precision subtraction where A contains 5 and M con­
tains 3. The carry flag must be set to a 1 using the SEC instruc­
tion, thereby representing the no-borrow condition.

The adder changes the sign of M by taking the two's complement
of M. This involves complementing M and adding the carry bit.

M = 3 0000 0011
Complemented M 1111 1100

Add C = 1 ______1_
-M = -3 1111 1101

The adder adds A and the two's complement -M together. This
operation occurs simultaneously with the complement operation.

A = 5 0000 0101
Add -M = -3_ 1111 1101
Carry = /I/ 0000 0010 = +2

The presence of the carry flag after this operation indicates
that No Borrow was required, therefore the result is +2.

15

Example 2.14: Subtract 2 numbers with borrow; negative result

Assume a single precision subtraction where A contains 5 and M con­
tains 6. Set the carry flag to a 1 with SEC to indicate No Borrow.

M = 6 0000 0110
1 S Cotwr*

2

Complemented M
Add C = 1

1111 1001
1

-M = -6 1111 1010

A = 5 0000 0101
Add -M = -6 1111 1010

Carry - JQJ 1111 1111 = -1

The absence of the carry flag after this operation indicates
that a borrow was required, therefore the result is a -1 in two's
complement form. The absolute (unsigned) result in straight binary
could be obtained by taking the two's complement of this number.

2.2.2.0 Multiple Precision Subtraction

Double precision subtraction is implemented in a fashion
similar to addition. An example for subtracting a 16-bit number and
storing the result follows:

Example 2.15: Subtracting two 16-bit numbers

High Order Byte Low Order Byte
First Number HI LI
Second Number H2 L2
Result of Subtraction H3 L3
SEC Set Carry
LDA LI Load Low Order Byte, First Number
SBC L2 Subtract with Borrow, Low Order Byte of Second

Number from LI
STA L3 Store Result in Memory
LDA HI Load High Order Byte, First Number
SBC H2 Subtract with Borrow, High Order Byte of Second

Number from HI
STA H3 Store Result in Memory

16

Example 2.16: Subtract in double precision format; positive
result

Assume a double precision subtraction where 255 is to be
subtracted from 512 for an example. Since there has been no borrow
coming into this subtraction operation, the carry flag must be set.

Following are the 2 numbers in binary form:

High Order Byte Low Order Byte
A field = 512 0000 0010 0000 0000
M field = 255 0000 0000 1111 11.11
Since the adder can only operate on single byte, numbers, the

programmer must operate on the low order bytes first.

M = 1111 1111
Complemented M = 0000 0000

Add C = 1 __________ 1
-M 0000 0001

A = 0000 0000
Add -M_= 0000 0001

Carry = /0/ 0000 0001
The carry is brought over to the subtract operation on the

high order bytes.

M = 0000 0000
Complemented M = 1111 1111

Add C = 0 ___________0
-M 1111 1111

A = 0000 0010
Add -M_= 1111 1111

Carry = /l/ 0000 0001
The result in binary form follows:

Carry = j\J 0000 0001 0000 0001 = +257

The presence of the carry flag after the highest order byte
subtraction indicates that the entire number required No Borrow,
therefore it is a positive number in straight binary form.

17

Example 2.17:

Now
subtracted fr>
into this subt

Folio

assume a double precision subtraction where 512 is to be
cm 255. Again, since there has been no borrow coming
raction operation, the carry flag must be set.
wing are the two numbers in binary form:

A fi
M fi
Oper

eld = 255
Bid = 512
ating on the low order byte:

Add C = 1
larry = /!/

dd -M = /!/
larry = /!/

The
The

tract operati

The
Carrkr
Carry

the number is

2.2.2.1 Sign

Sign
just as easily
numbers from
to the value

Subtract in double precision format; negative
result

High Order Byte
0000 0000
0000 0010

Low Order Byte
1111
0000

1111
0000

an:

Add C = 1

Carry = /0/ 1111

0000 0000
1111 1111

1
0000 0000
1111 1111
0000 0000
1111 1111
the carry = 1
brought over

0000 0010
1111 1101

1
1111 1110

0000 0000
1111 1110
1111 1110

result in binary form is:
= /07 1111 1110 1111 1111 = -257
= /0/ indicates the presence of a borrow, therefore
negative and is in two's complement form.

ed Arithmetic

ed numbers can be subtracted, using the SBC instruction,
as they can be added. The microprocessor converts the

memory to its two's complemented form and then adds it
of the accumulator just as it does in an unsigned

18

subtract described in Section 2.2.2. The addition operation is
identical to that described, and to the examples given in Section
2.2.1.1

It should be remembered that before using the SBC instruc­
tion, either signed or unsigned, the carry flag must be set to a 1 in
order to indicate a no borrow condition. The resultant carry flag
has no meaning after a signed arithmetic operation.

2.2.2.2 Decimal Subtract

As indicated in the Section 2.2.1.2, it is possible to repre­
sent numbers as packed 4-bit BCD numbers. In this case, which is
again unique to this microprocessor, it is possible to make the adder
act as though it is a decimal adder. In this case, the function of
the machine is one of correcting for the subtraction of positive num­
bers by complementing the number, setting the carry and performing
binary arithmetic with an automatic correction at the time the result
is stored in the accumulator. The unique capabilities of this adder
give the results as shown in the next example.

By setting the decimal mode and setting the carry flag, one can sub­
tract number 29 from number 44 with the results in the accumulator
automatically being 15.

subtraction when the machine is set in decimal mode, treating the
bytes to be added as unsigned, positive, binary coded digits. The
carry flag in addition represents the case when the result in the
number exceeded 99 and in subtraction the absence of the carry flag
represents a true borrow situation.

Example 2.18: Decimal Subtraction

SED
SEC
LDA
SBC
STA

Set Decimal Mode
Set Carry Flag

0100 0100 44
0010 1001 29
0001 0101 15

As has been indicated, one can perform both addition and

2.2.3 Carry and Overflow During Arithmetic Operations

It is necessary to set or reset the carry flag prior to the
beginning of any arithmetic instruction. Because the carry flag is
set or reset as a result of the arithmetic operation at the end of
the loop, one can test the flag to determine whether or not a carry
or a borrow occurred in the operation. By proper use of the overflow
flag one can treat the high order bit of any set of bytes as a sign
bit as long as the results of the negative numbers are carried in
two's complement form. The microprocessor also sets the overflow
flip-flop to indicate when a result larger than can be stored in a
7-bit field has occurred and when the resultant sign is incorrect.
In binary arithmetic the carry flag set indicates results in excess
of 256, and in decimal arithmetic indicates results in excess of 99.
Although the input carry is very important to these operations, a
simple rule is: set the carry flag prior to subtract; clear the
carry flag prior to add.

2.2.4 Logical Operands

In implementing a parallel binary adder there are several use­
ful logic functions which are subsets of a binary add operation. In
the MCS650X family, these subsets are used to implement the logical
operands "AND," "OR," and "EOR" (Exclusive Or). These operations are
used to test and control bit manipulations.

2.2.4.1 AND— Memory with Accumulator
r

The AND instructions transfer the accumulator and memory to
the adder which performs a bit-by-bit AND operation and stores the
result back in the accumulator.

This instruction affects the accumulator; sets the zero flag
if the result in the accumulator is 0, otherwise resets the zero flag
sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag.

This is symbolically represented by A A M -»■ A.

20

AND is a "Group One" instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses for the AND operation is that of resetting a
bit in memory. In the example below,

Example 2.19: Clearing a bit with AND

LDA 1100 Xlll, where X is 0 or 1
AND 1111 0111
STA 1100 0111

a byte is loaded into the accumulator and the AND instruction resets
the accumulator bit 3 to 0. The accumulator is then stored back into
memory, thereby resetting the bit.

2.2.4.2 ORA "OR" Memory with Accumulator

The ORA instruction transfers the memory and the accumulator
to the adder which performs a binary "OR" on a bit-by-bit basis and
stores the result in the accumulator.

This is indicated symbolically by A V M A.
This instruction affects the accumulator; sets the zero flag

if the result in the accumulator is 0, otherwise resets the zero flag;
sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag. ORA is a "Group One" instruction.
It has the addressing modes Immediate; Absolute; Zero Page; Absolute,X
Absolute,Y; Zero Page,X; Indexed Indirect; and Indirect Indexed.

To set a bit, the OR instruction is used as shown below:

Example 2.20: Setting a bit with OR

LDA 1110 Xlll, where X is 0 or 1
ORA 0000 1000
STA 1110 1111

2.2.4.3 EOR— "Exclusive OR" Memory with Accumulator

The EOR instruction transfers the memory and the accumulator
to the adder which performs a binary "EXCLUSIVE OR" on a bit-by-bit
basis and stores the result in the accumulator.

This is indicated symbolically by A ^ M -* A.
This instruction affects the accumulator; sets the zero flag

if the result in the accumulator is 0, otherwise resets the zero flag
sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag.

EOR is a "Group One" instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute,X; Absolute,?; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses of the EOR instruction is in complementing
bytes. This is accomplished below by exclusive ORA-ing the byte with
all l’s.

Example 2.21: Complementing a byte with EOR

LDA 1010 1111
EOR 1111 1111
STA 0101 0000

22

CHAPTER 3

CONCEPTS OF FLAGS AND STATUS REGISTER

One can view each of the individual flags or status bits in the
machine as individual flip-flops. The carry flag can be considered the
ninth bit of an arithmetic operation. The decimal mode flag is set and
cleared by the user and used by the microprocessor to select either binary
or decimal mode. For programming convenience the microprocessor treats
all of the flags or status bits as component bits of a single 8-bit reg­
ister. In Figure 3.1 the processor status register (or "P" register) is
added to the block diagram.

DATA BUS

C=^
PROCESSOR

STATUS
REGISTER

P

Partial Block Diagram o f MCS650X including P Register
FIGURE 3.1

23

Each of the individual flags or bits has its own particular meaning in the
microprocessor as defined in Figure 3.2.

N V B D I Z C

Processor Status Register
FIGURE 3.2

PROCESSOR STATUS REGISTER

CARRY
ZERO RESULT

INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
EXPANSION
OVERFLOW
NEGATIVE RESULT

3.0 CARRY FLAG (C)
The carry bit which is<modified as a result of specific arithmetic

operations or by a set or clear carry command has been discussed previously.
In the case of shift and rotate instruction, the carry bit is used as a
ninth bit as it is in the arithmetic operation. The carry flag can be set
or reset by the programmer. A SEC'instruction will set and a CLC instruc­
tion will reset the carry flag. Operations which affect the carry are ADC,
ASL, CLC, CMP, CPX, CPY, LSR, PLP, ROL, :RTT, SBC, sfc. f ~

' 3.0.1 SEC ;Set Carry Flag

This instruction initialized'the carry flag ta a 1. This op­
eration should normally precede a SBC loop. It is also useful when
used with a ROL instruction to initialize a bit in memory to a 1.

This instruction affects no registers in the microprocessor
and no flags other than the carry fldg which is set. '

SEC is a single-byte instruction and its addressing mode is
Implied.

24

3.0.2 CLC— Clear Carry Flag

This instruction initializes the carry flag to a 0. This op­
eration should normally precede an ADC loop. It is also useful when
used with a ROL instruction to clear a bit in memory.

This instruction affects no registers in the microprocessor
and no flags other than the carry flag which is reset.

CLC is a single-byte instruction and its addressing mode is
Implied.

3.1 ZERO FLAG (Z)

This flag is automatically set by the microprocessor during any data
movement or calculation operation when the 8 bits of results of the opera­
tion are 0. Therefore, the bit is on ("1") when the results are 0, and
off ("0") when the results are not equal to 0. The feature of the machine
is similar to that of the PDP11 in the sense that operations which are
decrementing index registers or memory locations have a built-in test for
0 as a result of decrementing to the 0 condition. It is also possible to
test for 0 condition immediately following load and other logical opera­
tions, as opposed to processors which have to do a test and branch instruc­
tion. The Z flag is not directly settable or resettable by an instruction
but is affected by the following instructions: ADC, AND, ASL, BIT, CMP,
CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, RTI, SBC, TAX, TAY, TXA, TYA.

3.2 INTERRUPT DISABLE (I)

The interrupt disable is a flip-flop made use of by the programmer
and by the microprocessor to control the operations of the interrupt re­
quest pin. A more detailed discussion of the effects of the interrupt
disable are given in the discussion under interrupt control. However, the
purpose of the interrupt disable is to disable the effects of the interrupt
request pin. The interrupt disable, I, is set by the microprocessor dur­
ing reset and interrupt commands. The I bit is reset by the CLI instruc­
tion or the PLP instruction, or at a return from interrupt in which the
interrupt disable was reset prior to the interrupt. The interrupt flag
may be set by the programmer using a SEI instruction and is cleared by the

25

programmer by using a CLI instruction. Instructions which affect the
interrupt disable are BRK, CLI, PLP, RTI and SEI.

3.2.1 SEI— Set Interrupt Disable

This instruction initializes the interrupt disable to a 1. It
is used to mask interrupt requests during system reset operations and
during interrupt commands.

It affects no registers in the microprocessor and no flags
other than the interrupt disable which is set.

SEI is a single-byte instruction and its addressing mode is
Implied.

3.2.2 CLI— Clear Interrupt Disable

This instruction initializes the interrupt disable to a 0.
This allows the microprocessor to receive interrupts.

It affects no registers in the microprocessor and no flags
other than the interrupt disable which is cleared.

CLI is a single-byte instruction and its addressing mode is
Implied.

3.3 DECIMAL MODE FLAG (D)

As discussed, the use of the decimal mode flag is to control whether
or not the adder operates as a straight binary adder for add and subtract
instructions or as a decimal adder for add and subtract instructions. The
SED instruction sets the flag and the CLD instruction resets it. The only
instructions which affect the decimal mode flag are CLD, PLP, RTI and SED.

3.3.1 SED— Set Decimal Mode

This instruction sets the decimal mode flag D to a 1. This
makes all subsequent ADC and SBC instructions operate as a decimal
arithmetic operation.

SED affects no registers in the microprocessor and no flags
other than the decimal mode which is set to a 1.

3.3.2 CLD— Clear Decimal Mode

This instruction sets the decimal mode flag to a 0. This
causes all subsequent ADC and SBC instructions to operate as simple
binary operations.

CLD affects no registers in the microprocessor and no flags
other than the decimal mode flag which is set to a 0.

3.4 BREAK COMMAND (B)
The break command flag is set only by the microprocessor and is used

to determine during an interrupt service sequence whether or not the inter­
rupt was caused by BRK command or by a real interrupt. A more detailed
discussion of BRK is in the interrupt section. This bit should be con­
sidered to have meaning only during an analysis of a normal interrupt se­
quence. There are no instructions which can set or which reset this bit.

3.5 EXPANSION BIT

The next bit in the flag register is an unused bit. It is most likely
that this bit will appear to be on when one is analyzing the bit pattern
in the processor status register; however, no guarantee as to its state is
made as this bit will be used in expanded versions of the microprocessor.

3.6 OVERFLOW(V)

As discussed in the section on arithmetic operations, if one is to
look at the binary arithmetic operations as signed binary operations, there
needs to be some indication of the fact the result of the arithmetic opera­
tion has a greater value than could be contained in the 7 bits of the re­
sult. This bit is the overflow bit and during ADC and SBC instructions
represents a status of an overflow into the sign position. The user
who is not using signed arithmetic can totally ignore this flag during
his programming; however, this flag has the same meaning as the carry to
the user who is using signed binary numbers. , It indicates that a sign
correction routine must be used if this bit is on after an add or subtract
using signed numbers.

27

In addition to its use to monitor the validity of the sign bit in ADC
and SBC instructions, the overflow flag in the MCS650X products is dramat­
ically changed from PDP11 and the MC6800. In those systems the overflow
flag was very carefully controlled so as to allow certain signed branches
for analysis of signed numbers. These branches have been deleted from the
MCS6500 series because of confusion and difficulty often associated with
using them, and so therefore, the overflow flag is applicable only to the
operation of ADC and SBC. and then only when using signed numbers.

However, in order to maximize the effectiveness of this testable flag
the BIT instruction which may be used to sample interface devices, allows
the overflow flag to reflect the condition of bit 6 in the sampled field.
During a BIT instruction the overflow flag is set equal to the content of
the bit 6 on the data tested with BIT instruction. When used in this mode,
the overflow has nothing to do with signed arithmetic but is just another
sense bit for the microprocessor. Instructions which affect the V flag are
ADC, BIT, CLV, PLP, RTI and SBC. On certain versions of the microproces­
sor the V bit will also be available for stimulus from the outside world.

3.6.1 CLV— Clear Overflow Flag

This instruction clears the overflow flag to a 0. This com­
mand is used in conjunction with the set overflow pin which can change
the state of the overflow flag with an external signal.

CLV affects no registers in the microprocessor and no flags
other than the overflow flag which is set to a 0.

3.6.2 Determination of Overflow

To briefly recap the concept of overflow detection, one must
understand that the machine signals an overflow based on the data
entered to the operation and the final result. Since, with signed
arithmetic, the range of numbers that be represented is +127 to -128,
the overflow flag will never set when numbers of opposite sign are
added, since their result will never exceed that range. The machine
deals with this by recognizing that for any 2 positive numbers, the
"bit 7" of each is a "O" and that for any arithmetic operation

yielding a result less than or equal to +127, the resultant "bit 7"
must be a "0." If it is a 1, the overflow flag is set.

Similarly, when two negative numbers are added, the "bit 7" of
each is a "1" and for any result yielding a value less than or equal
to -128, the resultant "bit" must be a "1." If it is a 0, the over­
flow flag is set.

Therefore, the machine recognizes by knowledge of the "bit 7"
of each of the numbers to be added what the resultant "bit 7" must be
in a non-overflow situation. If these conditions are not met, the
overflow flag goes set.

3.7 NEGA TIVE FLA G (N)

As already discussed, one of the uses of the microprocessor is to per­
form arithmetic operations on signed numbers. To allow the user to readily
sample the status of the sign bit (bit 7), the N flag is set equal to bit 7
of the resulting value in all data movement and data arithmetic. This
means, for instance, after a signed add one can determine the sign of the
result by sampling the N flag directly rather than finding a way to iso­
late bit 7. Although signs were the primary purpose for which the N flag
was intended, its usefulness far exceeds that of strictly a sign bit.
Because of every operation including simple moves and add operations the N
bit is equal to the status of bit 7 as a result of the operation; its pri­
mary use becomes that of an easily testable bit. Almost all single-bit in­
structions, all interrupts and all I/O status flags use bit 7 as a sense bit.
This allows the user to perform some type of memory access operation such
as Load A followed by immediate conditional branch based on the status of
bit 7 as reflected in the N flag. Like the Z bit, this flag is not settable
or controllable by the programmer and represents the status of the last data
movement operation. Instructions which affect the negative flag are ADC,
AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX,
LDY, LSR, ORA, PLA, PLP, ROL, BIT, SBC, TAX, TAY, TSX, TXA and TYA.

29

3.8 FLAG SUMMARY
To summarize, the microprocessor treats a series of flags or status

bits as a single register called the "P" or "Program Status" register.
Some of these flags are controllable only by the programmer (such as the D
flag); others are controllable by both the user program and microprocessor
(such as the interrupt disable flag). Some of them are set and reset by
almost every processor operation, such as the N and Z flags. Each of these
flags has its own meaning to the programmer at a particular point in time.
When combined with the concept of conditional branches, they represent a
powerful test and jump capability not normally found in a machine of this
magnitude. Other than perhaps the carry flag which is used as part of the
arithmetic instructions, the flags by themselves have relatively little
meaning unless one has the ability to test them. For this purpose there
is a series of conditional branch instructions designed into the machine.

CHAPTER 4

TEST, BRANCH AND JUMP INSTRUCTIONS

4.0 CONCEPTS OF PROGRAM SEQUENCE

In all the discussions up until now, there has been little discus­
sion about how the microprocessor understands the instructions used to
perform various arithmetic and accumulator manipulations. However, it
is appropriate that the concept of a program and how the microprocessor
determines each instruction be developed. More registers are required
in the machine as shown in the figure below.

Partial Block Diagram o f MCS650X Including Program
Counter and Internal Address Bus

FIGURE 4.1

31

Although two 8 bit registers have been added, they are the only
registers in the machine that act as though they are one 16 bit reg­
ister. They implement a concept known as program count or program
sequence and subsequently their value will be referred to as PC or
program count. In certain operations it may be convenient to talk
about how one affects the program count low (PCL) which will be the
lower 8 bit register or the program count high (PCH) which will be the
higher 8 bit register. The reason for this register being 16 bits in
length is that if it had only 8 bits it would only be able to reference
256 locations. Since it is through the address bus that one accesses
memory, the program counter which defines the addressable location,
should be as wide a word as possible.

The accessing of a memory location is called "addressing". It is
the selection of a particular eight-bit data word (byte) out of the
65,536 possibilities for memory data locations. This selection is trans­
mitted to the memory through the 16 address lines (ADH, ADL) of the micro­
processor.

For a more detailed discussion of how an individual memory byte is
selected by the address lines, the reader is referred to Chapter 1 of
the Hardware Manual.

If the program counter was only 1 byte and if the bit pattern which
allows the microprocessor to choose which instruction it wants to act on
next, such as "LDA" as opposed to an "AND", was contained in one byte of
data we could only have 256 program steps. Although the machine of this
length might make an interesting toy, it would have no real practical
value. Therefore, almost all of the competitive 8 bit microprocessors
have chosen to go to a double length program counter. Even though some
of the microprocessors of the MCS650X family do not have all of the out­
put address lines necessary to allow the user to address 65K bytes of
program (due to package pinout constraints), in all cases the program
counter is capable of addressing a full 65K by virtue of it's 16 bit
length.

32

4.0.1 Use of Program Counter to Fetch an Instruction

The microprocessor contains an internal timing and state con­
trol counter. This counter, along with a decode matrix, governs the
operation of the microprocessor on each clock cycle. When the state
of the microprocessor indicates that a new instruction is needed,
the program counter (program address pointer) is used to choose
(address) the next memory location and the value which the memory
sends back is decoded in order to determine what operation the
MCS650X is going to perform next.

To use the program counter to perform this operation cor­
rectly, it must always be addressing the operation the user wants
to perform next. This operation may be an instruction or may be
data on which the instruction will operate.

In the MCS650X family, the program counter is set with the
value of the address of an instruction. The microprocessor then
puts the value of the program counter onto the address bus, trans­
ferring the 8 bits of data at that memory address into the instruc­
tion decode. The program counter then automatically increments by
one and the microprocessor fetches further data for address operation
necessary to complete the instruction. In the simple example below,

Example 4.1: Accessing Instructions with the P Counter Value
P Counter* Location Contents

0100** LDA *Program Counter
0101 ADC **Hexadecimal
0102 STA Notation

one can see how the program counter is used to access the instruc­
tion sequence load A, add with carry, and store the result. In this
example, the program counter would start out containing 0100. The
microprocessor would read location 0100 by using the program counter
to access memory and would then interpret and implement the LDA in­
struction as previously described. The program counter will auto­
matically increment by one on each instruction fetch, stepping to
0101. After performing the LDA, the microprocessor would fetch the

next instruction addressing memory with the program counter. This
would pick up the ADC instruction, the add would then be performed,
the program counter which has been incremented to 0102 would be used
to address the next instruction, STA. The P counter incrementing
once with each instruction is an oversimplified view of what actu­
ally transpires within the microprocessor.

correctly interpret an instruction. The first byte of an instruction
is called the OP CODE and is coded to contain the basic operation
such as LDA (load accumulator with memory) and also the data neces­
sary to allow the microprocessor to interpret the address of the data
on which the operation will occur. In most cases, this address will
appear in memory right after the OP CODE byte. This allows the micro­
processor to use the program counter to access the address as well as
the OP CODE.

The following example shows how the program counter picks up
the instruction and the address of data located at address 5155.

Example 4.2: Accessing Data Address With P Counter Value

The OP CODE appears in Location Address 0100. The code for the 55
would appear next in Location Address 0101 and the 51 would appear
in Location Address 0102, and the OP CODE for the next instruction
appears in Location Address 0103. In this example, we see that the
program counter is used not only to pick up the operation code, LDA,
but is also used to pick up the address of the memory location from
which the LDA is going to obtain its data. In this case, the program
counter automatically is incremented three times to pick up the full
instruction with the microprocessor interpreting each of the indivi­
dual fetches as the appropriate data. In other words, the first

The MCS650X processors usually require more than one byte to

P Counter Location Contents
0100
0101
0102
0103 Next Instruction

LDA
55
51

34

fetch is used to pick up the OP CODE, LDA, the second fetch is used to
pick up the low order address byte of the data and the third fetch is
used to pick up the high order address byte of the data. This is the
form in which many of the microprocessor instructions will appear as
it is the most simple form of addressing in the machine and allows
referencing to any memory location.

Assuming that the microprocessor has the ability to start the
program counter at a known instruction, it should be fairly obvious
that the program counter would then continue to advance from that
location' up to the maximum memory location, roll over to the least
memory location and continue incrementing through the memory, fetch­
ing instructions and addresses as it went. This would give us an
interesting sequential program but one which lacked one tremendously
powerful concept. The program would have no ability to perform tests
or implement various options based on the results of those tests.

In the previous section, the concept of flags which are set as
a result of the microprocessor operations was developed.

To use these flags, the program should be able to test them
and- then change the sequence of operations which are being performed
depending on the result of the test. The program counter is going
to continually put out an address, the microprocessor is going to
fetch the instruction stored at that address and perform operations
based on that instruction. In order to change a sequence of perform­
ed instructions by the microprocessor, the programmer must change the
value in the program counter. Therefore, test instructions are in­
corporated which may result in a change of program count sequence as
a result of performing one of the tests. The simplest way to change
program sequence is to substitute a new value into the program counter
location. In the MCS650X microprocessors the simplest way to change
the program count sequence is with a JMP instruction.

4.0.2 JMP— Jump to New Location
In this instruction, the data from the memory location

located in the program sequence after the OP CODE is loaded into the
low order byte of the program counter (PCL) and the data from the
next memory location after that is loaded into the high order byte
of the program counter (PCH).

The symbolic notation for jump is (PC + 1)-H?CL, (PC + 2)-H?CH.
As stated earlier, the "()" means "contents of" a memory location.
PC indicates the contents of the program counter at the time the
OP CODE is fetched. Therefore (PC + 2)->-PCH reads, "the contents of
the program counter two locations beyond the OP CODE fetch location
are transferred to the new PC high order byte."

The addressing modes are Absolute and Absolute Indirect.
The JMP instruction affects no flags and only PCL and PCH.
The JMP instruction allows use of the program counter to access

the new program counter value as illustrated by the following example:

Example 4.3: Use of JMP Instruction (Absolute Addressing Mode)

Address Data Comments
0100 JMP Jump to Location 3625
0101 25 (New PCL byte)
0102 36 (New PCH byte)
3625 OP CODE Next Instruction

The program counter in the example starts out at location 100. The
microprocessor loads a jump instruction. The program counter auto­
matically increments to 101 where the microprocessor picks up and
temporarily stores the 25. The program counter automatically in­
crements to 102 where the microprocessor picks up the 36.

The 3625 is substituted into the program counter and is used
to address the next instruction. Therefore, the JMP instruction
contains within its address the new program counter location.

Although the jump allows the change of program sequence, it
does so without performing any test. So it is a JMP instruction that
is employed when it is desired to change the program counter no matter
what conditions have occurred.

36

Another JMP addressing Mode in the Indirect Addressing Mode.
Before this technique can be understood, the basis of indirect addressing

found in Chapter 6 must be reviewed. The JMP Indirect instruction is
detailed in Chapter 9, page 141.

4.1 BRANCHING
To allow for conditional program sequence change, there are a series

of branch instructions which test and perform optional changes of the pro­
gram counter based on the status of the flags. To perform a conditional
change of sequence, the microprocessor must interpret the instruction,
test the value of a flag, and then change the P counter if the value
agrees with the instruction. If the condition is not met, the program
counter continues to increment in its normal fashion. Figure 4.2
illustrates how a conditional test might be used.

Use o f Conditional Test
FIGURE 4.2

37

In this example, it is seen that generation of a carry from the add
operation will allow an out-of-sequence branch to a new location.

4.1.1 Basic Concept of Relative Addressing

If one considers that the instruction JMP required three
bytes, one for OP CODE, one for new program counter low (PCL) and
one for new program counter high (PCH) it is seen that jump on carry
set would also require three bytes. Because most programs for con­
trol require many continual jumps or branches, the MCS650X uses
"relative" addressing for all conditional test instructions. To
perforin any branch, the program counter must be changed. In rela­
tive addressing, however, we add the value in the memory location
following the OP CODE to the program counter. This allows us to
specify a new program counter location with only two bytes, one
for the OP CODE and one for the value to be added.

To illustrate this, in the following example, the branch on
carry set (BCS) illustration is followed by a value of 50. If the
carry is set, the new program location would be 108 + 50 = 158; in
other words, it will take the branch.

Example 4.4: Illustration of "Branch on Carry Set"

Address Data Comments
0100
0101
0102
0103
0104
0105
0106

LDA Load First Value
ADL1 First Number, low byte
ADH1 First Number, high byte
ADC Add Second Value
ADL2 Second Number, low byte
ADH2 Second Number, high byte
BCS Test for Carry Set. If

yes, branch to 0158
0107
0108

+50
STA If not, store results

of add
0109
010A
0158

ADL3 Result, low byte
ADH3 Result, high byte
OP CODE New Instruction

38

rI-

The 0108 represents the value of the program counter after
reading the offset value. The program counter automatically incre­
ments so it can reference the next memory location on the next cycle.
The add of the offset is a signed binary add as discussed in the arith­
metic section. A positive branch is indicated by a 0 in bit 7 of the
relative value, and a minus branch is in two's complement form and is
indicated by a 1 in bit 7. The inherent capabilities of this type of
notation system allow branch conditionally forward 127 bytes from
the next instruction and back 128 bytes from that instruction. All
branches in the MCS650X series are conditional relative branches
and all have the form shown above. The advantage of relative ad­
dressing is best shown in the following example:

Example 4.5: Sequencing Two Branch Instructions

Address Data Comments
0100 LDA Load First Value
0101 ADL1
0102 ADH1
0103 ADC Add Second Value
0104 ADL2
0105 ADH2
0106 BCS Test for Carry Set. If

yes,branch to 0158
0107 +50
0108 BMI Test for Minus Number.

If yes, branch to 0095
0109 -75
010A STA If not, Store
010B ADL3
010C ADH3

In this example, the previous single-branch example was modi­
fied to also test the resulting number to see if it is negative. In
sequencing two-branch instructions, this loop is 2 bytes shorter by
use of relative branches rather than 3 byte branches.

39

4.1.2.1 BMI - Branch on Result Minus

This instruction takes the conditional branch if the N bit
is set.

BMI does not affect any of the flags or any other part of
the machine other than the program counter and then only if the
N bit is on.

The mode of addressing for BMI is Relative.

4.1.2.2 BPL - Branch on Result Plus

This instruction is the complementary branch to branch on
result minus. It is a conditional branch which takes the branch when
the N bit is reset (0). BPL is used to test if the previous result
bit 7 was off (0) and branch on result minus is used to determine if
the previous result was minus or bit 7 was on (1).

The instruction affects no flags or other registers other
than the P counter and only affects the P counter when the N bit is
reset.

The addressing mode is Relative.

4.1.2.3 BCC - Branch on Carry Clear

This instruction tests the state of the carry bit and takes
a conditional branch if the carry bit is reset.

It affects no flags or registers other than the program
counter and then only if the C flag is not on.

The addressing mode is Relative.

4.1.2.4 BCS - Branch on Carry Set

This instruction takes the conditional branch if the carry
flag is on.

BCS does not affect any of the flags or registers except for
the program counter and only then if the carry flag is on.

The addressing mode is Relative.

4.1.2 Branch Instructions

40

i
F

4.1.2.5 BEQ - Branch on Result Zero

This instruction could also be called "Branch on Equal."
It takes a conditional branch whenever the Z flag is on or the previ­
ous result is equal to 0.

BEQ does not affect any of the flags or registers other than
the program counter and only then when the Z flag is set.

The addressing mode is Relative.

4.1.2.6 BNE - Branch on Result Not Zero

This instruction could also be called "Branch on Not Equal."
It tests the Z flag and takes the conditional branch if the Z flag is
not on, indicating that the previous result was not zero.

BNE does not affect any of the flags or registers other than
the program counter and only then if the Z flag is reset.

The addressing mode is Relative.

4.1.2.7 BVS - Branch on Overflow Set

This instruction tests the V flag and takes the conditional
branch if V is on.

BVS does not affect any flags or registers other than the
program, counter and only when the overflow flag is set.

The addressing mode is Relative.

4.1.2.8 BVC - Branch on Overflow Clear

This instruction tests the status of the V flag and takes
the conditional branch if the flag is not set.

BVC does not affect any of the flags and registers other
than the program counter and only when the overflow flag is reset.

The addressing mode is Relative.

41

4.1.3 Branch Summary

To summarize, the MCS650X branches have two characteristics;
each of them tests the state of a flag and then either accesses the
next instruction in program sequence if the flag is not in the test
state or adds the offset value to the PC value at the OP CODE of the
next instruction (PC + 1) to allow the program to change operations.
This allows the programmer the full ability to make decisions. By
writing a sequence of branch instructions, any combination of condi­
tions of the microprocessor may be determined and new action taken
as a result of the tests.

There are four branch conditions in the MCS6501-5 micropro­
cessors. These are branch on carry flag, branch of overflow flag,
branch on N flag, and branch on zero flag. Each of the branches has
a branch on flag set (1) or branch on flag clear (0).

4.1.4 Solution to Branch Out of Range

The branch relative instruction is unlike the jump instruc­
tion which can reach anywhere in memory, since branch relative is
limited to +127 or -128 from'the current program counter location.
Although for many loops and many tests this is sufficient range,
longer programs will occasionally find it necessary to condition­
ally branch to a location that is significantly further away than
the branch command will directly reach. This is one of the uses
of complementary branches. If a program should find it necessary
to branch to a location which was significantly further away than
127, the following solution would facilitate the branch:

42

Example 4.6: Use of JMP to Branch Out of Range

Point 2

Address
100
101
102
103
104
105
106

107
108

109
10A
10B
10C
10D
10E

10F

Data
LDA
ADL1
ADH1
ADC
ADL2
ADH2
BCC

+3
JMP

ADL4
ADH4
BMI
Offset
STA
ADL3

ADH3

Comments
Load First Value

Add Second Value

Branch, if no carry,
ahead 3 (to Point 2)

If carry set, jump to
location specified by
ADH4, ADL4

Check for Minus

If not minus, Store
Result

In this example, carry set is being checked. In order to accomplish
this when the branch command would have to reach outside of the 128
range, the use of a complementary branch is required. Instead of
doing the "branch on carry set" to the location, the "branch on
carry clear" is utilized (a complementary instruction) which branches
past the jump. If the complementary branch is not taken, the jump is
the "branch on carry set" function.

This technique of branching past a jump with the complementary
branch is a universal solution to the branch out of range problem.

Another solution is to find a like branch to the same location
that is within range and although this involves two branches to trans­
fer control, it does save memory locations.

By use of the relative branch less bytes of code are used than
if a conditional jump had been used. However, in large programs, the
branch out of range occurs more frequently. If the user can determine
that a branch will be out of range by inspection, he should use the
jump solution at the time he is writing the code. Otherwise, the

43

various assemblers indicate an out of range branch which will
require recoding to use the jump solution.

NOTE: The jump solution causes 5 bytes of code to be
substituted for 2 bytes of branch which in a symbolic
assembly may force other branches to go out of range.
This might cause several consecutive reassemblies but
this technique will solve the problem.

4.2 TEST INSTRUCTIONS

Although most of the normal operations of the microprocessor involve
setting of flags, there are specific instructions which are designed only
to set flags for testing with the branch instruction.

4.2.1 CMP - Compare Memory and Accumulator

This instruction subtracts the contents of memory from the
contents of the accumulator.

Its symbolic notation is A - M.
The use of the CMP affects the following flags: Z flag is

set on an equal comparison, reset otherwise; the N flag is set or
reset by the result bit 7, the carry flag is set when the value in
memory is less than or equal to the accumulator, reset when it is
greater than the accumulator. The accumulator is not affected.

It is a "Group One" instruction and therefore has as its
addressing modes: Immediate; Zero Page; Zero Page,X; Absolute;
Absolute,X; Absolute,Y; (Indirect,X); (Indirect),Y.

The purpose of the compare instruction is to allow the user
to compare a value in memory to the accumulator without changing
the value of the accumulator. An example of where this becomes
extremely important is when one is receiving command instructions
from an external device. In this case, an input byte may have
several values. Each value can cause the program to perform a
different operation. The only rapid way to determine the value of
the input data is to compare the memory with a series of constants.
It is fairly simple to perform "compare to constant" operations.
By use of the immediate addressing mode which will be developed
later,, the following example compares an input to three values
and branches to different locations for each:

Example 4.7: Using the CMP instruction

Data Comments
LDA Load Value
ADL Address Low
ADH Address High
CMP Compare COUNT 1 to Accumulator
COUNT 1
BEQ If Equal, take the branch of OFFSET 1
OFFSET 1
CMP Compare COUNT 2 to Accumulator
COUNT 2
BEQ If Equal, take the branch of OFFSET 2
OFFSET 2
CMP Compare COUNT 3 to Accumulator
COUNT 3
BEQ If Equal, take the branch of OFFSET 3
OFFSET 3
Next Inst. Otherwise, go to Next Instruction

based on default value (COUNT 4).

This example shows how to use the default option. A value
was compared against 3 values and if none were equal a fourth, or
default value, is assumed. This is a useful technique for code
minimization.

The compare instruction is designed to allow a signed compari­
son between 2 values assuming one makes appropriate use of the Z and
N and C flags. In order to give maximum flexibility to the instruc­
tion, the instruction performs an effective subtract between the value
in memory and the value in the accumulator. The reason it is an ef­
fective subtract is that subtraction allows the user to compare equal
or less with one instruction.

The results of a compare are:

Accumulator < Memory
Accumulator = Memory
Accumulator > Memory

N
Either
Reset
Either

Reset
Set
Set

Reset
Set

Reset

Unchanged
Unchanged
Unchanged

So, to check if the accumulator is less than memory, the com­
pare is followed by a BCC; to check if equal to is followed by a BEQ;
and to check if greater it is followed by a BEQ followed by a BCS.
Greater than or equal is checked by BCS.

46

The comparison instruction is designed for cases when byte or
multiple bytes of values are being compared; however, in the analysis
of logic functions, it is very often necessary to determine the con­
dition of an individual bit. One of the ways to accomplish this is
with the use of the AND instruction as previously discussed. In other
words, the user can load a value into the accumulator and AND it with
a field that contains a one bit only in the corresponding bit posi­
tion to the bit under test. By using a Branch on Zero Flag after
the AND, the status of the bit in memory is testable by this tech­
nique. However, the use of this technique involves destroying the
accumulator value with the AND instruction. Therefore, searching a
table looking for a single bit in a given position would necessitate
the reloading of the test value (mask) after each AND instruction.
In order to allow memory sampling without disturbing the accumulator,
the BIT instruction is used.

4.2.2.1 BIT - Test Bits in Memory with Accumulator

This instruction performs an AND between a memory location
and the accumulator but does not store the result of the AND into
the accumulator.

The symbolic notation is M A A.
The bit instruction affects the N flag with N being set to

the value of bit 7 of the memory being tested, the V flag with V
being set equal to bit 6 of the memory being tested and Z being set
by the result of the AND operation between the accumulator and the
memory if the result is Zero, Z is reset otherwise. It does not
affect the accumulator.

The addressing modes are Zero Page and Absolute.
The BIT instruction actually combines two instructions from

the PDP-11 and MC6800, that of TST (Test Memory) and (BIT Test).
This, like the compare test, allows the examination of an individual
bit without disturbing the value in the accumulator and is illustra­
ted by the example below:

4.2.2 Bit Testing

47

Example 4.8: Sample Program Using the BIT Test

Data Comments
LDA Load MASK into Accumulator
MASK
BIT Test First Memory Value for Mask Bit
ADL1
ADH1
BNE Branch if Set
+50
BIT Test Second Memory Value for Mask Bit
ADL2
ADH2
BNE Branch if Set
-75
etc.

The value "MASK" loaded into the accumulator in this example
is actually a descriptive title since, this byte is 8 bits, only one
of which is a 1. Using this byte in the AND operation inherent in the
BIT test will effectively mask out all bits in the memory location under
test except that bit position corresponding to the 1 residing in the
accumulator. In Example 4.8, the MASK byte is AND'ed to the data
found in location ADH1, ADL1 and if the bit under test is a 1, the
branch will be taken; if not a 1, the second memory location will be
tested with the same mask, etc.

In addition to the nondestructive feature of the bit which
allows us to isolate an individual bit by use of the branch equal or
branch no equal test, two modifications to the PDP-11 version of that
instruction have been made in the MCS650X microprocessor. These are
to allow a test of bit 7 and bit 6 of the field examined with the BIT
test. This feature is particularly useful in serving polled interrupts
and particularly in dealing with the MCS6520 (Peripheral Interface
Device). This device has an interrupt sense bit in bit 6 and bit 7
of the status words. It is a standard of the M6800 bus that whenever
possible, bit 7 reflects the interrupt status of an I/O device. This
means that under normal circumstances, an analysis of the N flag
after a load or BIT instruction should indicate the status of the
bit 7 on the I/O device being sampled. To facilitate this test using

48

the Bit instruction, bit 7 from the memory being tested is set
into the N flag irrespective of the value in the accumulator.
This is different from the bit instruction in the M6800 which re­
quires that bit 7 also be set on the accumulator to set N. The
advantage to the user is that if he decides to test bit 7 in the
memory, it is done directly by sampling the N bit with a Bit fol­
lowed by branch minus or branch plus instruction. This means that
I/O sampling can be accomplished at any time during the operation
of instructions irrespective of the value preloaded in the accumu­
lator .

Another feature of the BIT test is the setting of bit 6 into
the V flag. As indicated previously, the V flag is normally reserved
for overflow into the sign position during an add and subtract in­
struction. In other words, the V flag is not disturbed by normal
instructions. When the BIT instruction is used, it is assumed that
the user is trying to examine the memory that he is testing with the
BIT instruction. In order to receive maximum value from a BIT in­
struction, bit 6 from the memory being tested is set into the V flag.
In the case of a normal memory operation, this just means that the
user should organize his memory such that both of his flags to be
tested are in either bit 6 or bit 7, in which case an appropriate
mask does not have to be loaded into the accumulator prior to imple­
menting the BIT instruction. In the case of the MCS6520, the BIT
instruction can be used for sampling interrupt, irrespective of the
mask. This allows the programmer to totally interrogate both bit 6 and
bit 7 of the MCS6520 without disturbing the accumulator. In the case
of the concurrent interrupts, i.e., bit 6 and bit 7 both on, the fact
that the V flag is automatically set by the BIT instruction allows
the user to postpone testing for the "6th bit on" until after he has
totally handled the interrupt "for bit 7 on" unless he performs an
arithmetic operation subsequent to the BIT operation.

49

CHAPTER 5

NON-INDEXING ADDRESSING TECHNIQUES

5.0 ADDRESSING TECHNIQUES
The addressing modes of the MCS6500 family can be grouped into two

major categories: Indexed and Non-Indexed Addressing. This section deals
with the Non-Indexed mode of addressing. Before detailing the various
modes available to the user, several concepts will be reviewed. The first
of these is the concept of memory field, address bus and data bus. Then a
brief introduction to two non-indexed addressing modes and timing will be
made with the intent of preparing the reader for a discussion of program
sequence and the internal activity of the microprocessor during execution
of an instruction. This will be followed by a review of how one treats
memory and the assorted allocation of memory space to the elements of RAM,
ROM and I/O.

Subsequent to reading this section the user should have an understand­
ing of the following fundamentals:

a) Memory Field
b) Address Bus
c) Data Bus
d) Cycle Timing
e) Program Sequence
f) Pipelining

With these tools in hand, the reader will be better prepared to readily
comprehend the detailed definitions of the non-indexed addressing modes.

As discussed in Section 1.1 the MCS650X microprocessor family is
organized around a 16-bit address function. All locations are accessed by
a 16-bit word, even though in the case of the MCS6503, the MCS6504, and
the MCS6505, only 11 or 12 bits are actually utilized.

50

Sixteen bits of address allow access to 65,536 memory locations, each
of which, in the MCS650X family, consists of 8 bits of data. Figure 5.1
displays the total memory field and incorporates the concept of address bus
and data bus. The memory address can be regarded as 256 pages (each page
defined by the high order byte) of 256 memory locations (bytes) per page.
It will be seen in the detailed discussion of addressing that the lowest
order page, page zero, has special significance in the minimization of pro­
gram code and execution time.

Much of the uniqueness of the MCS6500 product family has to do with
how the 16-bit address is created. The simplest way to create a 16-bit ad­
dress is for the programmer to indicate to the microprocessor the 16 bits
necessary to access a particular operand on which the microprocessor is ex­
pected to operate. An instruction consists of 1, 2, or 3 bytes. It always
takes 1 byte to specify the operation which is to be performed (OP CODE) .
This OP CODE is then followed by 0, 1, or 2 bytes of address depending on
the specific operation involved. In the case of the simple instructions
such as transfer accumulator to X, operations are performed internally and,
therefore, no additional bytes are necessary. This instruction mode is
known as "Implied" in the sense that the instruction contains both the OP
CODE and the source and destination for the operation. This is the simplest
form of addressing and applies to only a limited number of the instructions
available in the MCS6500 family. Another form of addressing, absolute ad­
dressing, is the case when the programmer specifies directly to the micro­
processor the address he wants the microprocessor to use in fetching the
memory value on which the operation will occur. This form is illustrated
by the example below.

Example 5.1: Using absolute addressing

Clock Cycle Address Bus Data Bus

1 0100 LDA, Absolute
2 0101 ADL
3 0102 ADH
4 ADH, ADL Data

In this example, memory location 0100 contains the OP CODE "LDA Abso­
lute." The next location, 0101, contains ADL which will be defined as the

51

"low order byte of the address," hence address low (ADL). Location 0102
contains ADH— the "high order byte of the address," hence address high (ADH).
At the next clock cycle, the 16 bits composed of ADH and ADL are put on the
address bus with the location defined by ADH, ADL containing the data to be
loaded into the accumulator. The effective address of the data is best
described in Figure 5.1, where the 16-bit address (AB00 through AB15) is
composed of ADH and ADL.

This is the normal form for an absolute memory address. The first
byte of the instruction which is picked up by the program counter is the
operation code. This is interpreted by the microprocessor as "Load A -
Absolute." At the same time that this Load A is being interpreted by the
microprocessor, the microprocessor accesses the next memory location by
putting the program counter content, which was incremented as the OP CODE
was fetched, on the address bus.

5.1 CONCEPTS OF PIPELINING AND PROGRAM SEQUENCE
The overlap of fetching the next memory location while interpreting

the current data from memory minimizes the operation time of a normal 2-
or 3-byte instruction and is referred to as pipelining. It is this feature
that allows a 2-byte instruction to only take 2 clock times and a 3-byte
instruction to be interpreted in 3 clock cycles.

In the MCS650X microprocessors, a clock cycle is defined as 1 complete
operation of each of the 2 phase clocks. Figure 5.2 is a sketch of the
address and data bus timing as it relates to the system clocks.

The major point to be noted is that every clock cycle in the MCS650X
microprocessor is a memory cycle in which memory is either read or written.
Simultaneously with the read or write of memory, an internal operation of
the microprocessor is also occurring.

Q /̂SCOw hJ CL)hJ W 4-1CQ M ts< CQcnCO \£>w Pi COps o LOQ S LOQ \£><J § w

-IV

--------------------<<------------ --------------------(<---------------

J-4
<u <u

hJ <U 4-* rO O I—1 O O i—l
TJ 6 o o O pc-1 o O

y o pq 3
M u £5
U
W U)

U) 1 1 1 1 1 1 1 1
3 OJ

J-»
w TJ 0) 0J
PS tj 00 XI o o o i—l w Ph

c cd E o o o O Jj-I ptH
P-H 3

53

hJ
3

s
Pi
W o 1—1 m \D o> o i—l in

M pd CQ m LO r--. 00 00 CO
U o s Csl Ĉ l CNJ CN Csl in
w IS «n ln m m
Q 53 \ o 'O \D \D

O o 1—1 i-H o i—i o i—i i—i

i—1 o o i—1 o i-H o o i—i

u CN o o i—1 o i—1 o o i-H
Q)

T3 CO o o i-H o i—1 o o i-H
J-»
O

£ <3- o o i-l o i—1 o o i—1
o
t-J in o o i-H o »—) o o i—1

vO o o i—1 o r—i o o i—)

r-*. o o i—1 o i—1 o o i—1
C/0
CO

£
---------------------►

f-M
Q

§
00 o o O 1—1 o i-H 1—1 i-H

o \ o o O o 1—1 iH 1—1 i—1
Pi
<J
53 o o o O o 1—1 i—1 I—(i—1
M tH
CQ u

<u iH o o O o i-H i—1 1—1 i—1
TJ i—1

o

x : CN o o O o i—1 iH 1—1 i—1
6C i-H

M CO o o O o i—1 iH i-H i—1
i-H

s r o o O o i—1 iH i—1 i-H
i-H

in o o O o i—1 i—1 i—1 i—)
i-H

4 V

cn
CQ
<H<J

53

Ad
dre

ss
Bus

 a
nd

Rel
ati

on
to

Me
mo

ry
Fie

ld

0 2 __________

ADDRESS LINE___ J

DATA LINE________ f ~ \

* 1 _ J ~

r

Example o f Timing - MCS650X Family
FIGURE 5.2

The following example will let us analyze this effect:

Example 5.2: Demonstration of "Pipelining" effect

Clock
Cycles External Operation

1 Fetch OP CODE

Fetch first-address
half from memory

Fetch second ad­
dress half from
memory

Fetch operand from
memory

Fetch next OP CODE
from memory

Fetch address from
memory

Address Data Internal Operation

100

101

102

ADH,
ADL

103

104

ADC Increment P-counter
to 101

ADL Increment P-counter
to 102, Interpret
ADC instruction

ADH Increment P-counter
to 103; Hold ADL

Data Load Data

STA Increment P-counter
to 104, Perform ADC
operation:
A + M + C

ADL Increment P-counter
to 105, Result of
Add accumulator,
Interpret STA Instruc­
tion

The above example shows the operation of an ADC, add with carry in­
struction, using absolute addressing. In the first cycle, the OP CODE is
fetched from memory addressed by the P-counter. To implement the

54

look-ahead or pipeline in cycle two, the fetch of ADL address low is done
simultaneously with the interpretation of the ADC absolute instruction.
By the end of cycle 2, the microprocessor knows that it should access the
next memory location for the address high as a result of interpretation of
the absolute addressing mode.

The address low (ADL) is stored in the ALU while the address high (ADH)
is being fetched in cycle 3.

On the fourth cycle, no internal operation is necessary while the
microprocessor is putting the calculated value onto the address bus. How­
ever, during this cycle, the operand is loaded into the microprocessor.

The 4 cycles have all been involved with memory access for the ADC,
absolute instruction. The first to fetch the instruction, the second to
fetch the address low, the third to fetch the address high and the fourth
to use the calculated address to fetch the operand. Because that completes
the memory operations for this instruction, during the fifth cycle the
microprocessor starts to fetch the next instruction from memory while it
is completing the add operation from the first instruction. During the
sixth cycle, the microprocessor is interpreting the new instruction fetched
during cycle 5 while transferring the result of the add operation to the
accumulator. This means that even though it really takes 6 cycles for the
microprocessor to do the ADC instruction, the programmer only need concern
himself with the first 4 cycles as the next 2 are overlapped as shown.

All instructions take at least 2 cycles; one to fetch the OP CODE and
1 to interpret the OP CODE and, with few exceptions, the number of cycles
that an instruction takes is equal to the number of times that memory must
be addressed.

The details of how each addressing mode is overlapped are described
in the individual sections and for specific details of each cycle in vari­
ous operations, the user is referred to the Hardware Manual, Appendix A.

All instructions take at least 2 cycles; one to fetch the OP CODE and
1 to interpret the OP CODE and, with few exceptions, the number of cycles
that an instruction takes is equal to the number of times that memory must
be addressed.

5.2 MEMORY UTILIZATION

As indicated, the 16-bit address allows the user to access greater
than 65,000 separate locations. Most of the locations which will be ac­
cessed in the course of a control problem will be in program or P-counter
referenced locations. A typical program will probably range from 1000 to
8000 bytes and will normally be implemented in fixed ROM or non-volatile
alterable ROM.

A second type of memory will be the read-write memory in which the
user keeps data such as working values, input and output data. Depending
on the type of problem being addressed, this RAM usually ranges from 32
bytes to 8000 bytes, although most applications will be under 2000 bytes
of RAM.

It would seem there is significant address space not used in most
applications. To get the maximum benefit of the addressing space, 2 con­
cepts are implemented in the MCS6500 family. These are the use of data
addressing as 1/0 control and distributed address connections for minimum
control lines. The latter concept utilizes the address bus, which is
basic to and therefore pervasive in any microcomputer system, as a con­
trolling network whenever possible. An example of this is the use of the
address bus in selecting devices to interface with the microprocessor.

5.2.1 1/0 Control

The advantages of accessing 1/0 as memory are 1) the use of
distributed address space allows for simple 1/0 control lines and 2)
all of the power of the instructions is applied to 1/0 operations.
This has the advantage of minimizing 1/0 hardware and allows the pro­
grammer to be innovative in the application of 1/0 devices in solving
his problem.

All MCS6500 product family 1/0 devices contain 8-bit registers
which are addressed by the microprocessor as though they were a mem­
ory byte. In the simplest case, the 8-bit register being read con­
tains a 1 and 0's pattern which corresponds to the TTL voltage level
applied to 8 input pins to the 1/0 device.

56

If the register was a flip-flop register driving 8 output pins
with TTL levels, the storing of 8 bits of data with a STA instruction
into that I/O register would, in effect, be programming the flip-flop
to a specific desired state. Thus, one can use the instructions with
the I/O just as any other memory location.

5.2.2 Memory Allocation

Figure 5.1 displays the relationship between memory, address
bus and data bus while referencing the address values in hexadecimal
notation. The previous section has dealt with utilization of memory
address space for not only ROM and RAM but for I/O as well. At this
time, the concept of allocation of the memory field of Figure 5.1 to
the elements of ROM, RAM and I/O will be considered. The allocation
below satisfies most applications requirements and represents an
optimum allocation for minimization of programming code and speed.

Hexadecimal Address Suggested Allocation of Memory

0000 - 3FFF RAM
4000 - 7FFF 1/0
8000 - FFFF ROM

It should be noted that the 3 memory blocks address defini­
tions which, while not mandatory or required for proper system opera­
tion, do represent a logical assignment of space. The justification
for this particular allocation will be presented in Section 9.12.
In the meantime, the reader should retain the concept of the various
memory blocks allocated to RAM, I/O and ROM as they are useful in the
following discussion. With an understanding of pipelining and the
concept of memory allocation, the next subject must be: in what manner
can data be accessed from the memory field?

5.3 IMPLIED ADDRESSING
Implied addressing is a single-byte instruction.
The byte contains the OP CODE which stipulates an operation internal

to the microprocessor. Instructions utilizing this type of addressing in­
clude operations which clear and set bits in the P (Processor Status) reg­
ister, incrementing and decrementing internal registers and transferring

/
57

contents of one internal register to another internal register. Operations
of this form take 2 clock cycles to execute. The first cycle is the OP
CODE fetch and during this fetch, the program counter increments.

In the second cycle, the incremented P-counter is now the address of
the next byte of the instruction. However, since the OP CODE totally de­
fines the operation, the second memory fetch is worthless and any P-counter
increment in the second cycle is suppressed. During the second cycle, the
OP CODE is decoded with recognition of its single byte operation.

In the third cycle, the microprocessor repeats the same address to
fetch the next OP CODE. This is the second time the memory address is
fetched; once as the second byte of the first instruction and second, as
the correct OP CODE address for the next instruction.

A symbolic representation of a 2-cycle instruction is given below.
"PC" means "Program Counter."

Example 5.3: Illustration of implied addressing

Clock
Cycle

1
2

Address Bus Program Counter Data Bus

PC
PC + 1

PC + 1

PC + 1
PC + 1

PC + 2

OP CODE
New
OP CODE

New
OP CODE

Comments

Fetch OP CODE
Ignore New
OP CODE;
Decode Old
OP CODE
Fetch New
OP CODE;
Execute Old
OP CODE

Instructions which use implied addressing and require only 2 cycles
include CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED, SEI,
TAX, TAY, TSX, TXA, TXS, TYA.

Instructions utilizing implied addressing and which require more than
2 cycles are stack operations which include BRK, PHA, PHP, PLA, PLP, RTI,
RTS.

*

58

5.4 IMMEDIATE ADDRESSING

Immediate addressing is a 2-byte instruction.
The first byte contains the OP CODE specifying the operation and ad­

dress mode. The second byte contains a constant value known to the pro­
grammer. It is often necessary to compare load and/or test against cer­
tain known values. Rather than requiring the user to define and load con­
stants into some auxiliary RAM, the microprocessor allows the user to
specify values which are known to him by the immediate addressing mode.
r

Example 5.4: Illustration of immediate addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 Data Fetch Data,

Decode OP CODE
3 PC + 2 PC + 3 New Fetch New

OP CODE OP CODE,
Execute Old
OP CODE

Immediate addressing is the simplest form of constant manipulation
available to the programmer. It requires a minimum execution time in the
sense that 1 cycle is used in loading the OP CODE and as this CODE is be­
ing interpreted, the constant is being fetched.

Instructions utilizing immediate addressing are ADC, AND, CMP, CPX,
CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

5.5 ABSOLUTE ADDRESSING

Absolute addressing is a 3-byte instruction.
The first byte contains the OP CODE for specifying the operation and

address mode. The second byte contains the low order byte of the effective
address (that address which contains the data), while the third byte con­
tains the high order byte of the effective address. Thus the programmer
specifies the full 16-bit address and, since any memory location can be
specified, this is considered the most normal mode for addressing. Other
modes may be considered special subsets of this 16-bit addressing mode.

59

Example 5.5: Illustration of absolute addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL,

Decode OP CODE
3 PC + 2 PC + 3 ADH Fetch ADH,

Hold ADL
4 ADH, ADL PC + 3 Data Fetch Data
5 PC + 3 PC + 4 New Fetch New

OP CODE OP CODE,
Execute Old
OP CODE

The basic operation of the microprocessor in an Absolute address mode
is to read the OP CODE in the first cycle while finishing the previous
operation. In the second cycle, the microprocessor automatically reads
the first byte after the OP CODE (in this case the address low) while
interpreting the operation code. At the end of this cycle, the microproces­
sor knows that it needs a second byte for program sequence; therefore, 1
more byte will be accessed using the program counter while temporarily
storing the address low. This occurs during the third cycle. In the
fourth cycle, the operation is one of taking the address low and address
high that were read during cycles 2 and 3 to address the operand. For ex­
ample, in load A, the effective address is used to fetch from memory the
data which is going to be loaded in the accumulator. In the case of stor­
ing, data is transferred from the accumulator to the addressed memory.

As was illustrated in the review of pipelining, depending on the in­
struction, it is possible for the microprocessor to start the next instruc­
tion fetch cycle after the effective address operation and independent of
how many more internal cycles it may take to complete the OP CODE. The
only exception to this is the case of "Jump Absolute" in which the address
low and address high that are fetched in cycle 2 and cycle 3 are used as
the 16-bit address for the next OP CODE. The jump absolute therefore only
requires 3 cycles. In all other cases, absolute addressing takes 4 cycles,
3 to fetch the full instruction including the effective address, the fourth
to perform the memory transfer called for in the instruction.

60

Absolute addressing always takes 3 bytes of program memory; 1 for the
OP CODE, 1 for the address low, 1 for the address high, plus 1 byte of data
memory (such as RAM) that is pointed to by the effective address.

Instructions which have absolute addressing capability include ADC,
AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR.
ORA, ROL, SEC, STA, STX, STY.

5.6 ZERO PAGE ADDRESSING

Zero page addressing is a 2-byte instruction. The first byte con­
tains the OP CODE, while the second byte contains the effective address in
page zero of memory.

As seen in absolute addressing, the ability to address anywhere in
the 65K memory space costs 3 bytes of program space, plus a minimum of 4
cycles to perform address operations. In order to allow the user a shorten­
ing of both memory space and execution time, particularly when dealing with
working registers and intermediate values, the MCS650X microprocessor family
has a special addressing mode that assumes automatically the effective ad­
dress high (ADH) to be in the lowest page of memory. In order to under­
stand the page concept one should think of each of the various memory ad­
dresses as comprising a consecutive block of 256 locations which have an
independent high order address associated with that block. Each block is
called a page. Other than for zero page and for calculating indexed ad­
dresses which will be covered in the following sections, the microprocessor
pays little attention to the page concept.

The microprocessor assumes that the high order byte of the effective
address for instructions which contain OP CODES which indicate the zero
page addressing option is all O's (ADH = 00, hexadecimal). This allows the
following sequence to occur.

61

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL, De­

code OP CODE
3 00, ADL PC + 2 Data Fetch Data
4 PC + 2 PC + 3 New Fetch New

OP CODE OP CODE, Exe­
cute Old
OP CODE

On the first cycle, the microprocessor puts out the program counter,
reads the OP CODE and increments the program counter. On the second cycle,
the microprocessor puts out the program counter, reads the effective ad­
dress low, interprets the OP CODE and increments the program counter. So
far, the operations are identical to those described in the absolute ad­
dressing mode. However, by the end of the second cycle, the microprocessor
has decoded the fact that this is a zero page operation and on the next
cycle, it outputs address 00, as the effective address high, along with
the address low that it just fetched and then either reads or writes mem­
ory at that location, depending on the OP CODE.

The advantage of zero page addressing is that it takes only 2 bytes,
1 for the OP CODE and 1 for the effective address low; and only 3 cycles,
1 to fetch the OP CODE, 1 to fetch the address low, and 1 to fetch the
data, as opposed to absolute addressing which takes 3 bytes and 4 cycles.

In order to make most effective utilization of this concept, the user
should organize his memory so that he is keeping his most frequently
accessed RAM values in the memory locations between 0 and 255. If one
organizes the zero page of memory properly, including moving data into
these locations for longer loops, significant shortening of program code
and execution time can be obtained.

The concept of zero page is so important that the various cross
assemblers have error notations which indicate when improper use of this
space is made. If one's coding is organized according to the guidelines
shown in Section 5.2.2, one normally will find working storage located in
values from 0 to 255. This is an important aspect of the discipline known
as "memory management."

Example 5.6: Illustration of zero page addressing

62

Once the pattern of coding for the MCS650X, which considers working
storage or registers in the zero page, becomes a habit, one finds that in
most control applications, all of the working registers will take advantage
of this programming and the associated time reduction without any special
effort on the user's part.

Instructions which allow zero page addressing include ADC, AND, ASL,
BIT, CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, ROL, SBC, STA,
STX, STY.

5.7 RELATIVE ADDRESSING

As discussed in Section 4.1, all of the branch operations in the micro­
processor use the concept of relative addressing. In example 5.7, it is
seen that for the case of the straightforward branch in which the branch
is not taken, on the first program count cycle, the microprocessor puts
out program counter as an address, fetches the OP CODE and finishes the
previous operation. During the second cycle, the program counter is put
on the address bus, picking up the relative offset. Internally, the micro­
processor is decoding the OP CODE to determine that it is a branch instruc­
tion.

Example 5.7: Illustration of relative addressing branch not taken

Cycle

1

Address Bus

0100

0101

0102

Data Bus

OP CODE

Offset

Next
OP CODE

External Internal
Operation Operation

Fetch Finish Previous Oper-
OP CODE ation, Increment Pro­

gram Counter to 101
Fetch Interpret Instruc-
Offset tion, Increment Pro­

gram Counter to 102
Fetch Next Check Flags, Increment
OP CODE Program Counter to 0103

This is only the second cycle of an internal operation; therefore, the
microprocessor may be storing a computed value from the previous instruc­
tion at the same time it is finishing interpreting the present instruction.
It is while doing the store operation that the flags In the machine get
physically set; therefore, the microprocessor allows the program counter

63

to go 1 more cycle to allow itself time to determine the value of the
flags. For example, if the previous instruction is ADC, the flags will
not get set until the cycle in which the offset value is fetched.

During the third cycle, the microprocessor puts the incremented PC
onto the address bus, fetches the next OP CODE and checks the flag in
order to decide whether or not the program counter value that is going out
is correct and that the branch is not going to be taken. Therefore, an
additional type of pipeline, in this case fetching the next OP CODE in a
branch sequence, accomplishes the implementation of a branch relative with
no branch being taken. This requires 2 cycles. One cycle fetches the
branch OP CODE and 1 cycle fetches the next operation, the relative offset.
The second fetch is effectively ignored by virtue of the fact that the
branch is not taken, so the program counter location has already been incre­
mented and the next OP CODE has already been fetched by the microprocessor.

If in the above example it is assumed that the flag is set such that
the branch is taken and the relative offset is +50, the microprocessor
takes a third cycle to perform the branch operation.

Example 5.8: Illustration of relative addressing branch positive
taken, no crossing of page boundaries

Cycle Address Bus Data Bus
External
Operation

Internal
Operation

1 0100 OP CODE Fetch
OP CODE

Finish Previous Oper­
ation, Increment Pro­
gram Counter to 101

2 0101 +50 Fetch
Offset

Interpret Instruction,
Increment Program
Counter to 102

3 0102 Next
OP CODE

Fetch Next
OP CODE

Check Flags, Add Rela­
tive to PCL, Increment
Program Counter to 103

4 0152 Next
OP CODE

Fetch Next
OP CODE

Transfer Results to
PCL, Increment Program
Counter to 153

In Example 5.8, on the first cycle, a branch OP CODE is fetched while
the previous operation is finished. On the second cycle, the offset is
fetched while the branch instruction is being interpreted. On the third
cycle, the microprocessor uses the adder to add the program count low to

64

the offset and also checks the flags. Because the program count for the
next OP CODE in program sequence is already in the program counter and is
being incremented, the microprocessor can allow the incrementation process
to continue. If the value for the next instruction is indicated because
the flag is not set, then the microprocessor loads the next OP CODE and
the add of the program counter low to the offset value, is ignored as it
was in the previous example.

If during the third cycle the flag is found to be the correct value
for a branch, the OP CODE that has been fetched during this cycle is
ignored. The microprocessor then updates the program counter with the
results from the add operation, puts that value out on the address bus
twhich fetches a new OP CODE.

This gives the effect of a 3-cycle branch. Thus it can be seen that
in a case where the branch is not taken, the microprocessor has an effec­
tive 2-cycle branch, i.e., 2 memory references. In the case when the
branch is taken, the branch takes 3 cycles as long as the relative value
does not force an update to the program counter high. In other words, 3
cycles are required if the page boundary is not crossed (recall the dis­
cussion of the "page" concept in Section 5.0). If in the above example
the branch was back from address 0102 fifty locations, as opposed to +50
locations, the following result would occur:

Example 5.9: Illustration of relative addressing— branch negative
taken, crossing of page boundary

Cycle

1

2

3

Address Bus

0100

0101

0102

01B2

00B2

Data Bus

OP CODE

-50

Next
OP CODE

Discarded
Data

Next
OP CODE

External Internal
Operations Operations

Fetch Finish Previous
OP CODE Instruction
Fetch Interpret Instruc­
Offset tion
Fetch Next Check Flags
OP CODE Add Relative to

PCL
Fetch Dis­ Store Adder in PCL
carded Data and Subtract 1

from PCH
Fetch Next Put Out New PCH
OP CODE and Increment PC

to 00B3

65

In this example, the adder is used to perform the arithmetic opera­
tion, and the adder can do only the 8 bits of addition at a time. The
minus branch crosses back over the page boundary, therefore an intermediate
result is developed of 01B2 which has no intrinsic value because of the
borrow which now has to be reflected into the program counter high. Since
this example displays both a negative offset and the crossing of a page
boundary, additional explanation is in order.

The value to which the offset will be added is 0102 (hexadecimal).
The offset itself is -50 (hexadecimal).

Subtract low order byte:
02 = 0000 0010H.hX
50r e x = 0101 0000

Take two's complement of 50:
50 = 1010 1111
Add 1 _________1

-50 = 1011 0000

Add 02 0000 0010
-50 1011 0000

Carry = /0/ 1011 0010
B 2

Up to this point, the PCH has not been affected; therefore the value
on the address bus is 01B2.

The Carry = 0, indicating a borrow.

Subtract high order byte:
01 _ = 0000 0001

ttlLA

00lT1?v = 0000 0000

Take two's complement of 00:
ooHEX = m i m i

Add Carry - _________0
-°°HEX = 1111

Add 01 0000 0001
-00 1111 1111

Carry = jTJ 0000 0000
0 0

The presence of the Carry indicates no borrow, hence a
positive result.

66

At this time, after the arithmetic operation on both bytes of the P.C.,
the address bus will be: 00B2.

The microprocessor does put out on the address line the intermediate
results (01B2), thereby reading a location within the page it was currently
working in, the value of which is ignored. It then subtracts 1, or if this
was a branch forward to the next page, the microprocessor would add 1 to
program counter high in this fourth cycle. In the fifth cycle, the micro­
processor will recognize that it has the correct new program counter high
and program counter low and is able to start a new instruction operation,
thereby giving an effective length to the branch operation when a page
crossing is encountered of 4 cycles.

It should be noted that all of the above operations are automatic;
once a branch instruction is encountered, the following relative value is
calculated and put into the memory location after the branch instruction.

We can see, however, that it is possible to control the execution
time of a branch. This is important for counting or estimating execution
times of operations. For counting purposes, the following applies:

If a branch is normally not taken, assume 2 cycles for the branch.

If the branch is normally taken but it is not across the page boundary,
assume 3 cycles for the branch.

If the branch is over a page boundary, then assume 4 cycles for the
branch.

In loops which are repeated many times, one can assume some type of
statistical factor between 3 and 2, or 4 and 2, depending on the proba­
bility of taking the branch versus not taking it.

In order to indicate to the programmer when the 4-cycle branch is
taken as opposed to the 3-cycle branch, the various assemblers flag all
branch operations which cross page boundaries with a warning message and
if timing is important, the user can perhaps relocate his program in such
a way that the branch does not cross page boundary.

It should be re-emphasized that other than for timing purposes, page
boundary crossings can be ignored by the programmer.

To summarize, the relative addressing always takes 2 bytes, 1 for the
OP CODE and 1 for the offset.

67

Branch with Not Taking the Branch — 2 cycles
Branch When the Branch Is Taken ButM ̂ — 3 cyclesNo Page Crossing
Branch When the Branch Is Taken with ,. — 4 cyclesa Page Crossing

Only branch instructions have relative addressing. The branch instruc­
tions are: BCC, BEQ, BIT, BMI, BNE, BPL, BSC, BVC, BVS. For a more detailed
explanation of relative offset calculations the reader is referred to
Appendix H.

The execution time is as follows:

CHAPTER 6

INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

6.0 GENERAL CONCEPT OF INDEXING

In previous sections techniques for using the program counter to
address memory locations after the operation code to develop the address
for a particular operation have been discussed. Other than cases when
the programmer directly changes the program memory, it can be considered
that the addressing modes discussed up until now are fixed or directed
addresses and each has the relative merits discussed under each individual
section. However, a more powerful concept of addressing is that of
computed addressing. There are basically two types of computed address­
ing; indexed addressing and indirect addressing.

Indexed addressing uses an address which is computed by means of
modifying the address data accessed by the program counter with an
internal register called an index register.

Indirect addressing uses a computed and stored address which is
accessed by an indirect pointer in the programming sequence.

In the MCS650X product family, both of these modes are used and
combinations of them are available.

Before undertaking the more difficult concepts of indirect address­
ing the concept of indexed instructions will be developed.

69

In order to move five bytes of memory from an address contained
in FIELD 1 to another set of addresses, starting with FIELD 2, the
following program could be written:

Example 6.1: Moving Five Bytes of Data With Straight Line Code

LABEL INSTRUCTION OPERAND COMMENTS
START LDA FIELD 1 Move First Value

STA FIELD 2 ------ ^
LDA FIELD 1 + 1 Move Second Value
STA FIELD 2 + 1 ______ ^
LDA FIELD 1 + 2 Move Third Value
STA FIELD 2 + 2 ________________________ ^
LDA FIELD 1 + 3 Move Fourth Value
STA FIELD 2 + 3 ------------------------ ^
LDA FIELD 1 + 4 s\ > Move Fifth Value
STA FIELD 2 + 4 ------------------------ ^

In this example, data is fetched from the first memory location in
FIELD 1, as addressed by the next one or two bytes in program memory,
stored temporarily in A and then written into the first memory location
in FIELD 2, also addressed by the next one or two bytes in program memory.
This sequence is repeated, with only the memory addresses changing, until
all the data has been transferred. This type of programming is called
straight line programming because each repetitive operation is a sepa­
rate group of instructions listed in sequence or straight line form in
program memory. This is necessary even though the instruction OP CODES
are identical for each memory transfer operation because the specific
memory addresses are different and require a different code to be writ­
ten into the program memory for each transfer.

It takes a total of 10 instructions to accomplish the move when it
is implemented this way. It should be noted that it is not indicated
whether or not FIELD 1 and FIELD 2 are Zero Page addresses or Absolute
addresses.

If they were Zero Page addresses, the total number of bytes con­
sumed in solving the problem would be two bytes for each instruction
and thereby requiring 20 bytes of memory; if both FIELD 1 and FIELD 2
were Absolute memory locations, each instruction would take 3 bytes
and this program would require 30 bytes of program storage.

70

The Zero Page program would execute in three cycles per in­
struction or 30 cycles and the Absolute location version would execute
in four cycles per instruction or 40 cycles.

A new concept has been introduced in this example, that of symbolic
notation rather than actual locations for the instructions.

The form that this short program is written in uses symbolic
addressing in which the address of the beginning of the program has
a name START. Symbolic representations of addresses such as "START"
are referred to as labels. The addresses in the two address field
used in this example have also been given names, the first address of the
first field is called FIELD 1; the first address of the second field is
called FIELD 2. Each additional address in the fields has been given
a number which is referenced to the first number; for example, the
third byte in FIELD 1 is FIELD 1 + 2 . All of these concepts are im­
plemented to simplify the ease of writing a program because the user does
not have to worry about the locations of FIELD 1 and FIELD 2 until after
analyzing the memory needs of the whole program. Symbolic notation also
results in a more readable program.

Translation from symbolic form instructions and addresses into
actual numerical OP CODES and addresses is done by a program called a
symbolic assembler. Several different versions of symbolic assemblers
and cross assemblers are available for the MCS650X product family.
Symbolic notation will be used throughout the remainder of this text
because of its ease of understanding and because individual byte
addresses are unnecessary although for an explanation of a particular
mode, the byte representation may be used.

In this example, only direct addresses were used. A program to
reduce the number of bytes required to move the five values follows:

71

Done

Flow Chart - Moving Five Bytes o f Data with Loop
FIGURE 6.1

Example 6.2 is a program listing that corresponds to the flow chart:

Example 6.2: Moving Five Bytes of Data With Loop

COMMENTS

NOTE:

LABEL INSTRUCTION OPERAND
INITIALIZE CLC
START LDA FIELD 1 ---------
OTHER STA FIELD 2 ---------

LDA START + 1 -------
ADC #1
STA START + 1
LDA OTHER + 1
ADC #1
STA OTHER + 1 -------
CMP //FIELD 2 + 5-----
BNE START

Move Loop

Modify Move Values

Check for End

For ease of reading, labels have been written in the form
"FIELD 1". This is incorrect format for use in the various
symbolic assemblers. "FIELD 1" must be written "FIELD1"
when coding for assembler formats.

72

Assuming Zero Page, direct addressing, Example 6.3 is written
below with one byte per line just as it would appear in program memory.
This will provide a more detailed description of Example 6.2.

Example 6.3:

LABEL

START

OTHER

Coded Detail of Moving Fields With Loop

CODE NAMES
CLC
LDA
FIELD 1
STA
FIELD 2
LDA
START + 1
ADC
1
STA
START + 1
LDA
OTHER + 1
ADC
1
STA
OTHER + 1
CMP
ORIGINAL FIELD 2 + 5
BNE
START

COMMENTS
Clear Carry
(FIELD 1) -►A

A — ►(FIELD 2)

From Address ► A

A + 1 —► A

A —►From Address

To Address ► A

A + 1 — ► A

A + To Address

A - ORIGINAL FIELD 2 + 5

If not, loop to START

In this example, the program is modifying the addresses of one
load instruction and one store instruction rather than writing ten in­
structions to move five bytes of data and fifty instructions to move
twenty-five bytes of data.

The address of the Load A instruction is located in memory at
START + 1 and the Store instruction at OTHER + 1. In order to perform
this operation, the address must be modified once for each move opera­
tion until all of the data is moved.

Checking for the end of the moves is accomplished by checking the
results of the address modification to determine if the address exceeds
the end of the second field. When it does, the routine is complete.

73

If a hundred values were to be moved this program would remain 20
bytes long, whereas the solution to the first problem would require
a program of 200 instructions.

The type of coding used in this example is called a "loop".
Although the program loop in this case requires as many bytes as the
original program, more values could be moved without increasing the
length of the program. The greater the number of repetitive operations
that are to be accomplished, the greater the advantage of the loop
type program over straight line programming.

Important Note: The execution time required to move the five
values is significantly longer using the loop program than the straight
line program. In the straight line program, if a Zero Page operation
is assumed, the time to perform the total move is 30 cycles. Using
the loop program, the execution time to move five values is five times
through the entire loop, which takes 25 cycles. Therefore the time
to move five values is 125 cycles.

While loops have an advantage in coding space efficiency, all loops
cost time. If the programmer has a problem that is extremely time
dependent, taking the loop out and going to straight line programming,
even though it is extremely inefficient in terms of its utilization of
memory, will often solve the timing problem.

The straight line programming technique becomes very useful in some
control applications. However, it is not recommended as a standard
technique but should only be used when there are extreme timing problems.
Using loops will normally save a significant number of bytes but they
will always take more time.

The technique used in the loop program example has two major
problems:

1. The necessity to modify program memory. This should be
avoided to take advantage of the ability to put programs
into read only memory with the corresponding savings in
hardware costs.

74

2. Although this is the simplist form of computed addressing,
less program bytes would be necessary than the more sophis­
ticated form of program shown in the following flow chart:

FINISH

Moving Five Bytes o f Data with Counter
FIGURE 6.2

In the MCS650X microprocessor family, the counter is called an index
register. It is an 8-bit register which is loaded from memory and has the
ability to have one added to it by an increment instruction (INX,INY) and
can be compared directly to memory using the compare index instruction
(CPX,CPY). Example 6.4 shows the program listing for the flow chart of
Figure 6.2.

75

Example 6.4: Moving Five Bytes of Data With Index Registers

BYTES LABEL INSTRUCTION OPERAND COMMENTS
2 LDX 0 Load Index With Zero
3 LOOP LDA FIELD 1,X
3 STA FIELD 2,X
1 INX Increment Count
2 CPX 5 Compare For End
2 BNE LOOP
13 for Absolute

In this example, index register X is used as an index and as a
counter. It is initialized to zero. Data is fetched from memory at
the address "FIELD 1 plus the value of register X", and placed in A.
The data is then written from A to memory at the address "FIELD 2
plus the value of register X". Register X is incremented by one and
compared with 5 in order to determine if all five data values have
been transferred. If not the program loops back to LOOP. In this
example, "FIELD 1" is called the "Base Address" which is; the address
to which indexing is referenced.

This only takes 11 or 13 bytes, depending on whether or not the
field is in Page Zero or in absolute memory. It still takes 13 or 15
cycles per byte moved, again confirming that loops are excellent for
coding space but not. for execution time.

It can be seen from the example that there are basically two
criterias for an index register; one, that it be a register which is
easily incremented, compared, loaded, and stored, and two, that in a
single instruction one can specify both the Base Address and the
value of X.

In the MCS650X microprocessor, the way that the indexed in­
struction is symbolically represented is OP CODE, Address, X. This
indicates to the symbolic assembler that an instruction OP CODE
should be picked, which should specify either the absolute address
modified by the content of index X register or Zero Page address
modified by the content of index X register.

76

In performing these operations, the microprocessor fetches the
instruction OP CODE as previously defined, and fetches the address,
modifies the address from the memory by adding the index register to
it prior to loading or storing the value of memory.

The index register is a counter. As discussed previously, one
of the advantages of the flags in the microprocessor is that a value
can be modified and its results tested. Assume the last example is
modified so that instead of moving the first value in FIELD 1 to the
first value in FIELD 2, the last value in FIELD 1 is moved first to the
last value in FIELD 2, then the next to the last value, etc. and finally
the first value. With the index register preloaded with 5 and using
a decrement instruction the contents of the index register would
end at zero after the 5 fields of data were transferred. The zero
indicates that the number of times through the loop is correct and
the loop exited by use of the zero test. The program listing for
this modification is shown in Example 6.5:

Example 6.5: Moving Five Bytes of Data By Decrementing the Index
Register

LABEL INSTRUCTION OPERAND
LDX 5

LOOP LDA FIELD 1-1,X
STA FIELD 2-1,X
DEX
BNE LOOP

In this example, Index Register X is again used as an Address
Counter but it will count backwards. It is initialized to five for
this example. Data is fetched from memory at the address "FIELD 1 plus
the value of Register X" and placed in A. The data is then written
from A to memory at the address "FIELD 2 plus the value of Register X."
Register X is decremented by one. If the decremented value is not zero,
as determined by a Branch on Zero instruction, the program loops back
to LOOP

The loop has been decreased to 9 or 11 bytes and the execution
time per byte has been decreased from 15 cycles to 13 cycles per value

77

which shows the advantage of using the flag setting of the decrement
index instruction.

The two index registers, X and Y, can now be added to the
system block diagram as in Figure 6.3

Partial Block Diagram ofM CS650X Including Index Registers
FIGURE 6.3

Each of the index registers is 8 bits long and is loaded and stored
from memory, using techniques similar to the accumulator. Because of this
ability, they can be considered as auxiliary channels to flow data
through the microprocessor. However, their primary use is in being
added to addresses fetched from memory to form a modified effective
address, as described previously. Both index registers have the ability
to be compared to memory (CPX,CPY) and to be incremented (INX,INY) and
decremented (DEX,DEY).

78

Because of OP CODE limitations, X and Y have slightly different
uses. X is a little more flexible because it has Zero Page operations
which Y does not have with exception of LDX and STX. Aside from which
modes they modify, the registers are autonomous, independent and of
equal value.

6.1 ABSOLUTE INDEXED

Absolute indexed address is absolute addressing with an index
register added to the absolute address. The sequences that occur for
indexed absolute addressing without page crossing are as follows:

Example 6.6: Absolute Indexed; With No Page Crossing

Address
Cycle Bus____

1 0100

Data
Bus

OP CODE

External
Operation

Fetch OP CODE

Internal
Operation

Increment PC to 101
Finish Previous
Instruction

0101 BAL Fetch BAL Increment PC to 102
Interpret In­
struction

0102 BAH Fetch BAH Increment PC to 103
Calculate BAL + X

BAH,BAL+X OPERAND Put Out
Effective
Address

103 Next OP
CODE

Fetch Next
OP CODE

Finish Operations

BAL and BAH refer to the low and high order bytes of the base address,
respectively. While the index X was used in Example 6.7, the index Y
is equally applicable.

If a page is not crossed, the results of the address low + X does
not cause a carry. The processor is able to pipeline the addition of the
8-bit index register to the lower byte of the base address (BAL) and not
suffer any time degradation for absolute indexed addressing over straight
absolute addressing. In other words, while BAH is being fetched, the
add of X to BAL occurs. Both addressing modes require four cycles with

the only difference being that X or Y must be set at a known value
and the OP CODE must indicate an index X or Y.

The second possibility is that when the index register is added
to the address low of the base address that the resultant address is
in the next page. This is illustrated in Example 6.7.

Example 6.7: Absolute Indexed; With Page Crossing

Address Data
Cycle Bus Bus

External
Operation

Internal
Operation

0100 OP CODE Fetch OP CODE Finish Previous
Operation Increment
PC to 101

0101 BAL Fetch BAL Interpret Instruction
Increment PC to 102

0102 BAH Fetch BAH Add BAL + Index
Increment PC to 103

BAH,BAL
+X

Data
(Ignore)

Fetch Data
(Data is
ignored)

Add BAH + Carry

BAH+1,
BAL+X

Data Fetch Data

0103 Next OP
CODE

Fetch Next
OP CODE

Finish Operation

The most substantial difference between the page crossing operation
and no page crossing is that during the fourth cycle, the address
high and the calculated address low is put out, thereby incorrectly
addressing the same page as the base address. This operation is carried
on in parallel with the adding of the carry to the address high.
During the fourth cycle the address high plus the carry from the adder
is put on the address bus, moving the operation to the next page. Thus
there are two effects from the page crossing. 1. The addressing of
a false address. This is similar to what happens in a branch relative
during a page crossing. 2. The operation takes one additional cycle
while the new address high is calculated. As with the branch relative

80

this page crossing occurs independently of programmer action and
there is no penalty in memory for having crossed the page boundary.
It is possible for the programmer to predict a page crossing by
knowing the value of the base address and the maximum offset value
in the index register. If timing is of concern, the base address
can be adjusted so that the address field is always in one page.

As with absolute addressing, absolute indexed is the most
general form of indexing. It is possible to do absolute indexed
modified by X, and absolute indexed modified by Y. Instructions
which allow absolute indexed by X are ADC, AND, ASL, CMP, DEC,
EOR, INC. LDA, LDY, LSR, ORA, ROL, SBC, and STA.

The instructions which allow indexed absolute by Y are ADC,
AND, CMP, EOR, LDA, LDX, ORA, SBC, and STA.

6.2 ZERO PAGE INDEXED

As with non-computed addressing, there is a memory use advantage
to the short-cut of Zero Page addressing. Except in LDX and STX
instructions which can be modified by Y, Zero Page is only available
modified by X. If the base address plus X exceeds the value that
can be stored in a single byte, no carry is generated, therefore
there is no page crossing phenomena. A wrap-around will occur within
Page Zero. The following example illustrates the internal operations
of Zero Page indexing.

81

Example 6.8: Illustration of Zero Page Indexing

Cycle

1

Address
Bus____

0100

0101

00,BAL

Data
Bus

OP CODE

BAL

Data
(Dis­
carded

External
Operation

Fetch OP CODE

Fetch Base
Address Low
(BAL)

Fetch
Discarded
Data

Internal
Operation

Finish Previous
Operation, 0101 ->■ PC

Interpret Instruct­
ion, 0102 ->■ PC

Add: BAL + X

00,BAL
+X

Data Fetch Data

0102 Next OP
CODE

Fetch Next OP
CODE

Finish Operation

As can be seen from the example, there is no time savings of Zero
Page indexing over absolute indexing without page crossing. In the case
of the indexed absolute during cycle 3 the address high is being
fetched at the same time as the addition of the index to address low.
In the case of the Zero Page, there is no opportunity for this type of
overlap; therefore, indexed Zero Page instructions take one cycle longer
than non-indexed instructions.

In both Zero Page indexed and absolute indexed with a page crossing,
there are incorrect addresses calculated. Provisions have been made to
make certain that, only a READ operation occurs during this time. Memory
modifying operations such as STORE, SHIFT, ROTATE, etc. have all been
delayed until the correct address is available, thereby prohibiting any
possibility of writing data in an incorrect location and destroying
the previous data in that location.

As has been previously stated, there is no carry out of the Zero
Page operation. 00 is forced into address high under all circumstances
in cycle A. For example, if the index register containing a value
of 10 is to be added to base address containing a value of F7, the
following operation would occur:

82

Example 6.9: Demonstrating the Wrap-Around

Cycle Address Bus Internal Operation

3
4

OOF 7
0007

F7 + 10

This indicated the wrap-around effect that occurs with Zero Page
indexing with page crossing. This wrap-around does not increase the
cycle time over that shown in the previous example.

Only index X is allowed as a modifier in Zero Page. Instructions
which have this feature include ADC, AND, ASL, CMP, DEC, EOR, INC, LDA,
LDY, LSR, ORA, ROL, SBC, STA and STY. Note that index Y is allowed in
the instructions LDX and STX.

6.3 INDIRECT ADDRESSING

In solving a certain class of problems, it is sometimes necessary
to have an address which is a truly computed value, not just a base
address with some type of offset, but a value which is calculated or
sometimes obtained as a group of addresses. In order to implement
this type of indexing or addressing, the use of indirect addressing
has been introduced.

In the MCS650X family indirect operations have a special form.
The basic form of the indirect addressing is that of an instruction
consisting of an OP CODE followed by a Zero Page address. The micro­
processor obtains the effective address by picking up from the Zero
Page address the effective address of the operation. The indirect
addressing operation is much the same as absolute addressing except
indirect addressing uses a Zero Page addressing operation to in­
directly access the effective address. In the case of absolute
addressing the value in the program counter is used as the address to
pick up the effective address low, one is added to the program counter
which is used to pick up the effective address high. In the case
of indirect addressing, the next value after the OP CODE, as addressed
with the program counter, is used as a pointer to address the effective

83

address low in the zero page. The pointer is then incremented by
one with the effective address high fetched from the next memory
location. The next cycle places the effective address high (ADH) and
effective address low (ADL) on the address bus to fetch the data.
An illustration of this is shown in Figure 6.4.

DATA

Indirect Addressing—Pictorial Drawing
FIGURE 6.4

The address following the instruction is really the address of an
address, or "indirect" address. The indirect address is represented
by IAL in the figure.

A more detailed definition of indirect addressing is included in
the appendix.

84

Although the MCS650X microprocessor family has indirect operations,
it has no simple indirect addressing such as described above. There
are two inodes of indirect addressing in the MCS650X microprocessor
family: 1.) indexed indirect and 2.) indirect indexed.

6.4 INDEXED INDIRECT ADDRESSING

The major use of indexed indirect is in picking up data from a
table or list of addresses to perform an operation. Examples where
indexed indirect is applicable is in polling I/O devices or performing
string or multiple string operations. Indexed indirect addressing
uses the index register X. Instead of performing the indirect as
shown in the Figure 6.4, the index register X is added to the Zero
Page address, thereby allowing varying address for the indirect
pointer. The operation and timing of the indexed indirect addressing
is shown in Figure 6.5.

0100 OP CODE

0101 IAL

00,IAL+X

00,IAL+0

00,IAL+2

00,IAL+4

\

ADL 1

ADH 1

ADL 2

ADH 2

ADL 3

ADH 3

\

/
\

/
\

/

ADH1,
ADL1

ADH 2,
)> ADL2

ADH3,
ADL3

DATA 1

DATA 2

DATA 3

Indexed Indirect Addressing
FIGURE 6.5

85

Example 6.10: Illustration of Indexed Indirect Addressing

Address Data
Cycle Bus____ Bus

0100 OP CODE

External
Operation

Fetch OP CODE

Internal
Operation

Finish Previous
Operation, 0101 P(

0101 BAL Fetch BAL Interpret In­
struction, 0102 -»■ PC

00,BAL DATA (Dis­
carded)

00,BAL ADL
+ X

Fetch Discard­
ed DATA

Fetch ADL

Add BAL + X

Add 1 to BAL + X

00,BAL ADH
+ X + 1

Fetch ADH Hold ADL

6 ADH,ADL DATA Fetch DATA

7 0102 Next OP Fetch Next OP Finish Operation
CODE 0103 PC

One of the advantages of this type of indexing is that a 16-bit
address can be fetched with only two bytes of memory, the byte that
contains the OP CODE and the byte that contains the indirect pointer.
It does require, however, that there be a table of addresses kept in
a read/write memory which is more expensive than having it in read
only memory. Therefore, this approach is normally reserved for appli­
cations where use of indexed indirect results in significant coding
or throughput improvement or where the address being fetched is a
variable computed address.

It is also obvious from the example that the user pays a minor time
penalty for this form of addressing in that indexed indirect always takes
six cycles to fetch a single operand which is 25% more than an absolute
address and 50% more than a Zero Page reference to an operand. As in
the Zero Page indexed, the operation in cycles three and four are
located in Zero Page and there is no ability to carry over into the next
page. It is possible to develop a value of the index plus the base
address where the result exceeded 255, in this case the address put out
is a wrap-around to the low part of the Page Zero.

86

Instructions which allow the use of indexed indirect are ADC, AND,
CMP, EOR, LDA, ORA, SBC, STA.

6.5 INDIRECT INDEXED ADDRESSING

The indirect indexed instruction combines a feature of indirect
addressing and a capability of indexing. The usefulness of this in­
struction is primarily for those operations in which one of several
values could be used as part of a subroutine. By having an indirect
pointer to the base operation and by using the index register Y in
the normal counter type form, one can have the advantages of an
address that points anywhere in memory, combined with the advantages
of the counter offset capability of the index register.

Figure 6.6 illustrates the indirect indexed concept in flow form
while Example 6.11 indicates the internal operation of a non-page roll­
over of an indirect index.

DATA 1

DATA 2

DATA 3

Indirect Indexed Addressing
FIGURE 6.6

87

Example 6.11: Indirect Indexed Addressing (No Page Crossing)

Cycle

1

Address Data
Bus Bus

3

4

0100

0101

00,IAL

00,IAL
+ 1

BAH,BAL
+ Y

0102

OP CODE

IAL

BAL

BAH

DATA

Next OP
CODE

External
Operation

Fetch OP CODE

Fetch IAL

Fetch BAL

Fetch BAH

Fetch Operand

Fetch Next OP
CODE

Internal
Operation

Finish Previous
Operation, 0101 -* PC

Interpret In­
struction, 0102 -* PC

Add 1 to IAL

Add BAL + Y

Finish Operation
0103 -* PC

The indirect index still requires two bytes of program storage, one
for the OP CODE, one for the indirect pointer. Once beyond the indirect,
the indexing of the indirect memory location is just the same as though
it was an absolute indexed operation in the sense that if there is no
page crossing, pipelining occurs in the adding of the index register Y to
address low while fetching address high, and therefore, the non-page
crossing solution is one cycle shorter than the indexed indirect. In
Example 6.12 it is seen that the page crossing problem that occurs with
absolute indexed page crossing also occurs with indirect indexed address­
ing.

88

Example 6.12: Indirect Indexed Addressing (With Page Crossing)

Cycle

1

Address Data
Bus Bus

3

4

0100

0101

OP CODE

IAL

00,IAL BAL

00,IAL BAH
+ 1

BAH,BAL DATA (Dis-
+ Y carded)

BAH + 1 DATA
BAL + Y

0102 Next OP
CODE

External
Operation

Load OP CODE

Fetch IAL

Fetch BAL

Fetch BAH

Fetch DATA
(Discarded)

Fetch Data

Fetch Next OP
CODE

Internal
Operation

Finish Previous
Operation, 0101 -* PC

Interpret In­
struction, 0102 -* PC

Add 1 to IAL

Add BAL to Y

Add 1 to BAH

Finish This
Operation,
0103 + PC

When there is a page crossing, the base address high and base
address low plus Y are pointing to an incorrect location within a
referenced page. However, it should be noted that the programmer has
control of this incorrect reference in the sense that it is always
pointing to the page of the base address. In one more cycle the correct
address is referenced. As was true in the case of absolute indexed,
the data at the incorrect address is only read. STA and the various
read, modify, write memory commands all operate assuming that there
will be a page crossing, take the extra cycle time to perform the add
and carry and only perform a write on the sixth cycle rather than
taking advantage of the five cycle short-cut which is available to
read operations. This added cycle guarantees that a memory location
will never be written into with incorrect data.

Instructions which allow the use of indexed indirect are ADC, AND,
CMP, EOR, LDA, ORA, SBC, STA.

89

In the following two examples can be seen a comparison between
the use of absolute modified by Y and indirect indexed addressing.

In these examples the same function is performed. Values from
two memory locations are added and the result stored in a third
memory location, assuming that there are several values to be added.
The first example deals with known field locations. The second
example, such as might be traditionally used in subroutines, deals
with field locations that vary between routines. A two byte pointer
for each routine using the subroutine is stored in Page Zero.
The number of values to be added for each routine is also stored.

Example 6.13: Absolute Indexed Add - Sample Program

//Bytes Cycles Label
2
3
3
3
1
2
14

2
4
4
4
2
3
19

START
LOOP

Instruction
LDY //COUNT -1
LE>A FIELD 1,Y
ADC FIELD 2,Y
STA FIELD 3,Y
D$Y
BfL LOOP

Comments
Set Y = End of FIELD
Load Location 1
Add Location 2
Store in Location 3

Check for Less Than Zero
Time for 10 Bytes =171 Cycles

Example 6.14: Indirect Indexed Add - Sample Program

#Bytes
2
2
2
2
1
2
U

Cycles Label Instruction
2 START LDY //COUNT -1
5 LOOP LDA (PNT1), Y
5 ADC (PNT2), Y
5 STA (PNT3), Y
2 DEY
3 BPL LOOP

22

Comments
Set Y = End of FIELD
Load FIELD 1 Value
Add FIELD 2 Value
Store FIELD 3 Value

Time for 10 Bytes = 201 Cycles

+ 6 bytes for pointers

90

The "count" term in these examples represents the number of sets
of values to be added and stored. Loading the index register with
COUNT-1 will allow a fall through the BPL instruction when computation
on all set of values has been completed.

There is a definite saving in program storage using indirect be­
cause it only requires two bytes for each indirect pointer, the OP CODE
plus the pointer of the Page Zero location, whereas in the case of the
absolute, it takes three bytes, the OP CODE, address low and address
high.

It is noted that there are six bytes of Page Zero memory used for
pointers, two bytes for each pointer. The number of memory locations
allocated to the problem are 17 for the indirect and 14 for the problem
where the values are known. The execution time is longer in the in­
direct loop. Even though the increase in time for a single pass
through the loop is only three cycles, if many values are to be trans­
ferred, it adds up. It is important to note that loops require time
for setup but it is only used once. But in the loop itself, additional
time is multiplied by the number of times the program goes through
the loop; therefore, on problems where execution time is important,
the time reduction effort should be placed on the loop.

Even though the loop time is longer and the actual memory expended
is greater for the indexed indirect add, it has the advantage of not
requiring determination of the locations of FIELD 1, FIELD 2, and FIELD
3 at the time the program was written as is necessary with absolute.

An attempt to define problems to take advantage of this shorter
memory and execution time by defining fields should be investigated
first. However, in almost every program, the same operation must be
performed several times. In those cases, it is sometimes more useful
to define a subroutine and set the values that the subroutine will
operate on as fields in memory. Pointers to these fields are placed
in the Zero Page of memory and then the indexed indirect operation
is used to perform the function. This is the primary use of the
indexed indirect operation.

91

6.6 INDIRECT ABSOLUTE

In the case of all of the indirect operations previously described,
the indirect reference was always to a Page Zero location from which
is picked up the effective address low and effective address high.
There is an exception in the MCS650X microprocessor family for the jump
instruction in which absolute indirect jumps are allowed. The use of
the absolute indirect jump is best explained in the discussion on
interrupts where the addressing mode and its capabilities are explained.

6. 7 APPLICA TION OF INDEXES

As has been developed in many of the previous examples, an index
register has primary values as a modifier and as a counter. As a
modifier to a base address operation, it allows the accessing of
contiguous groups of data by simple modification of the index. This
is the primary application of indexes and it is for this purpose they
were created. By virtue of the fact that all of the MCS650X instructions
have the base address in the instruction, or in the case of the in­
direct, in the pointer, a single index can usually be used to service
an entire loop, because each of the many instructions in the loop
normally are referring to the same relative value in each of the lists.
An example is adding the third byte of a number to its corresponding
third byte of another number, then storing the result in the memory
location representing the third byte of the result; therefore, the
index register only needs to contain three to accomplish all three of
these offset functions.

Some other microprocessors use internal registers as indirect point­
ers. The single register requirement is a significant advantage of
the type of indexing done in the MCS650X. Even though the MCS650X has
two indexes, moire often than not, a single index will solve many of
the problems because of the fact that the data is normally organized
in corresponding fields.

The second feature of the MCS650X type of indexing is that, if used
properly, the index register also contains the count of the operations
to be performed.

92

The examples have tried to show how to take advantage of that
feature. There are two approaches to counting; forward counting and
reverse counting. In forward counting, the data in memory can be
organized such that the index register starts at zero and is added
to on each successive operation. The disadvantage of this type of
approach is that the compare index instruction, as used in Example
6.13 must be inserted into the loop in order to determine that the
correct number of operations is completed.

The reverse counting approach has been used in the latter
examples. The data must be organized for reverse counting operation.
The first value to be operated on is at the end of the FIELD, the
next value is one memory location in front of that, etc. The ad­
vantage of this type of operation is that it takes advantage of the
combined decrement and test capability of the processor. There are
two ways to use the test. First there is the case where the actual
number of operations to be performed is loaded into the index register
such as was done in Example 6.13. In this case, the index contains
the correct count but if added to the base directly, would be point­
ing to one value beyond the FIELD because the base address contains
the first byte. Therefore, when using the actual count in the index
register, one always references to the base address minus one. This
is easily accomplished as shown in the examples. The cross assembler
accepts symbolic references in the form of base address minus one,
and the microprocessor very carefully performs the operation shown.

The advantage of putting the actual count in the register is
that the branch if not equal instruction CBNE) can be used because
the value of the register goes to zero on the last operation.

The second alternative is to load the counter with the count
minus one as done in Example 6.14. In this case, the actual value of
the base address is used in the offset. However, the branch back
to loop now is a branch plus, remembering that the value in the index
register will not go to minus (all ones) until we decrement past zero.

93

Values of count minus one through zero will all take the branch.
It is only when attempting to reference less than the base address
that the loop will be completed.

Either approach gives minimum coding and only requires that
the user develop a philosophy of always organizing his data with
the first value at the end. In many cases, the operations such as
MOVE can be performed even if the data is organized the other way.
Experienced programmers find that this reverse counting form is
actually more convenient to use and always results in minimum loop
time and space.

Although for most applications, the 8-bit index register allows
simple count in offset operations, there are a few operations where
the 256 count that is available in the 8-bit register is not enough
to perform the indexed operations. There are two solutions to this
problem. First, to code the program with two sets of bases, that
is duplicating the coding for the loop with two different address
highs, each one a page apart. The second, more useful solution, is
to go to indirect operations because the indirect pointer can be
modified to allow an infinite indexed operation. An example of the
move done under 256 and over 256 is shown in the following example:

Example: 6.16: Move N Bytes (N<256)

Number of Program Instruction OPERAND
Cycles Label Mnemonics FIELD Comments

2 LDX //BLOCK Setup 2 Cycles
4 LOOP LDA FROM-1,X
4 STA TO —1,X LOOP Time:
2 DEX 13 cycles
3 BNE LOOP

Memory Required:
11 Bytes

Example 6.17: Move N Bytes (N>256)

Number of Program Instruction
Cycles Label Mnemonics

2 MOVE LDA
3 STA
2 LDA
3 STA

2 LDA

3 STA
2 LDA
3 STA
2 LDX
2 LDY
5 LOOP LDA
6 STA
2 DEY
3 BNE
5 SPECIAL INC
5 INC
2 DEX
2 BMI
3 BNE
2 LDY
3 BNE

OUT --

Operand
FIELD

//FROML
FRPOINT
//FROMH
FRiPOINT + 1

//TOL

TOPOINT
#TDH
TOPOINT + 1
//BLOCKS
#0
(FRPOINT) ,Y
(TOPOINT),Y

LOOP
FRFOINT + 1
TOPOINT + 1

OUT
LOOP
//COUNT
LOOP

Menlory required:
AO bytes

Comments

Move from address to
an indirect pointer

Move A to address
to an index pointer

Setup # of 256 blocks
to move
Loop Time: 16 cycles/
byte. Move 256 bytes

Increase high
pointer

Check for last move

Setup last move

95

CHAPTER 7

INDEX REGISTER INSTRUCTIONS

The index registers can be treated as auxiliary-general purpose reg­
isters, having the added ability of being incremented and decremented
because of the normal operations in which they are required to perform.

7.0 LDX- LOAD INDEX REGISTER X FROMMEMOR Y

Load the index register X from memory.
The symbolic notation is M X.
LDX does not affect the C or V flags; sets Z if the value

loaded was zero, otherwise resets it; sets N if the value loaded in
bit 7 is a 1; otherwise N is reset, and affects only the X register.
The addressing modes for LDX are Immediate; Absolute; Zero Page;
Absolute Indexed by Y; and Zero Page Indexed by Y.

7.1 LDY- LOAD INDEX REGISTER Y FROM MEMOR Y

Load the index register Y from memory.
The symbolic notation is M -*■ Y.
LDY does not affect the C or V flags, sets the N flag if the

value loaded in bit 7 is a 1, otherwise resets N, sets Z flag if the
loaded value is zero otherwise resets Z and only affects the Y reg­
ister. The addressing modes for load Y are Immediate; Absolute;
Zero Page; Zero Indexed by X, Absolute Indexed by X.

96

7.2 ST X - STORE INDEX REGISTER X IN MEMORY
Transfers value of X register to addressed memory location.
The symbolic notation is X -*■ M.
No flags or registers in the microprocessor are affected by

the store operation. The addressing modes for STX are Absolute,
Zero Page, and Zero Page Indexed by Y.

7.5 S T Y STORE INDEX REGISTER Y IN MEMORY

Transfer the value of the Y register to the addressed memory
location. The symbolic notation is Y -*■ M. STY does not affect any
flags or registers in the microprocessor. The addressing modes for
STY are Absolute; Zero Page; and Zero Page Indexed by X.

7.4 M X - INCREMENT INDEX REGISTER X B Y ONE

Increment X adds 1 to the current value of the X register. This
is an 8-bit increment which does not affect the carry operation, there­
fore, if the value of X before the increment was FF, the resulting
value is 00. The symbolic notation is X + 1 -»■ X. INX does not affect
the carry or overflow flags; it sets the N flag if the result of the
increment has a one in bit 7, otherwise resets N; sets the Z flag if
the result of the increment is 0, otherwise it resets the Z flag.
INX does not affect any other register other than the X register. INX
is a single byte instruction and the only addressing mode is Implied.

7.5 IN Y - INCREMENT INDEX REGISTER Y B Y ONE
Increment Y increments or adds one to the current value in the

Y register, storing the result in the Y register. As in the case of
INX the primary application is to step thru a set of values using the
Y register. The symbolic notation is Y + 1 -*■ Y. The INY does not
affect the carry or overflow flags, sets the N flag if the result of
the increment has a one in bit 7, otherwise resets N, sets Z if

97

as a result of the increment the Y register is zero otherwise resets
the Z flag. Increment Y is a single byte instruction and the only
addressing mode is Implied.

7.6 DEX - DECREMENT INDEX REGISTER X B Y ONE
This instruction subtracts one from the current value of the

index register X and stores the result in the index register X.
The symbolic notation is X - 1 ->■ X.
DEX does not affect the carry or overflow flag, it sets the

N flag if it has bit 7 on as a result of the decrement, otherwise
it resets the N flag; sets the Z flag if X is a 0 as a result of
the decrement, otherwise it resets the Z flag.

DEX is a single byte instruction, the addressing mode is
Implied.

7.7 D EY - DECREMENT INDEX REGISTER Y B Y ONE

This instruction subtracts one from the current value in the in­
dex register Y and stores the result into the index register Y. The
result does not affect or consider carry so that the value in
the index register Y is decremented to 0 and then through 0 to FF.

Symbolic notation is Y - 1 ■+ Y.
Decrement Y does not affect the carry or overflow flags; if the

Y register contains bit 7 on as a result of the decrement the N flag
is set, otherwise the N flag is reset. If the Y register is 0 as a
result of the decrement, the Z flag is set otherwise the Z flag is
reset. This instruction only affects the index register Y.

DEY is a single byte instruction and the addressing mode is
Implied.

NOTE: Decrement of the index registers is the most convenient
method of using the index registers as a counter, in that the decre­
ment involves setting the value N on as a result of having passed
through 0 and sets Z on when the results of the decrement are 0.

98

7.8 CPX - COMPARE INDEX REGISTER X TO MEMOR Y

This instruction subtracts the value of the addressed memory
location from the content of index register X using the adder but
does not store the result; therefore, its only use is to set the
N, Z and C flags to allow for comparison between the index register
X and the value in memory.

The symbolic notation is X - M.
The CPX instruction does not affect any register in the machine;

it also does not affect the overflow flag. It causes the carry to be
set on if the absolute value of the index register X is equal to or
greater than the data from memory. If the value of the memory is
greater than the content of the index register X, carry is reset.
If the results of the subtraction contain a bit 7, then the N flag
is set, if not, it is reset. If the value in memory is equal to the
value in index register X, the Z flag is set, otherwise it is reset.

The addressing modes for CPX are Immediate, Absolute and Zero
Page.

7.9 CPY - COMPARE INDEX REGISTER Y TO MEMOR Y

This instruction performs a two's complement subtraction between
the index register Y and the specified memory location. The results
of the subtraction are not stored anywhere. The instruction is strict­
ly used to set the flags.

The symbolic notation for CPY is Y - M.
CPY affects no registers in the microprocessor and also does not

affect the overflow flag. If the value in the index register Y is
equal to or greater than the value in the memory, the carry flag will
be set, otherwise it will be cleared. If the results of the subtrac­
tion contain bit 7 on the N bit will be set, otherwise it will be
cleared. If the value in the index register Y and the value in the
memory are equal, the zero flag will be set, otherwise it will be
cleared.

The addressing modes for CPY are Immediate, Absolute and Zero Page.

99

7.10 TRANSFERS BETWEEN THE INDEX REGISTERS AND ACCUMULATOR

There are four instructions which allow the accumulator and in­
dex registers to be interchanged. They are TXA, TAX which transfers
the contents of the index register X to the accumulator A and back,
and TYA, TAY which transfers the contents of the index register Y to
the accumulator A and back. The usefulness of this will be discussed
after the instructions.

7.11 TAX - TRANSFER ACCUMULATOR TO INDEX X

This instruction takes the value from accumulator A and trans­
fers or loads it into the index register X without disturbing the
content of the accumulator A.

The symbolic notation for this is A -> X.
TAX only affects the index register X, does not affect the

carry or overflow flags. The N flag is set if the resultant value in
the index register X has bit 7 on, otherwise N is reset. The Z bit
is set if the content of the register X is 0 as a result of the opera­
tion, otherwise it is reset. TAX is a single byte instruction and
its addressing mode is Implied.

7.12 TXA - TRANSFER INDEX X TO ACCUMULATOR

This instruction moves the value that is in the index register
X to the accumulator A without disturbing the content of the index
register X.

The symbolic notation is X -> A.
TXA does not affect any register other than the accumula­

tor and does not affect the carry or overflow flag. If the result in
A has bit 7 on, then the N flag is set, otherwise it is reset. If the
resultant value in the accumulator is 0, then the Z flag is set, other­
wise it is reset.

The addressing mode is Implied, it is a single byte instruction.

100

7.13 T A Y - TRANSFER ACCUMULA TOR TO INDEX Y
This instruction moves the value of the accumulator into index

register Y without affecting the accumulator.
The symbolic notation is A -> Y.
TAY instruction only affects the Y register and does not affect

either the carry or overflow flags. If the index register Y has bit 7 on,
then N is set, otherwise it is reset. If the content of the index register %
Y equals 0 as a result of the operation, Z is set on, otherwise it is reset.f;

TAY is a single byte instruction and the addressing mode is Implied.

7.14 TYA - TRANSFER INDEX Y TO ACCUMULA TOR
This instruction moves the value that is in the index register Y

to accumulator A without disturbing the content of the register Y.
The symbolic notation is Y •+ A.
TYA does not affect any other register other than the accumula­

tor and does not affect the carry or overflow flag. If the result in
the accumulator A has bit 7 on, the N flag is set, otherwise it is
reset. If the resultant value in the accumulator A is 0, then the Z
flag is set, otherwise it is reset.

The addressing mode is Implied and it is a single byte instruc­
tion .

Some of the applications of the transfer instructions between
accumulator A and index registers X, Y are those when the user wishes
to use the index register to access memory locations where there are
multiple byte values between the addresses. In this application a
count is loaded into the index register, the index register is trans­
ferred to the accumulator, a value such as 5, 7, 10, etc. is added
immediate to the accumulator and results stored back into the index

101

register using the TAX or TAY instruction. The consequence of this
type of operation is that it allows the: microprocessor to address
non-consecutive locations in memory. Another application is where
the internal transfer instructions allow the index registers to hold
intermediate values for the accumulator which allows rapid transfer
to and from the accumulator to help solve high speed data shuffling
problems.

7.15 SUMMARY OF INDEX REGISTER APPLICATIONS AND MANIPULATIONS

Primary use of index register X and Y is as offset and counters
for data manipulation in which the index register is used to compute
an address based on the value of the index register plus base address
specified by the user, either in a fixed instruction format or in a
variable pointer type format. In order to operate as both an offset
and counter, index registers may be incremented or decremented by one
or compared to values from memory. There are limitations on the
applications of each of the index registers which have to do with
formats which are unique to certain instruction addressing modes.
Because of the ability of the index registers to be loaded, changed
and stored, they are also useful as general purpose registers. They
can be used as interim storages for moves between memory locations
or for moves between memory and the accumulator.

One of the optimum uses of the indexing concept is the case
when the index register is being used both as an offset and a counter.
This type of operation uses the ability of- the microprocessor to
perform a decrement function on the index registers and set flags.
Therefore, a single decrement instruction not only changes the value
in the counter but can also perform a test on the count value.

102

CHAPTER 8

STACK PROCESSING

8.0 INTRODUCTION TO STACK AND TO PUSH DOWN STACK CONCEPT

In all of the discussions on addressing, it has been assumed that
either the exact location or at least a relation to an exact location of a
memory address was known.

Although this is true in most of the programming for control applica­
tions, there are certain types of programming and applications which re­
quire that the basic program not be working with known memory locations but
only with a known order for accessing memory. This type of programming is
called re-entrant coding and is often used in servicing interrupts.

To implement this type of addressing, the microprocessor maintains a
separate address generator which is used by the program to access memory.
This address generator uses a push down stack concept.

Discussions of push down stacks are usually best stated considering
that if one were given 3 cards, an ace, a king and a ten and were told that
the order of cards was important and asked to lay them down on the table in
the order in which they were given, ace first, the king on top of it and
finally the ten, and then if they were retrieved, 1 card at a time, the ten
is retrieved first even though it was put on last, the king is retrieved
second, the ace retrieved last, even though it was put on first.

The only commands needed to implement this operation are "put next
card on stack" and "pull next card from the stack." The stack could be
processing clubs and then go to diamonds and back to clubs. However, we
know that while we are processing clubs, we will always find ten first,
king second, etc.

103

The hardware implementation of the ordered card stack which just
described is a 16-bit counter, into which the address of a memory location
is stored. This counter is called a "Stack Pointer." Every time data is
to be pushed onto the stack, the stack pointer is put out on the address
bus, data is written into the memory addressed by the stack pointer, and
the stack pointer is decremented by 1 as may be seen in Example 8.1.
Every time data is pulled from the stack, the stack pointer is incremented
by 1. The stack pointer is put out on the address bus, and data is read
from the memory location addressed by the stack pointer. This implementa­
tion using the stack pointer gives the effect of a push down stack which
is program independent addressing.

Example 8.1: Basic stack map for 3-deep JMP to subroutine sequence

In the above example, the stack pointer starts out at 01FF. The stack
pointer is used to store the first state of the program counter by storing
the content of program counter high at 01FF and the content of program
counter low at 01FE. The stack pointer would now be pointed at 01FD. The
second time the store program count is performed, the program counter high
number is stored on the stack at 01FD and the program counter low is stored
at 01FC. The stack pointer would now be pointing at 01FB. The same pro­
cedure is used to store the third program counter.

When data is taken from the stack, the PCL 3 will come first and the
PCH 3 will come second just by adding I to the stack pointer before each
memory read. The example above contains the program count for 3 successive
jump and store operations where the jump transfers control to a subroutine
and stores the value of the program counter onto the stack in order to re­
member to which address the program should return after completion of the
subroutine.

Stack Address Data

01FF
01FE
01FD
01FC
01FB
01FA
01F9

PCH 1
PCL 1
PCH 2
PCL 2
PCH 3
PCL 3

104

Following is an example of a program that would create the Example 8.1
stack operation.

Example 8.2: Basic stack operation

Program
Counter Label Instruction

PCI Jump to Subroutine 1

SUB1

PC2 Jump to Subroutine 2

SUB 2

PC3 Jump to Subroutine 3

SUB3

105

This is known as subroutine nesting and is often encountered in solv­
ing complex control equations.

To correctly use the stack for this type of operation requires a jump
to subroutine and a return from subroutine instruction.

8.1 JSR - JUMP TO SUBROUTINE

This instruction transfers control of the program counter to a sub­
routine location but leaves a return pointer on the stack to allow the
user to return to perform the next instruction in the main program after
the subroutine is complete. To accomplish this, JSR instruction stores the
program counter address which points to the last byte of the jump instruc­
tion onto the stack using the stack pointer. The stack byte contains the
program count high first, followed by program count low. The JSR then
transfers the addresses following the jump instruction to the program
counter low and the program counter high, thereby directing the program
to begin at that new address.

The symbolic notation for this is PC + 21, (PC + 1) ->■ PCL,
(PC + 2) ■> PCH.

The JSR instruction affects no flags, causes the stack pointer to be
decremented by 2 and substitutes new values into the program counter low
and the program counter high. The addressing mode for the JSR is always
Absolute.

Example 8.3 gives the details of a JSR instruction.
Example 8.3: Illustration of JSR Instruction
Program Memory
PC Data

0100 JSR
0101 ADL
0102 ADH Subroutine

Stack Memory
Stack

Pointer Stack
01FD
01FE 02
01FF 01

106

1

Cycle Address Bus

0100

0101

01FF

01FF

01FE

0102

ADH, ADL

Data Bus

OP CODE

New ADL

PCH

PCL

ADH

Fetch
Instruction

External
Operations

Fetch
New ADL

Store PCH

Store PCL

Fetch ADH

Finish Previous
Operation; Incre­
ment PC to 0101

Decode JSR;
Increment PC to 0102

Store ADL

Hold ADL, Decre­
ment S to 01FE

Hold ADL, Decre­
ment S to 01FD

Store Stack Pointer

Internal
Operations

New Fetch New ADL ->■ PCL
OP CODE OP CODE ADH PCH

* S denotes "Stack Pointer."
In this example, it can be seen that during the first cycle the micro­

processor fetches the JSR instruction. During the second cycle, address
low for new program counter low is fetched. At the end of cycle 2, the
microprocessor has decoded the JSR instruction and holds the address low
in the microprocessor until the stack operations are complete.

NOTE: The stack is always stored in Page 1 (Hex address 0100-01FF).

The operation of the stack in the MCS650X microprocessor is such that
the stack pointer is always left pointing at the next memory location into
which data can be stored. In Example 8.3, the stack pointer is assumed to
be at 01FF in the beginning and PC at location 0100. During the third
cycle, the microprocessor puts the stack pointer onto the address lines and
on the fourth writes the contents of the current value of the program counter
high, 01, into the memory location indicated by the stack pointer address.
During the time that the write is being accomplished, the stack pointer is
being automatically decremented by 1 to 01FE. During the fifth cycle the
PCL is stored in the next memory location with the stack pointer being auto­
matically decremented.

It should be noted that the program counter low, which is now stored
in the stack, is pointing at the last address in the JSR sequence. This
is not what would be expected as a result of a JSR instruction. It would
be expected that the stack points at the next instruction. This apparent
anomaly in the machine is corrected during the Return from Subroutine in­
struction.

107

Note: At the end of the JSR instruction, the values on the stack con­
tain the program counter low and the program counter high which referenced
the last address of the JSR instruction. Any subroutine calls which want
to use the program counter as an intermediate pointer must consider this
fact. It should be noted also that the Return from Subroutine instruction
performs an automatic increment at the end of the RTS which means that any
program counters which are substituted on the stack must be 1 byte or 1
pointer count less than the program count to which the programmer expects
the RTS to return.

The advantage of delaying the accessing of the address high until
after the current program counter can be written in the stack is that only
the address low has to be stored in the microprocessor. This has the
effect of shortening the JSR instruction by 1 byte and also minimizing in­
ternal storage requirements.

After both program counter low and high have been transferred to the
stack, the program counter is used to access the next byte which is the ad­
dress high for the JSR. During this operation, the sixth cycle, internally
the microprocessor is storing the stack pointer which is now pointing at
01FD or the next location at which memory can be loaded.

During the seventh cycle the address high from the data bus and the
address low stored in the microprocessor are transferred to the new program
counter and are used to access the next OP CODE, thus making JSR a 6-cycle
instruction.

At the completion of the subroutine the programmer wants to return to
the instruction following the Jump-to-Subroutine instruction. This is
accomplished by transferring the last 2 stack bytes to the program counter
which allows the microprocessor to resume operations at the instruction fol­
lowing the JSR, and it is done by means of the RTS instruction.

8.2 RTS - RETURN FROM SUBROUTINE

This instruction loads the program count low and program count high
from the stack into the program counter and increments the program counter
so that it points to the instruction following the JSR. The stack pointer
is adjusted by incrementing it twice.

The symbolic notation for the RTS is PC+, INC PC.

108

The RTS instruction does not affect any flags and affects only PCL
and PCH. RTS is a single-byte instruction and its addressing mode is Im­
plied .

The following Example 8.4 gives the details of the RTS instruction.
It is the complete reverse of the JSR shown in Example 8.3.

Example 8.4: Illustration of RTS instruction

Program Memory
PC Data
0300 RTS
0301 ?

Stack Memory
Stack Pointer Stack

01FD ?
01FE 02
01FF 01

Return from Subroutine (Example)

Cycle Address Bus
1 0300

2 0301

3 01FD

4 01FE

5 01FF
6 0102

7 0103

Data Bus
OP CODE

Discarded
Data
Discarded
Data
02

01
Discarded
Data
Next
OP CODE

External
Operations
Fetch
OP CODE
Fetch Dis­
carded Data
Fetch Dis­
carded Data
Fetch PCL

Fetch PCH
Put Out PC

Fetch Next
OP CODE

Internal
Operations
Finish Previous
Operation, 0301 -* PC
Decode RTS

Increment Stack
Pointer to 01FE
Increment Stack
Pointer to 01FF

Increment PC by 1
to 0103

As we can see, the RTS instruction effectively unwinds what was done
to the stack in the JSR instruction. Because RTS is a single-byte

109

instruction it wastes the second memory access in doing a look-ahead oper­
ation. During the second cycle the value located at the next program ad­
dress after the RTS is read but not used in this operation. It should be
noted that the stack is always left pointing at the next empty location,
which means that to pull off the stack, the microprocessor has to wait 1
cycle while it adds 1 to the stack address. This is done to shorten the
interrupt sequence which will be discussed below; therefore, cycle 3 is a
dead cycle in which the microprocessor fetches but does not use the current
value of the stack and, like the fetch of address low on Indexed and Zero
Page Indexed operations, does nothing other than initialize the micro­
processor to the proper state. It can be seen that the stack pointer de­
crements as data is pushed on to the stack and increments as data is
pulled from the stack. In the fourth cycle of the RTS, the microprocessor
puts out the 01FE address, reads the data stored there which is the pro­
gram count low which was written in the second write cycle of the JSR.
During the fifth cycle, the microprocessor puts out the incremented stack
picking up the program count high which was written in the first write cycle
of the JSR.

As is indicated during the discussions of JSR, the program counter
stored on the stack really points to the last address of the JSR instruc­
tion itself; therefore, during the sixth cycle the RTS causes the program
count from the stack to be incremented. That is the only purpose of the
sixth cycle. Finally, in the seventh cycle, the incremented program counter
is used to fetch the next instruction; therefore, RTS takes 6 cycles.

Because every subroutine requires 1 JSR followed by 1 RTS, the time
to jump to and return from a subroutine is 12 cycles.

In the previous 2 examples, we have shown the operations of the JSR
located in location 100 and the RTS located in location 300. The follow­
ing pictorial diagram, Example 8.5, illustrates how the memory map for
this operation might look:

110

Example 8.5: Memory map for RTS instruction
Address
Bus Data
100 JSR
101 04
102 02
103 Next Instruction

0204 First Instruction of Subroutine^—

--- 0300 RTS

With this capability of subroutining, the microprocessor allows the
programmer to go from the main program to 1 subroutine, to the second sub­
routine, to a third subroutine, then finally working its way back to the
main program. Example 8.6 is an expansion of Example 8.2 with the returns
included.

Example 8.6: Expansion of RTS memory map

Main Program

SUB1

JSR SUB1
► Next Inst,

Test a Value

Stack Located at
01FF, 01FE

Stack Located at
01FD, 01FC

Stack Located at
01FB, 01FA

111

This concept is known as nesting of subroutines, and the number of
subroutines which can be called and returned from in such a manner is
limited by only the length of the stack.

8.3 IMPLEMENTATION OF STACK IN MCS6501 THROUGH MCS6505

As we have seen, the primary requirement for the stack is that irre­
spective of where or when a stack operation is called, the microprocessor
must have an independent counter or register which contains the current
memory location value of the stack address. This register is called the
Stack Pointer, S. The stack becomes an auxiliary field in memory which
is basically independent of programmer control. We will discuss later how
the stack pointer becomes initialized, but once it is initialized, the pri­
mary requirement is that it be self-adjusted; in other words, operations
which put data on the stack cause the pointer to be decremented automati­
cally; operations which take data off from the stack cause the pointer to
be incremented automatically. Only under rare circumstances should the
programmer find it necessary to move his stack from one location to another
if he is using the stack as designed.

On this basis, there is no need for a stack to be longer than 256 bytes.
To perform a single subroutine call takes only 2 bytes of stack memory.
To perform an interrupt takes only 3 bytes of stack memory. Therefore,
with 256 bytes, one can access 128 subroutines deep or interrupt ourselves
85 times. Therefore the length of the stack is extremely unlikely to be
limiting. The MCS6501 through MCS6505 have a 256-byte stack length.

Figure 8.1, which is now the complete block diagram, shows all of the
microprocessor registers. The 8-bit stack pointer register, S, has been
added. It is initialized by the programmer and thereafter automatically
increments or decrements, depending on whether data is being put on to the
stack or taken off the stack by the microprocessor under control of the
program or the interrupt lines.

112

DATA BUS

n
PCL

IE
£
PCH

S I

2___ 11___ li
INDEX INDEX STACK

POINTERX Y S

HZ ZH
C = ^ AALU

H
INTERNAL

sz.
INTERNAL

<2.
ABL

7%

ADL

ADH

0
ABH

MEMORY

A2_

Partial Block Diagram o f MCS650X Including Stack Pointer, S
FIGURE 8.1

The primary purpose of the stack is to furnish a block of memory loca­
tions in which the microprocessor can write data such as the program coun­
ter for use in later processing. In many control systems the requirements
for Read/Write memory are very small and the stack just represents another
demand on Read/Write memory. Therefore these applications would like the
stack to be in the Page Zero location in order that memory allocation for
the stack, the Zero Page operations, and the indirect addresses can be
performed. Therefore, one of the requirements of a stack is that it be
easily locatable into Page Zero.

On the other hand, if more than 1 page of RAM is needed because of the
amount of data that must be handled by the user programs, having the stack
in Page Zero is an unnecessary waste of Page Zero memory in the sense that
the stack can take no real advantage of being located in Zero Page, whereas
other operations can.

113

In each of the examples, the stack has been located at high order
address 01 followed by a low order address. In the same manner as the
microprocessor forces locations 00 on to the high order 8 bits of the
address lines for Zero Page operations, the microprocessor automatically
puts 01 Hex on to the high order 8-bit address lines during each stack
operation. This has the advantage to the user of locating the stack into
Page One of memory which would be the next memory location added if the
Zero Page operation requirements exceed Page Zero memory capacity. This
has the advantage of the stack not requiring memory to be added specifi­
cally for the stack but only requiring the allocation of existing memory
locations. It should be noted that the selected addressing concepts of
the MCS650X microprocessor support devices would involve connecting the
memories such that bit 8, which is the selection bit for the Page One
versus Page Zero, is a "don't care" for operations in which the user does
not need more than 1 page of Read/Write memory. This gives the user the
effect of locating stack in Page Zero for those applications.

The second feature that should be noted from the examples is that
the stack was located at the end of Page One and decremented from that
point towards the beginning of the page. This is the natural operation of
the stack. RAM memory comes in discrete increments, 64, 128, 256 bytes so
the normal method of^allocating stack addressing is for the user to calcu­
late the number of bytes probably needed for stack access. This could be
done by analyzing the number of subroutines which might be called and the
amount of data which might be put onto the stack in order to communicate
between subroutines or the number of interrupts plus subroutines which
might occur with the respective data that would be stored on the stack for
each of them. By counting 3 bytes for each interrupt, 2 bytes for each
jump to subroutine, plus 1 byte for each programmer-controlled stack opera­
tion, the microprocessor designer can estimate the amount of memory which
must be allocated for the stack. This is part of his decision-making pro­
cess in deciding how much memory is necessary for his whole program.

Once the allocation has been made, it is recommended that the user
assign his working storage from the beginning of memory forward and always
load his stack at the end of either Page Zero, Page One, or at the end of
his physical memory which is located in one of those locations. This will

114

give the effect of having the highest bytes of memory allocated to the
stack, lower bytes of memory allocated to user working storage and hope­
fully the two shall never overlap.

It should be noted that the natural operation of the stack, which often
is called by hardware not totally under program control, is such that it
will continue to decrement throughout the page to which it is allocated irre­
spective of the user's desire to have it do so. A normal mistake in allo­
cation in memory can result in the user writing data into a memory location
and later accessing it with another subroutine or another part of his pro­
gram, only to find that the stack has very carefully written over that area
as the result of its performing hardware control operations. This is one
of the more difficult problems to diagnose. If this problem is suspected
by the programmer, he should analyze memory locations higher than unex­
plained disturbed locations.

There is a distinctive pattern for stack operations which are unique
to the user's program but which are quite predictable. An analysis of the
value which has been destroyed will often indicate that it is part of an
address which would normally be expected during the execution of the pro­
gram between the time data was stored and the time it was fetched. This is
a very strong indication of the fact that the stack somehow or other did get
into the user's program area. This is almost always caused by improper con­
trol of interrupt lines or unexpected operations of interrupt or subroutine
calls and has only 2 solutions: (1) If the operation is normal and predict­
able, the user must assign more memory to his program and particularly re­
assign his memory such that the stack has more room to operate; or (2) if
the operation of the interrupt lines is not predictable, attention must be
given to solving the hardware problem that causes this type of unpredictable
operation.

8.3.1 Summary of Stack Implementation

The MCS6501 through MCS6505 microprocessors have a single 8-bit
stack register. This register is automatically incremented and decre­
mented under control of the microprocessor to perform stack manipula­
tion operations, under direction of the user program or the interrupt
lines. Once the programmer has initialized the stack pointer to the

115

end of whatever memory he wants the stack to operate in, the program­
mer can ignore stack addressing other than in those cases where there
is an interference between stack operations and his normal program
working space.

In the MCS6501 through MCS6505, the stack is automatically
located in Page One. The microprocessor always puts out the address
0100 plus stack register for every stack operation. By selected mem­
ory techniques, the user can either locate the stack in Page Zero or
Page One, depending on whether or not Page One exists for his hard­
ware .

8.4 USE OF THE STACK B Y THE PROGRAMMER
Discussed in Section 8.1 was the use of the JSR to call a subroutine.

However, not indicated was the technique by which the subroutine knew
which data to operate on. There are 3 classical techniques for communi­
cating data between subroutines. The first and most straightforward tech­
nique is that each subroutine has a defined set of working registers located
in the Page Zero in which the user has left values to be operated on by the
subroutine. The registers can either contain the values directly or can
contain indirect pointers to addresses to values which would be operated
on. The following example shows the combination of these:

Example 8.7: Call-a-move subroutine using preassigned memory locations

Location 10 Count

Main Line Routine

Location 11, 12 = Base from Address
Location 13, 14 = Base to Address

No. of
Bytes Instruction Comment

2
2
2
2
2
2
2
2
2
2
3

LDA //Count -1
STA 10
LDA //FRADH
STA 12
LDA //FRADL
STA 11
LDA //TOADL
STA 13
LDA //T0ADH
STA 14
JSR SUB1

Load Fixed Value for the Move

Set up "FROM" Pointer

Set up "TO" Pointer

23 bytes

116

Subroutine Coding

No. of
Bytes Label Instruction

2
2
2
1
2
1

SUB1
LOOP

LDY 10
LDA (11), Y
STA (13), Y
DEY
BNE LOOP
RTS

total 33 bytes

As has been previously developed, the loop time is the overriding con­
sideration rather than setup time for a large number of executions.

It can be seen that we have used the techniques developed in previous
sections of the indirect referencing, the jump to subroutine and the return
from subroutine to perform this type of subroutine value communication.
In this operation, there was no use of the stack except for the program
counter value.

A second form of communication is the use of the stack itself as an
intermediate storage for data which is going to be communicated to the
subroutine. In order for the programmer to use the stack as an intermediate
storage, he needs instructions which allow him to put data on the stack and
to read from the stack. These instructions are known as push and pull in­
structions .

8.5 PHA - PUSH ACCUMULATOR ON STACK

This instruction transfers the current value of the accumulator to
the next location on the stack, automatically decrementing the stack to
point to the next empty location.

The symbolic notation for this operation is A+. Noted should be that
the notation + means push to the stack, + means pull from the stack.

The Push A instruction only affects the stack pointer register which
is decremented by 1 as a result of the operation. It affects no flags.

PHA is a single-byte instruction and its addressing mode is Implied.
The following example shows the operations which occur during Push A

instruction.

117

External Internal
Cycles Address Bus Data Bus Operations Operations

Example 8.8: Operation of PHA, assuming stack at 01FF

1 0100 OP CODE Fetch
Instruction

Finish Previous
Operation, Incre­
ment PC to 0101

2 0101 Next
OP CODE

Fetch Next
OP CODE
and Discard

Interpret PHA In­
struction, Hold
P-Counter

3 01FF (A) Write A on
Stack

Decrement Stack
Pointer to 01FE

4 0101 Next
OP CODE

Fetch Next
OP CODE

As can be seen, the PHA takes 3 cycles and takes advantage of the
fact that the stack pointer is pointing to the correct location to write
the value of A. As a result of this operation, the stack pointer will be
setting at 01FE. The notation (A) implies contents of A. Now that the
data is on the stack, later on in the program the programmer will call for
the data to be retrieved from the stack with a PLA instruction.

8.6 PLA - PULL ACCUMULATOR FROM STACK

This instruction adds 1 to the current value of the stack pointer and
uses it to address the stack and loads the contents of the stack into the
A register.

The symbolic notation for this isAt.
The PLA instruction does not affect the carry or overflow flags. It

sets N if the bit 7 is on in accumulator A as a result of instructions,
otherwise it is reset. If accumulator A is zero as a result of the PLA,
then the Z flag is set, otherwise it is reset. The PLA instruction changes
content of the accumulator A to the contents of the memory location at
stack register plus 1 and also increments the stack register.

The PLA instruction is a single-byte instruction and the addressing
mode is Implied.

In the following example, the data stored on the stack in Example 8.8
is transterred to the accumulator.

118

Example 8.9: Operation of PLA stack from Example 8.8

Cycles Address Bus Data Bus

0200

0201

01FE

01FF
0201

PLA

Next
OP CODE

(A)
Next
OP CODE

External
Operations

Fetch
Instruction

Fetch Next
OP CODE and
Discard
Read Stack

Fetch A
Fetch Next
OP CODE

Finish Previous Opera­
tion, Increment PC to
101

Interpret Instruction,
Hold P-Counter

Increment Stack Pointer
to 01FF
Save Stack
M A

Internal
Operations

When taking data off the stack, there is 1 extra cycle during which
time the current contents of the stack register are accessed but not used
and the stack pointer is incremented by 1 to allow access to the value
that was previously stored on the stack. The stack pointer is left point­
ing at this location because it is now considered to be an empty location
to be used by the stack during a subsequent operation.

8.7 USE OF PUSHES AND PULLS TO COMMUNICA TE VARIABLES BETWEEN SUBROUTINE
OPERATIONS

In Example 8.10, we perform the same operation as we did in Example 8.7;
only here, instead of using fixed locations to pick up the pointers, we are
going to use the stack as a communications vehicle:

Example 8.10: Call-a-move subroutine using the stack to communicate

Location 11, 12 = Base "FROM" Address
Location 13, 14 = Base "TO" AddressMain Line Routine

Bytes Instruction
2 LDA #Count -1
1 PHA
2 LDA #FRADL
1 PHA
2 LDA #FRADH
1 PHA
2 LDA #T0ADL
1 PHA
2 LDA #T0ADH
1 PHA
3 JSR SUB1
18

119

Subroutine

Bytes Label Instruction Comments

2 SUB1 LDX 6
1 LOOP1 PLA
2 STA 10,X
1 DEX Move Stack to Memory
2 BNE LOOP 1
1 PLA Set up Count
1 TAY
2 LOOP 2 LDA (11) ,Y
2 STA (13) ,Y Move Memory Location
1 DEY
2 BNE LOOP 2
2 LDA 15
1 PHA
2 LDA 16 Restore PC to Stack
1 PHA
1 RTS

Total 42 Bytes

We can see from this example that using the stack as a communication
vehicle actually increases the number of bytes in the subroutine and the
total bytes overall. However, the only time one should be using subroutine
in this case is when the subroutine is fairly long and the number of times
the subroutine is used is fairly frequent. This technique does reduce the
number of bytesjin the calling sequence. The calling sequence is normally
repeated once for every time the instruction is called; therefore the use
of the stack to communicate should result in a net reduction in the number
of bytes used in the total program.

Up until this time, we have been considering that the stack is at a
fixed location and that all stack references use the stack pointer. It
has not been explained how the stack pointer in the microprocessor gets
loaded and accessed. This is done through communication between the stack
pointer and index register X.

8.8 TXS - TRANSFER INDEX X TO STACK POINTER

This instruction transfers the value in the index register X to the
stack pointer.

Symbolic notation is X -»■ S.
TXS changes only the stack pointer, making it equal to the content of

the index register X. It does not affect any of the flags.

120

TXS is a single-byte instruction and its addressing mode is Implied.
Another application for TXS is the concept of passing parameters to

the subroutine by storing them immediately after the jump to subroutine
instruction.

In Example 8.11, the from and to address, plus the count of number of
values would be written right after the JSR instruction and its address.

By locating the stack in Page Zero, the address of the last byte of
the JSR can be incremented to point at the parameter bytes and then used
as an indirect pointer to move the parameter to its memory location.

The key to this approach is transferring the stack pointer to X which
allows the program to operate directly on the address while it is in the
stack.

It should be noted that this approach automatically leaves the address
on the stack, positioned so that the RTS picks up the next OP CODE address.

Example 8.11: Jump to subroutine (JSR) followed by parameters

Address Bus Data

0100 JSR
0101 ADL
0102 ADH
0103 To High
0104 To Low
0105 From High
0106 From Low
0107 Count
0108 Next OP CODE

Before concluding this discussion on subroutines and parameter passing,
one should again note the use of subroutines should be limited to those
cases where the user expects to duplicate code of significant length sev­
eral times in the program. In these cases, and only in these cases, is
subroutine call warranted rather than the normal mode of knowing the
addresses and specifying them in an instruction. In all cases where timing
is of significant interest, subroutines should also be avoided. Subroutines
add significantly to the setup and execution time of problem solution. How­
ever, subroutines definitely have their place in microcomputer code and
there have been presented 3 alternatives for use in application programs.
The user will find a combination of the above techniques most useful for
solving his particular problem.

121

8.9 TSX - TRANSFER STA CK POINTER TO INDEX X

This instruction transfers the value in the stack pointer to the
index register X.

Symbolic notation is S -> X.
TSX does not affect the carry or overflow flags. It sets N if

bit 7 is on in index X as a result of the instruction, otherwise it is
reset. If index X is zero as a result of the TSX, the Z flag is set, other­
wise it is reset. TSX changes the value of index X, making it equal to
the content of the stack pointer.

TSX is a single-byte instruction and the addressing mode is Implied.

8.10 SA VING OF THE PROCESSOR STA TUS REGISTER

During the interrupt sequences, the current contents of the processor
status register (P) are saved on the stack automatically. However, there
are times in a program where the current contents of the P register must
be saved for performing some type of other operation. A particular example
of this would be the case of a subroutine which is called independently and
which involves decimal arithmetic. It is important that the programmer
keeps track of the arithmetic mode the program is in at all times. One way
to do this is to establish the convention that the machine will always be
in binary or decimal mode, with every subroutine changing its mode being
responsible for restoring it back to the known state. This is a superior
convention to the one that is about to be described.

A more general convention would be one in which the subroutine that
wanted to change modes of operation would push P onto the stack, then set
the decimal mode to perform the subroutine and then pull P back from the
stack prior to returning from the subroutine.

Instructions which allow the user to accomplish this are as follows:

8.11 PHP - PUSH PROCESSOR STA TUS ON STACK

This instruction transfers the contents of the processor status reg­
ister unchanged to the stack, as governed by the stack pointer.

Symbolic notation for this is P+.
The PHP instruction affects no registers or flags in the micropro­

cessor .
PHP is a single-byte instruction and the addressing mode is Implied.

122

8.12 PLP - PULL PROCESSOR STA TUS FROM STACK

This instruction transfers the next value on the stack to the Proces­
sor Status register, thereby changing all of the flags and setting the mode
switches to the values from the stack.

Symbolic notation is +P.
The PLP instruction affects no registers in the processor other than

the status register. This instruction could affect all flags in the status
register.

PLP is a single-byte instruction and the addressing mode is Implied.

8.13 SUMMARY ON THE STACK

The stack in the MCS650X family is a push-down stack implemented
by a processor register called the stack pointer which the programmer ini­
tializes by means of a Load X immediately followed by a TXS instruction and
thereafter is controlled by the microprocessor which loads data into mem­
ory based on an address constructed by adding the contents of the stack
pointer to a fixed address, Hex address 0100. Every time the microproces­
sor loads data into memory using the stack pointer, it automatically decre­
ments the stack pointer, thereby leaving the stack pointer pointing at the
next open memory byte. Every time the microprocessor accesses data from
the stack, it adds 1 to the current value of the stack pointer and reads
the memory location by putting out the address 0100 plus the stack pointer.
The status register is automatically pointing at the next memory location
to which data can now be written. The stack makes an interesting place to
store interim data without the programmer having to worry about the actual
memory location in which data will be directly stored.

There are 8 instructions which affect the stack. They are: BRK,
JSR, PHA, PHP, PLA, PLP, RTI, and RTS.

BRK and RTI involve the handling of the interrupts.

CHAPTER 9

RESET AND INTERRUPT CONSIDERATIONS

9.0 VECTORS

Before developing the concepts of how the MCS650X Microprocessors
handle interrupts and start-up, a brief definition of the concept of
vector pointers needs to be developed.

In the sections on Jumps and Branches, it was always assumed that
the program counter is changed by the microprocessor under control of the
programmer while accessing addresses which were in program sequence. In
order to get the microprocessor started and in order to properly handle
external control or interrupt, there has been developed a different way
of setting the program counter to point at a specific location. This
concept is called vectored pointers. A vector pointer consists of a pro­
gram counter high and program counter low value which, under control of
the microprocessor, is loaded in the program counter when certain external
events occur. The word vector is developed from the fact that the micro­
processor directly controls the memory location from which a particular
operation will fetch the program counter value and hence the concept of
vector.

By allowing the programmer to specify the vector address and then by
allowing the programmer to write coding that the address points to, the
microprocessor makes available to the programmer all of the control
necessary to develop a general purpose control program. The microprocessor
has fixed address in memory from which it picks up the vectors. By this

implementation, minimum hardware in the microprocessor is obtained. Loca­
tions FFFA through FFFF are reserved for vector pointers for the micro­
processor. Into these locations are stored respectively the interrupt
vectors or pointers for: non-maskable interrupt, reset and interrupt
request.

9.1 RESET OR RESTART

In the microprocessor, there is a state counter which controls when
the microprocessor is going to use the program counter to access memory
to pick up an instruction, then after the instruction is loaded, the
microprocessor goes through a fixed sequence of interpreting instructions
and then develops a series of operations which are based on the OP CODE
decoding.

Up to this point, it has been assumed that the program counter was
set at some location and that all program counter changes are then
directed by the program once the program counter had been initialized.

Instructions exist for the initialization and loading of all other
registers in the microprocessor except for the initial setting of the
program counter. It is for this initial setting of the program counter
to a fixed location in the restart vector location specified by the micro­
processor programmer that the reset line in the microprocessor is pri­
marily used.

The reset line is controlled during power on initialization and is
a common line which is connected to all devices in the microcomputer sys­
tem which have to be initialized to a known state. The initialization of
most I/O devices is such that they are brought up in a benign state such
that with minimum coding in the microcomputer, the programmer can con­
figure and control the I/O in an orderly fashion.

The concept has important systems implications in systems where
damage can be done if peripheral devices came up in unknown states. There­
fore, in the MCS650X, power on or reset control operates at two levels.

First, by holding of an external line to ground, and having this external
line connected to all the devices during power up transient conditions,
the entire microcomputer system is initialized to a known disabled state.
Second, the releases of the reset line from the ground or TTL zero
condition to a TTL one condition causes the microprocessor to be automat­
ically initialized, first by the internal hardware vector which causes it
to be pointed to a known program location, ana secondly through a software
program which is written by the user to control the orderly start-up
of the microcomputer system.

All of the MCS650X family parts also obey a discipline that while
the reset line is low, the system is in a stop or reset state. The micro­
processor is guaranteed to be in a Read state and upon release of the re­
set line from ground to positive, the microprocessor will continue to
hold the line in a Read state until it has addressed the specified vectored
count location, at which time control of the microprocessor is available
to the programmer.

NOTE: The MC6800 family also follows this convention.
9.2 START FUNCTION

While the reset line is in the low state, it can be assumed that
internal registers may be initialized to any random condition; therefore,
no conditions about the internal state of the microprocessor are assumed
other than that the microprocessor will, one cycle after the reset line
goes high, implement the following sequence:

Example 9.1: Illustration of Start Cycle

Cycles Address Bus Data Bus External Operation Internal Operation
1
2
3
4
5
6
7

? + 1
0100 + SP
0100 + SP-1
0100 + SP-2
FFFC
FFFD
PCH PCL

? ?
?
?
?
?

Don't Care
Don't Care
Don't Care
Don't Care
Don' t Care

Hold During Reset
First Start State
Second Start State
Third Start State
Fourth Start State

8

Start PCL
Start PCH
First
OP CODE

Fetch First Vector
Fetch Second Vector
Load First OP CODE

Hold PCL

The start cycle actually takes seven cycles from the time the reset
line is let go to TTL plus. On the €iighth cycle, the vector fetched from
the memory location FFFC and FFFD is used to access the next instruction.
The microprocessor is now in a normal program load sequence, the location
where the vector points should be the first OP CODE which the programmer
desires to perform.

The second point that should be noted is that the microprocessor
actually accesses the stack three times during the start sequence in
cycles 3, 4 and 5. This is because the start sequence is in effect a
specialized form of interrupt with the exception that the read/write line
is disabled so that no writes to stack are accomplished during any of the
cycles.

9.3 PROGRAMMER CONSIDERATIONS FOR INITIALIZATION SEQUENCES

There are two major facts to remember about initialization. One, the
only automatic operations of the microprocessor during reset are to turn
on the interrupt disable bit and to force the program counter to the vector
location specified in locations FFFC and FFFD and to load the first instruc­
tion from that location. Therefore, the first operation in any normal pro­
gram will be to initialize the stack. This should be done by having pre­
viously decided what the stack value should be for initial operations and
then doing a LDX immediate of this value followed by a TXS. By this simple
operation, the microprocessor is ready for any interrupt or non-maskable
interrupt operation which might occur during the rest of the start-up
sequence.

127

Once this is accomplished, the two non variable operations of the
machine are under control. The program counter is initialized and under
programmer control and the stack is initialized and under program control
The next operations during the initialization sequences will consist of
configuring and setting up the various control functions necessary to
perform the I/O desired for the microprocessor.

Specific discussion for considerations regarding the start-up are
covered in Section 11.

The major things which have to be considered include the current
state of the I/O device and the non destructive operations that will
allow the state to be changed to the active state.

The initialization programs mostly consist of loading accumulator
A immediately with a bit pattern and storing it in the data control regis
ter of an I/O device.

Note: The interrupt disable is automatically set by the micro­
processor during the start sequence. This is to minimize
the possibility of a series of interrupts occurring during
the start-up sequence because of uncontrolled external
values although it is usually possible to control interrupts
as part of the configuration.

The programmer should consider two effects. First, that the non
maskable interrupt is not blockable by this technique since it would be
possible to configure a device that was connected to a non maskable inter
rupt and have to service the interrupt immediately. Secondly, the mask
must be cleared at the end of the start sequence unless the user has
specific reason to inhibit interrupts after he has done the start-up
sequence. Therefore, the next to last instruction of the start-up
sequence should be CLI.

It should be noted that the start-up routine is a series of
sequential operations which should occur only during power on initial­
ization and is the first step in the programmed logic machine.

128

Because the execution of the routine during powpr on occurs very
seldom in the normal operation of the machine, the coding for power
on sequence should tend to minimize the use of memory space rather
than speed.

The last instruction in the start-up sequence should initialize
the decimal mode flag to the normal setting for the program.

The next instruction should be the beginning of the user's normal
programming for his device, everything preceding that being known as
"housekeeping."

9.4 RESTART
It should be noted that the basic microprocessor control philosophy

allows for a single common reset line which initializes all devices.
This line can be used to clear the microprocessor to a known state and to
reset all peripherals to a known state; therefore, it can be used as a
result of power interruption, during the power on sequence, or as an
external clear by the user to re-initialize the system.

As discussed in the hardware manual, restart is often used as an
aid to making sure the microprocessor has been properly interconnected
and that programs have been loaded in the correct locations.

9.5 INTERRUPT CONSIDERATIONS
Up until this point, the microprocessor has to proceed under program­

mer control through a variety of sequences. The only way for the program­
mer to change the sequence of operations of the microprocessor was to
change the program counter location to point at new operations. The
microprocessor is in control of fetching the next instruction at the
conclusion of the current instruction. The only way that external events
could control the microprocessor, if it were not for interrupts, would be
for the programmer to periodically interrupt or stop processing data and
check to see whether or not an external event which might cause him to
change his direction has occurred. The problem with this technique is that

129

I/O events are usually asynchronous, i.e., not timed with the micro­
processor internal instructions, therefore, it would be possible for the
event to occur shortly after the programmer has stopped to look at I/O
events which would mean that the event would not be sampled until the
programmer took the time to stop his coding and sample again.

Because the sampling of I/O devices normally takes several byte
counts or cycles to accomplish, the frequent insertion of checking
routines into straight line code results in significant delays to the
entire program. In trying to use this technique, there has to be a
trade-off between the fact that the program wastes a significant
amount of time checking events which have not yet occurred versus
delaying checking of an event which has occurred and if not timely
serviced the data may be lost.

In order to solve this dichotomy, the concept of interrupt is used
to signal the microprocessor that an external event has occurred and the
microprocessor should devote attention to it immediately. This technique
accomplishes processing in which the microprocessor's program is inter­
rupted and the event that caused the interrupt is serviced.

Transferring most of data and control to I/O devices in an interrupt
driven environment will usually result in maximum program and/or program­
mer efficiency. Each event is serviced when it occurs which means there
is a minimum amount of delaying in servicing events, also a minimum amount
of coding because of elimination of the need to determine occurrence
of several events simultaneously; each interrupting event is handled
as a unique combination. It is possible to interrupt an interrupt
processing routine and, therefore, all the interrupt logic uses the
stack which allows processing of successive interrupts without any
penalty other than increasing the stack length.

A real world example of an event which should interrupt is when
the user is given a panic button indicating to the microcomputer some
event has occurred which requires total immediate attention of the
microprocessor to solving that problem.

130

The action and events are as follows: The microprocessor user
pushes the panic button; the panic switch sensor causes an external
device to indicate to the microprocessor an interrupt is desired; the
microprocessor checks the status of the internal interrupt inhibit
signal; if the internal inhibit is set, then the interrupt is ignored.
However, if it is reset or when it becomes reset through some program
reaction, the following set of operations occur:

Example 9.2: Interrupt Sequence

Cycles Address Bus Data Bus
1 PC

PC

OP CODE

OP CODE

External Operation
Fetch OP CODE

Fetch OP CODE

Internal Operation
Hold Program Counter,
Finish Previous
Operation
Force a BRK
Instruction, Hold
P-Counter

3 01FF 1 PCH Store PCH on Stack Decrement Stack
Pointer to 01FE

4 01FE PCL Store PCL on Stack Decrement Stack
Pointer to 01FD

5 01FD P Store P on Stack Decrement Stack
Pointer to 01FC

6 FFFE New PCL Fetch Vector Low Put Away Stack
7 FFFF New PCH Fetch Vector High Vector Low ->

PCL and Set I
8 Vector OP CODE Fetch Interrupt Increment PC to

PCH PCL Program PC + 1

As can be seen in Example 9.2, the microprocessor uses the stack to
save the reentrant or recovery code and then uses the interrupt vectors
FFFE and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt
request or a non maskable interrupt request had occurred. It should be
noted that the interrupt disable is turned on at this point by the micro­
processor automatically.

131

Because the interrupt disable had to be off for an interrupt request
to have been honored, the return from interrupt which loads the processor
status from before the interrupt occured has the effect of clearing the
interrupt disable bit. After the interrupt has been acknowledged by the
microprocessor by transferring to the proper vector location, there are a
variety of operations which the user can perform to service the interrupt;
however, all operations should end with a single instruction which
reinitializes the microprocessor back to the point at which the interrupt
occurred. This instruction is called the RTI instruction.

9.6 RTI - RETURN FROM INTERRUPT

This instruction transfers from the stack into the microprocessor
the processor status and the program counter location for the instruction
which was interrupted. By virtue of the interrupt having stored this data
before executing the instruction and thei fact that the RTI reinitializes
the microprocessor to the same state as when it was interrupted, the
combination of interrupt plus RTI allows truly reentrant coding.

The symbolic notation for RTI is +P +PC.
The RTI instruction reinitializes all flags to the position to the

point they were at the time the interrupt was taken and sets the program
counter back to its pre-interrupt state. It affects no other registers
in the microprocessor.

RTI is a single byte instruction and its addressing mode is Implied.
In the following example, we can see the internal operation of the

RTI which restores the microprocessor:

1

2
3

4

5

6

7

Cycles

Example 9.3: Return from Interrupt

Address Bus Data Bus
0300

0301
01FC

01FD

01FE

01FF

PCH PCL

External Operation
RTI Fetch OP CODE

? Fetch Next OP CODE
? Discarded Stack

Fetch
P Fetch P Register

PCL Fetch PCL

PCH Fetch PCH

OP CODE Fetch OP CODE

Finish Previous
Operation,Increment
PC to 0301
Decode RTI
Increment Stack
Pointer to 01FD
Increment Stack
Pointer to 01FE
Increment Stack Point­
er to 01FF, Hold PCL
M+PCL, Store
Stack Pointer
Increment New PC

Internal Operation

Note the effects of the extra cycle (3) necessary to read data from
stack which causes the RTI to take six cycles. The RTI has restored the
stack, program counter and status register to the point they were at
before the interrupt was acknowledged.

There is no automatic save of any of the other registers in the
microprocessor. Because the interrupt occurred to allow data to be trans­
ferred using the microprocessor, the programmer must save the various in­
ternal registers at the time the interrupt is taken and restore them prior
to returning from the interrupt. Saving of the registers is best done
on the stack as this allows as many consecutive interrupts as the program­
ming will allow for. Therefore, the routines which save all registers
and restore them are as follows:

Example 9.4: Illustration of Save and Restore for Interrupts

Cycle Bytes
3
2
3
2
3
13
4
2
4
2
4
16

1
1
1
1
1

SAVE

5
1
1
1
1
1

RESTORE

PHA Save A
TXA Save X
PHA
TYA Save Y
PHA

PLA Restore Y
TAY
PLA Restore X
TAX
PLA Restore A

133

The SAVE coding assumes that the programmer wants to save and to
restore registers A, X and Y. It should be noted that for many inter­
rupts , the amount of coding that has to be performed in the interrupt is
fairly small.

In this type of operation, it is usually more desirable to shorten
the interrupt processing time and not use all of the registers in the
machine. Therefore, a more normal interrupt processing routine would
consist of just saving registers A and X which means that the restore
routine would be just restore registers X and A. This has the effect of
shortening the interrupt routine by two bytes, and also shortens the restore
routine by two bytes and will cut 5 cycles out of the interrupt routine
and 6 cycles out of the restore routine.

This technique combined with automatic features of the interrupt
and the RTI allows multiple interrupts to occur with successive inter­
rupts interrupting the current interrupt. This is one of the advantages
of the use of the stack so that as many interrupts can interrupt other
interrupts as can be held in the stack. The stack contains six bytes for
every interrupt if all registers are saved, so 42 sequences of interrupts
can be stored in one page. However, in more practical situations, consecu­
tive interrupts hardly ever get more than about three deep.

The advantage of allowing an interrupt to interrupt an interrupt is
that the whole concept behind the interrupt is that asynchronous events
can be responded to as rapidly as possible; therefore, it is desirable
to allow the processing to service one interrupt to be interrupted to
service the second, as long as the first interrupt has been properly
serviced.

To review how this is accomplished using the normal interrupt
capability of the MCS650X, it is important that we review the bus concept
which is inherent in the MCS6500 family and which is compatible with the
M6800.

As has already been discussed, all I/O operations on this type of
microprocessor are accomplished by reading and writing registers which

134

actually represent connections to physical devices or to physical pins
which connect to physical devices.

Up until this point, this discussion has addressed itself to
transferring of data into and out of the microprocessor. However, there
is a concept that is inherent in the bus discipline that says that when­
ever an interrupt device capable of generating an interrupt desires to
accomplish an interrupt, it performs two acts; first, it sets a bit,
usually bit 7, in a register whose primary purpose is to communicate
to the microprocessor the status of the device. The interrupting device
causes one of perhaps many output lines to be brought low. These
collector-or'd outputs are connected together to the IRQ pin on the
MCS650X microprocessor.

The interrupt request to the MCS650X is the IRQ pin being at a
TTL zero. In order to minimize the handshaking necessary to accomplish
an interrupt, all interrupting devices obey a rule that says that once an
interrupt has been requested by setting the bit and pulling interrupt
low, the interrupt will be held by the device until the condition that
caused the interrupt has been satisfied. This allows several devices
to interrupt simultaneously and also allows the microprocessor to
ignore an interrupt until it is ready to service it. This ignoring is
done by the interrupt disable bit which can be set on by the programmer
and is initialized on by the interrupt sequence or by the start sequence.

Once the interrupt line is low and interrupt disable is off, the
microprocessor takes an interrupt which sets on the interrupt disable.
The interrupt disable then keeps the input low line from causing more than
one interrupt until an interrupt has been serviced. There is no other

*
handshaking between the microprocessor and the interrupting device other
than the collector-or'd line. This means that the microprocessor must use
the normal addressing registers to determine which of several collector-
or 'd devices caused the line to go low and to process the interrupt which
has been requested.

135

Once the processor has found the interrupting device by means of
analyzing status bits which indicates an interrupt has been requested,
the microprocessor then clears the status by reading or writing data
as indicated by the status register.

It should be noted that a significant difference between status
registers and data registers in I/O devices is that status registers
are never cleared by being read, only by being written into or by the
microprocessor transferring data from a data register which corresponds
to some status in the status register. Detailed examples of this
interaction are discussed in Chapter 11. The clearing of the status
register also releases the collector-or' d output thereby releasing the
interrupt pin request.

The basic interaction between the microprocessor and interrupting
device is when interrupting device sets the status bit and brings its
output IRQ line low. If its output IRQ line is connected to the micro­
processor interrupt request line, the microprocessor waits until the
interrupt disable is cleared, takes th€ interrupt vector, and sets the
interrupt disable which inhibits further interrupts in the IRQ line.
The microprocessor determines which interrupting device is causing an
interrupt and transfers data from that device.

Transferring of data clears the interrupt status and the IRQ pin. At
this point, the programmer could decide that he was ready to accept another
interrupt even though the data may have been read but not yet operated on.
Allowing interrupts at this point, gives the most efficient operation of
the microprocessor in most applications.

There are also times when a programmer may be working on some coding
the timing of which is so important that he cannot afford to allow an
interrupt to occur. During these times, he needs to be able to turn on
the interrupt disable. To accomplish this, the microprocessor has a set
and clear interrupt disable capability.

136

9. 7 SOFTWARE POLLING FOR INTERR UPT CA USES

As was indicated above, any one of several devices are collector-or'd
to cause an IRQ. The effect of any one of the devices or combination of
them having polled the IRQ line low is always the same. The interrupt
stores the current status of the program counter and processor on the
stack and transfers to a fixed vector address. In servicing the inter­
rupt, it is important to save those registers which will be used in the
analysis of the interrupt and during the interrupt processing, so the
normal first steps of the interrupt routine are to do the SAVE pro­
cedures .

The next operation is to determine which of the various potential
interrupting devices caused the interrupt. To accomplish this, the
programmer should make use of the fact that all interrupting devices
signal the interrupt by a bit in the status register. All currently
implemented 6800 and 6500 peripherals always have interrupt indicators;
either bit 7 or bit 6 in their status register. Therefore, the basic loop
that a user will use to verify the existence of an interrupt on one of
five devices is' as follows:

Example 9.5: Interrupt Polling

No.of Bytes Cycles
3 4 LDA Status 1
2 2 BMI FIRST
3 4 LDA Status 2
2 2 BMI SECOND
3 4 LDA Status 3
2 2 BMI THIRD
3 4 LDA Status 4
2 2 BMI - FOURTH
3 4 LDA Status 5
2 2 BMI FIFTH

RES1 JMP to RESTORE
FIRST LDA DATA 1

CLI
Process 1
etc.

137

In this example, the simplest case where the potential interrupts
are indicated by bit 7 being on, has been assumed. This allows advantage
to be taken of the free N-bit test by following the load of the first
status register with a branch on result minus. If the first device has an
active interrupt request, the BMI will be taken to FIRST where the data is
transferred. This automatically clears the interrupt for the first device.
To allow multiple interrupts, the load A is followed by the CLI instruction
which allows the program to accept another interrupt. As a result of the
CLI, one of two things can occur; there is not another interrupt currently
active, in which case, the microprocessor will continue to process the
first interrupt down to the point where the interrupt is complete and the
first subroutine does a jump to RESTORE, which is the routine that unsaves
the registers that were used in the process of servicing the interrupt.
If another device has an active interrupt which occurred either prior
to the first interrupt or subsequent to it but before the microprocessor
has reached the point where the CLI occurs, then the microprocessor will
immediately interrupt again following the CLI, go back and save registers
as defined before and come back into the polling loop. Therefore, multiple
interrupts are serviced in the order in which they are looked at in polling
sequence. Polling means that the program is asking each device individu­
ally whether or not it is the one that requested an interrupt.

It should be noted that polling has the effect of giving perfect
priority in the sense that no matter which two interrupts occur before the
microprocessor gets to service one, the polling sequence always gives
priority to the highest priority device first, then the second, then the
third, etc. In light of the fact that this polling sequence requires no
additional hardware to implement other than is available in the inter­
rupting devices themselves, this is the least expensive form of interrupt
and the one that should be used whenever possible because of its indepen­
dence from external hardware.

Although it would appear that the last interrupting device in a
sequence pays a significant time penalty based on the amount of instruc­
tions to be executed before the last device is serviced, the amount of
time to perform polls is only six cycles per device and, therefore,
the extra penalty that the last device has to pay over the first device
is 24 cycles. This is in comparison to a minimum time to cause an inter­
rupt (eight cycles), plus store time for registers (in the range of
another 8 to 13 cycles) which means that the delay to the last devices
is roughly twice what it would be for the first device.

This timing just described represents a most interesting part of the
analysis of interrupts for a microprocessor. There is a significant
amount of fixed overhead which must be paid for the interrupt. This over­
head includes the fact that the interrupts can only occur at the end of
an instruction so, therefore, if an interrupt occurs prior to the end of
an instruction, the microprocessor delays until the end of the instruction
to service it. Therefore, in doing the worst case analysis, one has to
consider the fact that the interrupt might be occurring in the middle of
a seven cycle, read/modify/write instruction which means that the worst
case time to process the first instruction in an interrupt sequence is
14 cycles (7 cycles plus the 7 cycles for the interrupt).

In light of the fact that saving of additional registers is often
required (at least the accumulator A must be saved), at least twice
the number of cycles will be required. Consequently the absolute minimum
worse case time for an interrupt is 17 cycles plus the time to transfer
data which is another 4 cycles. Therefore interrupt driven systems must
be capable of handling a delay of at least 2 0 cycles and more realistically,
20 to 50 cycles before the first interrupt is serviced. This means that
devices which are running totally interrupt driven must not require succes­
sive bytes of data to be transferred to the microprocessor in less than 30
or 40 cycles and on a given system, only one device is capable of operating
at that rate at one time. This limits the interrupt driven frequency of
data transfer to 40KHZ at a one megahertz clock system and 80KHZ on a two
megahertz clock system.

139

An even more serious problem is the timing delay when an interrupt
has just started to be serviced. The interrupt mask is on and higher
priority interrupts are blocked from service. In this case, the delay
to the service can easily stretch out to 1 0 0 cycles before the interrupt
mask is cleared. This is one of the reasons for clearing up the inter­
rupt mask as soon as data is transferred. (The non-maskable interrupt
which will be discussed later is one solution to this problem.) A second
is to only use interrupts for systems that have adequate buffering and/or
slower transfer rates. This does not imply that most microprocessor
applications should not be primarily interrupt driven. The MCS650X inter­
rupt system is designed to be very economical and easy to apply. It should
be used for almost all control applications, other than when the throughput
described is not sufficient to handle the particular problem. It should
be remembered that at one megahertz the fast MCS650X is not really capable
of handling problems with more than 50KHZ byte throughput for a sustained
period of operation. It is also true that in most control applications,
many of the signals occur at much slower rates or are bufferable so that
the response time to a request for service is significantly longer than
the 20 to 50 cycles that can normally be expected with a polling system.
Because of this, it is expected that most applications will be quite
satisfied using the polling technique described above.

9.8 FULLY VECTORED INTERRUPTS

However, there are occasions where several high speed peripherals
can be managed by the microprocessor if the user is willing to make the
investment to attain a truly vectored interrupt. There is a second level
of interrupt vectoring possible by just putting one high priority device
on the non-maskable interrupt line. However, the case when multiple
inputs are desired with both priority encoding and true vectoring, the
MCS650X when combined with appropriate hardware has the ability in the
first polling instruction to transfer control to appropriate interrupting
device service software.

140

The MCS6520 contains, in its two bytes of memory,
an indirect pointer to the address of the subroutine in which
resides the interrupt processing for the devices, which the priority
encoder has selected. This gives an effective service time of approxi­
mately 24 cycles to a prioritized interrupt and is one of the primary
applications of the jump indirect capability.

9.8.1 JMP Indirect

This instruction establishes a new value for the program counter.
It affects only the program counter in the microprocessor and affects

no flags in the status register.
JMP Indirect is a three byte instruction.
In the JMP Indirect instruction, the second and third bytes of the

instruction represent the indirect low and high bytes respectively of the
memory location containing ADL. Once ADL is fetched, the program counter is
incremented with the next memory location containing ADH.

Example 9.6: Illustration of JMP Indirect

Address Data External
Cycle Bus____ Bus ̂ Operation

1 0100 OP CODE Fetch OP CODE

Internal
Operation

Finish Previous
Operation.
Increment PC to 0101

0101 IAL Fetch IAL Interpret Instructions
Increment PC to 102

3 0 1 0 2 I AH Fetch IAH Store IAL

4 IAH, IAL ADL Fetch ADL Add 1 to IAL

5 IAH.IAL+1 ADH Fetch ADH Store ADL

6 ADH,ADL Next OP
CODE

Fetch Next
OP CODE

141

9.9 INTERRUPT SUMMARY

There is an interrupt request line (IRQ) that, when low, indicates
one of the devices which are connected to the interrupt request line
requires service. At the beginning of the interrupt service routine, the
user should save, on the stack, whatever registers will be used in his
interrupt processing routine. His program then goes through a polling
sequence to determine the interrupting device by analyzing the status
registers in the order of priority of service for the I/O devices. On
finding a device which requires service, the data for that device should
be read or written as soon as possible and the interrupt disable cleared
so that the microprocessor can interrupt again to service lower priority
devices. Devices with over 40KHz byte transfer, etc., and mixed devices
with over 20KHz should not normally be run interrupt driven. All others
should be run interrupt driven as it minimizes the service time and
programming for interrupt I/O operations. :

9.10 NON-MASKABLE INTERR UPT

As is discussed, it is often desirable to have the ability to inter­
rupt an interrupt with a high priority device which cannot afford to wait
during the time interrupts are disabled. For this reason, the MCS650X has
a second interrupt line, called a Non-Maskable Interrupt. The input
characteristics of this line are different than the interrupt request line
which senses it needs service when it remains low. The non-maskable input
is an edge sensitive input which means that when the collector-or’d input
transitions from high to low, the microprocessor sets an internal flag
such that at the beginning of the next instruction, no matter what the
status of the interrupt disable, the microprocessor performs the interrupt
sequence shown in Example 9.2 except that the vector pointer put out in
cycle 6 and 7 is FFFA and FFFB.

This gives two effects of a non-maskable interrupt. First, no
matter what the status of the interrupt disable, the non-maskable inter­
rupt will interrupt at the beginning of the next instruction, therefore,
the maximum response time to the vector point is 14 cycles. Secondly, the
internal logic of the MCS650X is such that if an interrupt request and non­
maskable interrupt occur simultaneously or if the non-maskable interrupt
occurs prior to the time that the vectors are selected, the microprocessor

142

always assigns highest priority to the non-maskable interrupt. Therefore,
the FFFA and FFFB vector are always taken if both interrupts are active
at the time the vector is selected. Thus the non-maskable interrupt is
always a higher priority fast response line, and can, in any given system
be used to give priority to the high speed device.

It is possible to connect multiple devices to the non-maskable inter­
rupt line except for the fact that the non-maskable interrupt is edge
sensitive. Therefore, the same logic that allows the IRQ to stay low until
the status has been checked and the data transferred will keep the non-mask­
able interrupt line in a low state until such time as the first interrupt
is serviced. If subsequent to the first interrupt of a non-maskable inter­
rupt line occuring, a second device which is collector-ored would have
turned on its status and collector-orfd output, the clearing of the first
interrupt request would not cause the line to re-initialize itself to the
high state and the microprocessor would ignore the second interrupt. There­
fore, multiple lines connected to the non-maskable interrupt must be careful­
ly serviced.

In any case, NMI is always one free high priority vectored interrupt.
By virtue of the fact that it goes to a different vector pointer, the
microprocessor programmer can be guaranteed that in 17 cycles he can trans­
fer data from the interrupting device on the non-maskable interrupt input.

The IRQ and NMI are lines which, externally to the microprocessor,
control the action to the microprocessor through an interrupt sequence.
As is mentioned during the discussion on the start command, the restart
cycle is a pseudo interrupt operation with a different vector being
selected for reset which has priority over both interrupt and non­
maskable interrupt. Non-maskable interrupt has priority over interrupt.
There is also a software technique which allows the user to simulate an
interrupt with a microprocessor command, BRK. It is primarily used for
causing the microprocessor to go to a halt condition or stop condition
during program debugging.

143

9.11 BRK - BREAK COMMAND

The break command causes the microprocessor to go through an inter­
rupt sequence under program control. This means that the program counter
of the second byte after the BRK is automatically stored on the stack
along with the processor status at the beginning of the break instruction.
The microprocessor then transfers control to the interrupt vector.

Symbolic notation for break is PC + 24- (FFFE)-^PCL (FFFF}->-PCH.
Other than changing the program counter, the break instruction

changes no values in either the registers or the flags.
The BRK is a single byte instruction and its addressing mode is

Implied.
As is indicated, the most typical use for the break instruction is

during program debugging. When the user decides that the particular pro­
gram is not operating correctly, he may decide to patch in the break
instruction over some code that already exists and halt the program when
it gets to that point. In order to minimize the hardware cost of the
break which is applicable only for debugging, the microprocessor makes use
of the interrupt vector point to allow the user to trap out that a break
has occurred. In order to know whether the vector was fetched in response
to an interrupt or in response to a BRK instruction, the B flag is stored
on the stack, at stack pointer plus 1 , containing a one in the break bit
position, indicating the interrupt was caused by a BRK instruction. The B
bit in the stack contains 0 if it was caused by a normal IRQ. Therefore,
the coding to analyze for this is as follows in Example 9.6.

Example 9.7: Break-Interrupt Processing

Cycles Bytes Check for A BRK Flag
4 1 PLA Load status register
3 1 PHA Restore onto Stack
2 2 AND # $ 10 Isolate B Flag
2 2 BNE BRKP Branch to Break Programming
11 6

Normal Interrupt Processing

This coding can be inserted any place in the interrupt processing
routine. During debugging, if the user can afford the execution time, it
should be placed immediately after the save routine. If not, it can be
put at the end of the polling routine which gives a priority to the
polling devices as far as servicing the interrupts. However, it should
be noted that in order not to lose the break, the returns from all inter­
rupts during debugging should go through an equivalent routine.

Once the user has determined that the break is on, a second analysis
and correction must be made. It does not operate in a normal manner of
holding the program counter pointing at the next location in memory during
the BRK instruction. Because of this, the value on the stack for the
program counter is at the break instruction plus two. If the break had
been patched over an instruction, this is usually of no significant
consequence to the user. However, if it is desired to process the next
byte after the break instruction, the use of decrement memory instructions
in the stack must be used.

It is recommended that the user normally takes care of patching
programs with break by processing a full instruction prior to returning
and then use jump returns.

An interesting characteristic about the break instruction is that it's
OP CODE is all zero's (0), therefore, BRK coding can be used to patch
fusable link PROMS through a break to an E-ROM routine which inserts patch
coding.

An example of using the break to patch with is shown below:

Example 9.8: Patching with a break utilizing PROMs

Old Code FC21 LDA
FC22 05
FC23 21
FC24 Next OP CODE

Patched
Code

FC21 BRK 00
FC22 05
FC23 21
FC24 Next OP CODE

145

Patch LDA
06
21

JMP
24
FC

This coding substitutes:

LDA 2106
for the
LDA 2105
coding at
FC21

by use of the BRK and a break processing routine.

9.12 MEMORY MAP

A series of requirements were discussed to this point for the
memory organization which can be illustrated by the following memory map:

The interrupt vector routine points to:

Hex Address
0000-00FF RAM used for zero page and indirect memory addressing

operation.
0100-01FF RAM used for stack processing and for absolute addressi
0200-3FFF Normally RAM.
4000-7FFF Normally I/O
8000-FFF9 Program storage normally ROM.
FFFA Vector low address for NMI.
FFFB Vector high address for NMI.
FFFC Vector low address for RESET.
FFFD Vector high address for RESET.
FFFE Vector low address for IRQ + BRK.
FFFF Vector high address for IRQ + BRK.

The addressing schemes for I/O control between locations 4000 and
8000 Hex, have not been fully developed. This is described in detail in
the Hardware Manual, Chapter 2. The Zero Page addressing requires that
RAM should be located starting in location 00. If more than one RAM page
is necessary, RAM location 0100 through 01FF should be reserved for the
stack or at least a portion of parts should be reserved for the stack
with the rest of it being available to the user to use as normal RAM.
Locations from 0200 up to 4000 are normally reserved for RAM expansion.

146

In small memory configurations such as are inherent in a MCS6530 class de­
vice, in order to minimize the addressing lines, page two (02XX) will be
normally used for input/output as opposed to using the 40XX page which is
used for devices which require significant amount of outboard RAM, ROM
and I/O.

Because of the fact that the MCS650X has three very important vector
points selected in highest order memory, it is usually more useful to
write programs with the memory storage located at a starting address
which allows the programmer to make sure that the last address in his
ROM contains the start and interrupt vectors. Because of these alloca­
tions, the user finds himself working in three directions. RAM is
assigned in location 0000 working up. I/O devices are started at
location 4000 starting up and ROM starts at location FFFF and works down.
Although this seems like an unusual concept, one must remember that the
hardware really only gives performance to either end of memory and,
therefore, data located in the middle has no priority one over the other.
So starting at either end is just as useful a technique as starting at one
end and working up.

In order to take maximum advantage of the capability of the micro­
processor, particularly when using a symbolic assembler, working data
should be located starting in the location 0 , and stack addresses should
be reserved until after analysis of the working storage requirements have
been completed. Program storage should start in high order memory with
some guess as to the amount of memory required being taken and that being
taken as a start address. However, care should be taken to assign the
three fixed vectors almost immediately at least symbolically as they are
all necessary for correct operation of the microprocessor.

CHAPTER 10

SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.0 DEFINITION OF SHIFT AND ROTA TE

In many cases operations of the control systems must operate a bit at
a time. Data is often available only bit-serial and sometimes sequential
bit operations are the only way to solve a particular problem. In addition
to that, in order to combine bits into a field, shift and rotate instruc­
tions are necessary. Multiply and divide routines all require the ability
to move bits relative to one another in a full multiple byte field.

The shift instruction is one that takes a register such as the
accumulator and moves all of the bits in the accumulator 1 bit to the right
or 1 bit to the left. Examples of the shift and rotate instructions in the
MCS650X are shown below:

Example 10.1: General shift and rotate

Shift Right Before

After

Shift Left Before

After

Rotate Left Before

After

B7 B6 B5 B4 B3 B2 Bl BO

0 B7 B6 B5 B4 B3 B2 Bl

Carry

BO

B7 B6 B5 B4 B3 B2 Bl BO

B6 B5 B4 B3 B2 Bl BO 0

B7 B6 B5 B4 B3 B2 Bl BO

B6 B5 B4 B3 B2 Bl BO C B7

147

As you can see from our example, moving data 1 bit to the right is
called shift right. The natural consequence of the shift right is that
the input bit or high order bit in this case is set to 0. Moving the data
in the register 1 bit to the left is called shift left. In this case, the
0 is inserted in the low order position. These are the 2 shift capabilities
that exist in the MCS650X microprocessor.

It should be noted that in both cases, the bit that is shifted from
the register, the low order bit in shift right, and the high order bit in
shift left, is stored in the carry flag. This is to allow the programmer
to test the bit by means of the carry branches that are available and also
to allow the rotate capability to transfer bits in multiple precision
shifts.

The second part of the multiple precision shift instruction is the
rotate which is shown in Example 10.1, in which the value of the carry bit
becomes the low order bit of the register, and the output bit from the shift
is stored in carry.

10.1 LSR - LOGICAL SHIFT RIGHT

This instruction shifts either the accumulator or a specified memory
location 1 bit to the right, with the higher bit of the result always being
set to 0 , and the low bit which is shifted out of the field being stored
in the carry' flag. B7 BO

The symbolic notation for LSR is Q -► -- 1̂ C~|

The shift right instruction either affects the accumulator by shift­
ing it right 1 or is a read/modify/write instruction which changes a speci­
fied memory location but does not affect any internal registers. The shift
right does not affect the overflow flag. The N flag is always reset. The
Z flag is set if the result of the shift is 0 and reset otherwise. The
carry is set equal to bit 0 of the input.

LSR is a read/write/modify instruction and has the following address­
ing modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.

148

10.2 ASL - ARITHMETIC SHIFT LEFT

The shift left instruction shifts either the accumulator or the ad­
dress memory location 1 bit to the left, with the bit 0 always being set
to 0 and the bit 7 output always being contained in the carry flag. ASL
either shifts the accumulator left 1 bit or is a read/modify/write instruc­
tion that affects only memory. 3 7 3 0

The symbolic notation for ASL is C

The instruction does not affect the overflow bit, sets N equal to the
result bit 7 (bit 6 in the input), sets Z flag if the result is equal to
0, otherwise resets Z and stores the input bit 7 in the carry flag.

ASL is a read/modify/write instruction and has the following address­
ing modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X

10.3 ROL - ROTATELEFT

The rotate left instruction shifts either the accumulator or addressed
memory left 1 bit, with the input carry being stored in bit 0 and with the
input bit 7 being stored in the carry flags.

The symbolic notation for ROL is ^ B̂/̂ B̂0

The ROL instruction either shifts the accumulator left 1 bit and
stores the carry in accumulator bit 0 or does not affect the internal reg­
isters at all. The ROL instruction sets carry equal to the input bit 7,
sets N equal to the input bit 6 , sets the Z flag if the result of the ro­
tate is 0, otherwise it resets Z and does not affect the overflow flag at
all.

ROL is a read/modify/write instruction and it has the following address­
ing modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.

149

10.4 ROR - ROTATE RIGHT (Available on Microprocessors after June, 1976)

The rotate right instruction shifts either the accumulator or addressied
memory right 1 bit with bit 0 shifted into the carry and carry shifted into
bit 7.

The symbolic notation for ROR is
B7 B0

c
The ROR instruction either shifts the accumulator right 1 bit and

stores the carry in accumulator bit 7 or does not affect the internal regis­
ters at all. The ROR instruction sets carry equal to input bit 0, sets N
equal to the input carry and sets the Z flag if the result of the rotate is 0
otherwise it resets Z and does not affect the overflow flag at all.

ROR is a read/modify/write instruction and it has the following address­
ing modes: Accumulator; Zero Page; Absolute; Zero Page,X; Absolute,X.

10.5 ACCUMULATOR MODE ADDRESSING

As indicated, all of the shift instructions can operate on the accumu­
lator. This is a special addressing mode that is unique to the shift in­
structions and operates with the following set of operations:

Example 10.2: Rotate accumulator left

Cycles Address Bus Data Bus

100

101

101

102

OP CODE

Next
OP CODE

Next
OP CODE

External
Operation

Fetch Next
OP CODE

Fetch Dis­
carded OP CODE

Fetch Next
OP CODE
Fetch Second
Byte

Internal
Operation

Finish Previous
Operation; Increment
PC to 101
Decode Current In­
struction; Hold P-
Counter
Shift Through the
Adder
Store Results into A;
Interpret Next OP CODE

As we can see, the accumulator instructions have the same effect as
the single-byte non-stack instructions in the sense that the instruction con­
tains both the OP CODE and the register in which the operations are going
to be performed; therefore, in cycle 2 , the microprocessor holds the pro-

150

gram counter and in cycle 3, fetches the same program counter location and
starts the next instruction operation. At the same time, it is transferring
the results from the adder into the accumulator; this is because of the look­
ahead and pipelining characteristics of the MCS650X. - The accumulator shift
and rotate operations take only 2 cycles and 1 byte of memory.

10.6 READ/MODIFY/WRITE INSTRUCTIONS

The MCS650X has a series of instructions which allow the user to
change the contents of memory directly with a single instruction. These
instructions include all of the shift, rotate, increment and decrement mem­
ory instructions. The operation of each of these instructions is the same
in that the addressing mode that is defined for the instruction is imple­
mented the same way as if for normal instructions. After the address has
been calculated, the effective address is used to read the memory location
into the microprocessor arithmetic unit (ALU). The ALU performs the opera­
tion and then the same effective address is used to write the results back
into memory. The most difficult operation is the addressing mode Absolute
Indexed which is illustrated in Example 10.3 for the rotate left instruc­
tion, ROL:

Example 10.3: Rotate memory left Absolute»X

Cycles

1

Address Bus Data Bus

3

4

5

6

7

8

100

101

102

ADH, ADL + X

ADH + C,
ADL + X
ADH + C,
ADL + X
ADH + C,
ADL + X
103

OP CODE

ADL

ADH

Data

Shifted
Data
OP CODE

External
Operation

Fetch
OP CODE

Fetch ADL

Fetch ADH

False Read

Fetch Value

Destroy
Memory
Store
Results
Fetch Next
OP CODE

Internal
Operation

Finish Previous
Operation, Incre­
ment PC to 101
Decode Current In­
struction, Increment
PC to 102
Add ADL + X, Incre­
ment PC to 103
Add Carry from
Previous Add to ADH

Perform Rotate,
Turn on Write
Set Flags

Increment PC to 104

151

Cycle 4 is a wasted cycle because read/modify/write instruction should
wait until the carry had been added to the address high in order to avoid
writing a false memory location. This is the same logic that is used in
the store instruction in which the look-ahead or the short cut addressing
mode is not taken advantage of. Cycle 4 is an intermediate read, and
cycle 5 is when the actual data that is going to be operated on is read.

The address lines now hold at that address for cycles 5, 6 and 7. The
microprocessor signals both itself and the outside world those operations
during which it will not recognize the ready line. It does this by pulling
the Write line. The Write line is pulifed^in cycle 6 because data is writ­
ten into the memory location that is going to be written into again in
cycle 7 with correct data.

Because data bits read from memory have to be modified and returned,
there is no pipelining effect other than the overlap of the adding in the
address low and index register. The 7 cycles it takes to perform read/
modify/write Absolute Indexed,X instruction is the worst case in timing
for any section of the machine except for interrupt. This unique ability
to modify memory directly is perhaps best illustrated by the coding in
Example 10.4 which is used to shift a 4-bit BCD number, which has been
accumulated in the high 4 bits of the accumulator as part of the decoding
operation, from the accumulator; into a memory field. Figure 10.1 is a
flow chart of this example. Examples such as this often occur in point-
of-sale terminals and other machines in which BCD data is entered sequen­
tially. This example assumes that the value is keyboard entered, through
which data is entered into the accumulator from left to right but has to
be shifted into memory from right to left. The value in the field before
the shift is a 1729 which after the shift will be a 17,295.

152

Flow Chart for Moving in a New BCD Number
FIGURE 10.1

153

Example 10.4: Move a new BCD number Into field

Before After

Field 00 00
00 01
17 72
29 95

Accumulator 50 00

Coding

Bytes Instruction

2 LDY 4
2 LOOP-2 LDX 4 Set Up for 4 mOVeS
1 ASL^
3 LOOP-1 R O L W i c e -1, X
1 DEX shift the field 1 bit
2 BNE LOOP-1
1 DEY shifts four times.

_2 BNE LOOP-2
14 bytes

There are several new concepts introduced in this example; the first
is the use of index register Y as just a counter to count the number of
times the character has been bit-shifted. It is a common approach to use
bit shifts, as is implemented in the MCS650X family, to shift data into
memory. The power of being able to communicate directly in memory is shown
by shifting bits from one byte to the next byte using a single ROL indexed
instruction. This example uses a loop within a loop and it should be
noted that LOOP 1 occurs 4 times for every time LOOP 2 occurs. The in­
ternal loop is very important in the sense that this loop executes 16
times for the problem; therefore, its execution time should be optimized.

In addition to having the ability to shift and rotate memory, the
MCS650X has the ability to increment and decrement memory locations.

154

10.7 INC - INCREMENT MEMORY B Y ONE

This instruction adds 1 to the contents of the addressed memory loca­
tion.

The symbolic notation is M + 1 -*■ M. .
The increment memory instruction does not affect any internal registers

and does not affect the carry or overflow flags. If bit 7 is on as the
result of the increment, N is set, otherwise it is reset; if the increment
causes the result to become 0, the Z flag is set on, otherwise it is reset.

The addressing modes for increment are: Zero Page; Zero Page,X; Abso­
lute; Absolute,X.

10.8 DEC - DECREMENT MEMORY B Y ONE

This instruction subtracts 1, in two's complement, from the contents
of the addressed memory location.

Symbolic notation for this instruction is M - 1 -* M.
The decrement instruction does not affect any internal register in the#

microprocessor. It does not affect the carry or overflow flags. If bit 7
is on as a result of the decrement, then the N flag is set, otherwise it
is reset. If the result of the decrement is 0, the Z flag is set, other­
wise it is reset.

The addressing modes for decrement are: Zero Page; Zero Page,X;
Absolute; Absolute,X.

In many examples through the report, we have used the ability to incre­
ment and decrement registers in the microprocessors. The advantages of
incrementing and decrementing in memory are that it is possible to keep
externail counters or to directly influence a bit value by means of these
instructions. It is sometimes useful during I/O instructions.

10.9 GENERAL NOTE ON READ/MODIFY/WRITE INSTRUCTIONS
The ability to read, modify and write memory is unique to MCS6500

class microprocessors. The usefulness of the instructions is limited only
by the user's approach to organizing memory. Even though the instructions
are fairly long in execution, they are significantly shorter than having
to load and save other registers to perform the same function. Experience
in organizing programs to take advantage of this manipulation of memory
will allow the user to fully appreciate the power of these instructions.

155

i e

CHAPTER 11
PERIPHERAL PROGRAMMING

11.0 REVIEW OFMCS6520 FOR I/O OPERATIONS

It should be noted that in the following discussions, the major
difference between the MCS6530 I/O and the main register of the MCS6520
is that the extra bit in the control register need not be used in the
MCS6530. All registers in the HCS6530 are directly addressable.

Example 11.1: The MCS6520 Register Map

PI AD
PI AC
PIBD
PIBC

A = Base Address

1-------------- 1, A DATA DIRECT-|
1 ION (AD) l
i 1

l~B DATA DIRECT-!
| ION (BD) J i 1

* =
* =

* + 1
* + 1

1 1
1___________ _ J
A DATA (AD)

i 1
1______________ J
B DATA (BD)

* =
* —

* + 1
*4-1

A CONTROL (AC) B CONTROL (BC)

A SIDE B SIDE

In Example 11.1 a programming form to describe the PIA is shown.
The programming form is used in the Cross-Assembler and Resident
Assembler with the MCS650X product family. The notation * = is used
to define any location. The notation means that the assembler instruct­
ion counter is set equal to the value following the equal sign. The
expression * = * + 1 causes the assembler to recognize that there is
one byte of memory associated with the term; therefore, we can see
that the definition of the four registers PIAD, PIAC, PIBD and PIBC
are consecutive memory locations starting at some base address, with

156

the first byte addressed as PIAD, the second byte addressed as PIAC, the
third byte addressed as PIBD, and the fourth byte as PIBC. This is
a normal way a MCS6520 would be organized and this is the way the
programming form should be set up. The base address is picked up by
an algorithm described in the hardware manual but normally it is a
value between 4004 and 4080 Hex. Each MCS6520 is given a base address
which works progressively up from 4004 Hex.

In Example 11.1 two registers are shown in dotted lines. This is
because each of the A DATA (AD) and B DATA (BD) parts of the MCS6520
are actually two registers having the same address, one which specifies
the direction of each of the input/output paths (the Data Direction
Register), the second one which is actually the connection to the in­
put/output paths (the Data Register). Because of pin limitations on
the MCS6520, the microprocessor can only directly address one of the
registers at a time. Differentiation as to which register is being con­
nected to the microprocessor is a function of bit 2 in the respective
control register (AC and BC). If bit 2 is off, the Data Direction Reg­
ister is being addressed; if it is on, the Data Register is being ad­
dressed .

During the initialization sequence, therefore, the MCS6520 starts
out with all registers at zero. This means that the microprocessor is
addressing the Data Direction Register. The PIA initialization is done
by writing the direction of the pins into the Data Direction Register
CAD, BD) and then setting on the control flag as described below. After
that, the program will normally be dealing with the data registers.

Example 11.2: General PIA Initialization

LDA # DIRECT
STA PIAD Initialize Direction

LDA # CONTR
STA PIAC Initialize Control

157

Example 11.2 illustrates a general form of initialization and can
be completed for as many PIA's as there are in the system.

11.1 MCS6520 INTERRUPT CONTROL

The MCS6520 has a basic interrupt capability which is under control
of the programmer. Almost all MCS6500 I/O devices that allow interrupts
have an interrupt control register that allows the user to disable the
interrupt. This will keep inputs which are not necessarily active from
causing spurious interrupts which must be handled by the microprocessor.
Examples of this are open tape loops or other signals which have high
impedance noise sensitive inputs except when connected to some kind of
media. In this type of application, normally the interrupt is enabled
by some physical action from the person using the device such as load­
ing of; the cassette, pushing the power-on switch, etc. In the case of
the MCS6520, there are two interrupt causing conditions for each
control register.

Each of these interrupts concern themselves with one input pin.
The Control Register allows the programmer to decide whether or not the
pin is sensitive to positive edge signals or negative edge signals and
whether or not an interrupt shall occur when the- selected transition
has occurred.

It should be noted that, therefore, it is possible for a line to
cause a status bit to be set without causing an interrupt. The com­
prehensive I/O Program in Section 11.5 uses this combination.

158

Example 11.3: Interrupt Mode Setup
Bit 7 Status Bit: Bits 1 0 Interrupt
Set on Negative Edge 0 0 No
Set on Negative Edge 0 1 Yes
Set on Positive Edge 1 0 No
Set on Positive Edge 1 1 Yes
Bit 6 Status Bit: Bits A 3* Interrupt
Set on Negative Edge 0 0 No
Set on Negative Edge 0 1 Yes
Set on Positive Edge 1 0 No
Set on Positive Edge 1 1 Yes

*if bit 5 equals zero

The proper combination of bits are usually determined during the
design of the MCS6520 interconnection and form the constant which
is loaded in the control register. The constant that is loaded in
the control register should contain bit 2 on. For example, to allow
bit 7 to be set on negative going signals with interrupt enable and
bit 6 to be set on positive signals with Interrupt disable, the
control value would be Hex 15.

With bit 5 on, the pin that controls bit 6 can be set as an
output pin. The output pin is either controllable by the microprocessor
directly or acts as a handshake to reflect the status of reads and
writes of the data register. The operation of the output pins CA2, CB2
depends on how bits 5, A, and 3 are programmed, as shown in Example 11.A.

Example 11.A; CA2, CB2 Output Control
CA2 Output With:

Low on read or write until
bit 7 on

Low on read or write for
one cycle

Bit 5 on
Bit A

0

0

Bit 3

0
1

Always 0

Always 1

1

1
0

1

159

The decision as to whether or not to use the one cycle low until
bit 7 comes on is a hardware decision, depending on the device which
is hooked to the pin.

It should be of interest to the programmer to note that bit 6 con­
trols pins known as CA2 or CB2 which can be considered to be auxiliary
outputs which are controlled by bit 3 assuming the processor is
initialized so that bit 5 and bit 4 are ones.

Example 11.5 shows the use of controlling bit 3 using AND and
OR instructions; however, it should be noted that this technique
applies for any individual bit in the PIA data direction register also:

Example 11.5: Routine to Change CA2 or CB2 Using Bit 3 Control

Set CA2
LDA PIAC
ORA #$08
STA PIAC
Clear CA2
LDA PIAC
AND #$F7
STA PIAC
Note: $ - Direction to Assembler for Hex Notation

- Direction to Assembler for Production Operator

By similar techniques, every pin in the microprocessors of the
MCS6520 can be controlled. There are two particular notes to remember:

1. In the MCS6520, both bit 6 and bit 7 are cleared on either
side by reading of the corresponding data register if bit 6 has
been set up as an input. This means that polling sequences
for I/O instructions should only read the status registers and
then read the data registers after the status has been determined,
otherwise false clearing of the status data may occur.

2. Even though the handshake for the CB2 pin is on write of B
data, a read of B data must be done to clear bit 7.

160

11.2 IMPLEMENTATION TRICKS FOR USE OF THEMCS6520 PERIPHERAL
INTERFACE DEVICES

11.2.1 Shortcut Polling Sequences

In section 9.7, the techniques for using a LOAD A to poll for
interrupts was covered; however, the I/O devices on the MCS6520
can either set bit 6 or bit 7 on to cause an interrupt; therefore,
a different technique needs to be used to analyze the MCS6520 to ,
poll a series of 6520's each one of which could have caused the
interrupt. It is for this purpose that the BIT instruction senses
both bit 6 and bit 7. Coding for a full poll of a PIA is as
shown:

Example 11.6: Polling the MCS6520

Interrupt Vector JMP STORE
LDA #C0
BIT PIAAC
BEQ NXT1
BMI SEVEN

Process BIT
6 INTERRUPT

NXTI BIT PIABC
BEQ NXTZ

etc.

This program takes full advantage of the BIT instruction by
checking for both bit 7 and 6 clear. BMI to SEVEN just checks N is
on and that N is a higher priority. If bit 6 is one, the overflow
bit will also be set, allowing the finish of the process seven
routine to test the overflow and jump back to the process bit 6

coding.

Set up Mask for 6 and 7
Check for neither 6 or 7

If 7, go to save—
otherwise clear

161

Bit 6 and bit 7 were sampled by the single BIT instruction.
Speed was accomplished by loading the mask for just bit 6 and 7 into
the register which allows the BEQ instruction to determine that
neither of the two flags is on.

This routine depends on the fact that in the MCS6520, if
CA2 or CB2 is an output, bit 6 is always zero.

11.2.2 Bit Organization on MCS6520's

In the microprocessor, there is a definite positional pref­
erence for the testing of single bits. In the MCS6520 Data Direct­
ion Register, it is possible to select any combinations of input/
output pins by the pattern that is loaded in the Data Direction
Register. A one bit corresponds to an output and a zero bit
corresponds to an input. The natural tendency would be to use
MCS6520s with all eight bits organized into a byte. There is
relatively little advantage to organizing this way unless the
eight bits are to be treated as a single byte by the program. This
is often not the case, more often the bits are a collection of
switches, coils, lights, etc.

On such combinations, advantage should be taken of the fact
that bit 7 is directly testable so that a more useful combination
of eight pins on one MCS6520 register would be seven outputs and
a single input with the single input on bit 7. This organization
allows the programmer to load and branch on that location without
ever having to perform a bit or shift instruction to isolate a
particular bit.

A similar,- capability -for setting a single bit involves the
organization of data with seven inputs and a single output with a
single output located in bit 0. This bit may be set or cleared by
an INC or DEC instruction without affecting the rest of the bits
in the register because the input pins ignore signals written from
the microprocessor. Therefore, the more skilled MCS6500 programmer
will often mix single outputs on bit 0 and a single input on bit 7
with bits of the corresponding opposite type.

162

11.2.3 Use of READ/MODIFY/WRITE Instruction For Keyboard Encoding

A rather unique use of the memory with a READ/MODIFY/WRITE
operation involves setting the data register at all zeros, then
using the three state output of the B side to sample a keyboard.
The following Figure 11.1 shows the connection for a 64 key key­
board organized 8 x 8 :

B Side BD

8 x 8 Switch
Decode
Matrix

\ V V 1

\ ►

y * *_t i_t
AD

A SIDE

Keyboard Encoding Matrix Diagram
FIGURE 11.1

163

The B side is set up to act as a strobe so that each of
the output lines will have a ground on it during one scan cycle.
The eight A side data inputs are then sampled and decoded by the
microprocessor giving a 64 key keyboard which is directly trans­
latable into code.

Figure 11.1 and Example 11.7 make use of the capability
of the microprocessor to move a bit through the MCS6520 register
location. This program also uses the compare instruction and the
ability to detect a carry during a shift.

Example 11.7: Coding for Strobing an 8 x 8 Keyboard

Output Strobe is indicated by a one in Data Director Register.
Any connection is indicated by a zero in register bit.

LDX itO
STX PIABD
LDA PIABC
AND //FB
STA PIABC
STX PIABC
SEC Set low end bit on

LOOP ROL PIABD
BCS DONE
LDA PIAAD
CMP //FF
BEQ LOOP

DONE ------

Initialize B Data Register

Initialize Control Register to
Address Data Direction Register

Shift for Strobe
if all sampled, exit
Check for no zeros

If any zeros, then process them.

A and PIABD can now be used to find out just what key is
depressed.

Done

Then process Accmulator
for Zero Bits

Keyboard. S tro b e Seq uen ce
F IG U R E 11 .2

Initialize
For

S trobing

165

11.3 MCS6530 PROGRAMMING

Although they have separate addressing, the Data Direction and
Input/Output Registers operate the same as on the MCS6520.

Programming of the Interval Timer has some special problems.
First of all, the time is effectively located in all addresses from
XXX4-XXXF. By picking the proper address, the programmer is able to
control the P scale for the timeout. Initialization of the Interval
Timer is done by a LOAD A followed by STORE A into the timing count.
The value stored in the timing counter represents the number of states
which the counter will count through. The address used to load will
determine how many additional divisions of the basic clock cycle will
be counted.

When the counter finally counts to zero, it continues to count
past zero at the one cycle clock rate in order to give the user an
opportunity to sample the Status Register, then come back and read
the Count Register to determine how long it has been since an
interrupt occurred..

Servicing an interrupt is the same for this Control Register as
for any other interrupting register. Bit 7 is set on in the Status
Register to indicate that the Interval Timer is in the interrupt
state and bit 7 is reset by the reading of the Counter.

11.3.1 Reading of the Counter Register

Because of the nature of counting past zero, the number
in the Count Register is in two's complement form. It can be
added directly to and used to correct the next count in a
sequential string of counts or for correction for one cycle
accuracy.

114 HOWTO ORGANIZE TO IMPLEMENT CODING

The specific details of organizing to get coding assembled is a
function of the software that is used to implement the coding. Two
software programs are currently available for the MCS650X family.

The Cross Assembler is available on various time share systems
or for batch use on the user's system. Its documentation is covered in

166

the Cross-Assemble*r Manual, publication number 6500-60. The Resident
Assembler is available in the Microcomputer Development Terminal,
as well as for sale in ROMs. The documentation for this is covered in
the Resident Assembler Manual, publication number 6500-65.

The major advantages of using an assembler are that the assembler
takes mnemonics and labels and calculates the fixed code. Reference
to the OP CODE tables in the appendix shows that coding in Hex is
quite difficult because there is no ordered pattern to the instruction
Hex codes.

The Cross Assembler or Resident Assembler allows one to specify all
inputs and outputs in symbolic form on a documented listing. Symbolic
addressing is a technique which has the following advantages over
numerical addressing:

1. It allows the user to postpone until the last minute actual
memory allocation in a program which is being developed. In
a microprocessor that has memory-oriented features such as
Zero Page, memory management is important. It is desirable
to have as many as possible of the read/write values in the
Zero Page. However, until the coding is complete, the organi­
zation of Zero Page may be in doubt. Values which are
originally assigned in Zero Page may not be as valuable there
after some analysis of the coding either indicates that the
applications of these values use indirect references or index­
ing by Y which does not allow the program to really take
advantage of Zero Page locations whereas some other code
which may not be as frequently used might still result in a
code reduction by use of Zero Page. This allocation, if all
the fields are defined symbolically, can be done on the
final assembly without any changing in the user's codes.

2. Use of symbolic addresses for programming branches leads to
a better documented program and as one soon determines
calculation of relative branches is difficult and subject

167

to change any time a coding change is made. For example,
if one has organized a program with a loop in which three
or four branches all return to the same point and then
discovers a programming error which requires a single
instruction to be added between the return point and
various branches, each branch would have to be edited
and recalculated. The symbolic assembler accomplishes
this automatically on the next assembly pass.

11.4.1 Label Standards

The MCS650X assemblers have been done on a reserve word
basis in which the various mnemonics which have been described
are always considered to be OP CODE mnemonics. If any three
character fields exactly match a mnemonic then the assembler
assumes that the field is an OP CODE and proceeds to evaluate
the addressing. Any other label may be located in free form
anywhere in the coding. This means that one should organize
one's labels such that he never has a three character label
which inadvertently might be considered an OP CODE. The easiest
way to accomplish this is to always follow a pattern on labels.

Good programming practice requires that the user develop
a systems flow chart for his own basic program and individual
flow charts for subroutines before starting the coding. From
the time the routine is flow charted, it is very easy for the
user to then assign a mnemonic label to the basic subroutine.

In this text, notations like LOOP, LOOP 1, etc. are used.
In an ADD, loop would be ADLP.

The MCS650X assembler allows six spaces for
labels. It is good practice to use two characters to generally
identify the subroutine, two more characters for mnemonic purposes
and then a numbering system which allows correlation between
various addresses within a LOOP within a subroutine. By strictly
numbering such that ADLP1 is different from ADLP3, each
can be addresses within the same LOOP.

168

It is assumed that the PIA's are connected in the normal manner
of Status Register Address equal to Data Register Address + 1.

The following table and flow chart defines the program implemented
in the example.

Table #1 contains the address of all of the MCS6520 Status Registers.

Table #2 contains the address of the put-away location for the
respective data.

Table #1 PIA #1

PIA #1 ADL

ADH

Table #2 List

ADL Value 1
Value 2

ADH Value 3
etc.

169

Using six character labels, there are a hundred com­
binations of code which could be used in a given routine or
loop without the user having to think through the rest of
mnemonic notation. The use of characters plus a numeric for
all references is sound programming practice. The advantage
of using this technique allows one to use three character
mnemonics without ever interfering with the reserve word of
the microprocessor OP CODE mnemonics because they never have a
numeric in the mnemonic.

11.5 COMPREHENSIVE I/O PROGRAM

Figure 11.3 demonstrates the program flow in support of the Cross-
Assembler listing (Example 11.9) of a time-sharing routine of a program
which illustrates the use of the indexed indirect to perform a search of
eight devices which have active signals for servicing. The implementa­
tion of the eight devices is done in MCS6520's where the MCS6520 status
is set up to be a flag in bit 7 of a Control Register.

Initialize Index to End of Table

\
Fetch Next Status Register

Decrement X by 2

Program Flow - Polling for Active Signal
FIGURE 11.3

171

Example 11.8: Polling for Active Signal

CARD = LOC
3

CODE CARD
CARD S E R IA L NUM BER

AH SYSTEMS BENCHMARK ■

- m e m o r y l o c a t io n

POLLING 8 PERIPHERALS

SET TABLES AND STORAGE AREAS
10
11
12

(0000)
0002 05 40 TABLEI

*=$02
.WORD PIA1AC

13 0004 07 40 .WORD PIA1BC
14 0006 09 40 .WORD PIA2AC
15 0008 OB 40 .WORD PIA2BC
16 000A 11 40 .WORD PIA3AC
17 OOOC 13 40 .WORD PIA3BC
18 000E 21 40 .WORD PIA4AC
19 0010 23 40 .WORD PIA4BC
20 0012 00 02 TABLE2 .WORD STORE1
21 0014 50 02 .WORD STORE2
22 0016 AO 02 .WORD STORE3
23 0018 FO 02 •WORD STORE4
24 001A 40 03 .WORD STORE5
25 '001C 90 03 .WORD ST0RE6
26 00 IE EO 03 .WORD STORE7
27 0020 30 04 .WORD STORES
28
29
30

0022
0200 STORE1

*=$200
=+80

31 0250 STORE2 *=*+80
32 02A0 STORE3 *=*+80
33 02F0 STORE4 *-*+80
34 0340 STORE5 *=*+80
35 0390 STORE6 *=*+80
36 03E0 STORE7 *=*+80
37 0430 STORES *=*+80
38
39
40
41
42 0480

MAIN PROGRAM

(*=$FC00)

INITIALIZE PC_________________ y
(TABLE OF PIA PERIPHERAL CONTROL)

POINTERS TO STORE INPUT DATA FROM PERIPHERALS

SET SPACE FOR DATA INPUT ON PAGE 2
FOR EACH DEVICE SET BUFFER 80 CHARACTERS LONG

•PROGRAM l o c a t io n

43 FCOO
^OPCODE ■eLABEL

■—y (PLOPl) LDX *016 INITIALIZE INDEX REGISTER X WITH 16
44 FC02 A l @ PLOP2 LDA (TABLE1-2.X) INDIRECT ADDRESSING OF PERIPHERAL CONTROL
45 FC04 30 06 \ VALUE BMI DOIT IF FLAG SET BRANCH AND SERVICE THE DEVICE
46 FC06 CA \ (PEX)------ \ IF NOT SEARCH NEXT ONE
47
48

FCO?
FC08

CA
DO F8

\ OEX_____ \ __
ADORESS BNEfPL0P2^— \ -m n em o n ic

49 FCOA FO F4 BEQ PLOPl START AGAIN TO POLL FROM THE BEGINNING
50
51 SERVICE ROUTINE '^—SYMBOLIC AD DRESS
52
53 FCOC D6 00 DOIT DEO TABLE1-2.X MOVE THE POINTER TO PIA DATA REGISTER
54 FCOE A1 00 LDA (TABLE1-2,X) READ DATA IN
55 FClO 81 10 STA (TABLE2-2,X) STORE THE DATA INTO THE BUFFER
56 FC12 F6 10 INC TABLE2-2.X SET BUFFER POINTER TO NEXT LOCATION
57 FC14 F6 00 INC TABLE1-2,X
58 FC16 DO E8 8NE PLOPl WHEN DONE START FROM BEGINNINC ACAIN
59
60
61 ASS1CN PIA LOCATION
62
63 FC18 *-$4004
64 4004 PIA1AD *-*+1 FIRST PERIPHERAL
65 4005 PIA1AC *-*+1
66 4006 PIA1BD *-*+1 SECOND
67 4007 PIA1BC *-*+1
68 4008 *-$4008
69 4008 PIA2AD *-*+1 THIRD
70 4009 PIA2AC *-*+1
71 400A PIA2BD *-*+1 FOURTH
72 400B PIA2BC *=*+1
73 400C *-$4010
74 4010 PIA3AD *-*+1 FIFTH
75 4011 PIA3AC *-*+L
76 4012 PIA3BD *-*+1 SIXTH
77 4013 PIA3BC *-*+1
78 4014 *-$4020
75 4020 PIA4AD *-*+1 SEVENTH
80 4021 PIA4AC *-*+1
81 4022 PIA4BD *-*+1 EICHTH
82 4023 PIA4BC *-*+1
83 .END END OF PROGRAM

172

APPENDIX A

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

DEFINITION OF

INSTRUCTION GROUPS

A-1

MC
S6

501
-M

CS
650

S
MI

CR
OP

RO
CE

SSO
R

INS
TR

UC
TIO

N
SET

 -
AL

PH
AB

ET
IC

SE
QU

EN
CE

The microprocessor instruction set is divided into three basic groups.
The first group has the greatest addressing flexibility and consists of
the most general purpose instructions silch as Load, Add, Store, etc.
The second group includes the Read, Modijfy, Write instructions such as
Shift, Increment, Decrement and the Register X movement instructions. The
third group contains all the remaining instructions, including all stack
operations, the register Y, compares for1 X and Y and instructions which do
not fit naturally into Group One or Groî p Two.

There are eight Group One instructi|ons, eight Group Two instructions,
and all of the 39 remaining instructions! are Group Three instructions.

The three groups are obtained by organizing the OP CODE pattern to
give maximum addressing flexibility (16 addressing combinations) to Group
One,to give eight combinations to Group Two instructions and the Group
Three instructions are basically individually decoded.

A.2 GROUP ONE INSTRUCTIONS

These instructions are: Add With Cjarry (ADC), (AND), Compare (CMP),
Exclusive Or (EOR) , Load A (LDA) , Or (OR|A) , Subtract With Carry (SBC) , and
Store A (STA). Each of these instructions has a potential for 16 addressing
modes. However, in the MCS6501 through MCS6505, only eight of the available
modes have been used.

Addressing modes for Group One are: Immediate, Zero Page, Zero Page
Indexed by X, Absolute, Absolute Indexed! by X, Absolute Indexed by Y,
Indexed Indirect, Indirect Indexed. Thei unused eight addressing modes are
to be used in future versions of the MCS|650X product family to allow
addressing of additional on-chip registeirs, of on-chip I/O ports, and to
allow two byte word processing.

A .l INTRODUCTION

Group Two instructions are primarily Read, Modify, Write instructions.
There are really two subcategories within the Group Two instructions.
The components of the first group are shift and rotate instructions and
are: Shift Right (LSR), Shift Left (ASL), Rotate Left (ROL), and Rotate
Right (ROR).

The second subgroup includes the Increment (INC) and Decrement (DEC)
instructions and the two index register X instructions, Load X (LDX) and
Store X (STX). These instructions would normally have eight addressing
modes available to them because of the bit pattern. However, to allow
for upward expansion, only the following addressing modes have been de­
fined: Zero Page, Zero Page Indexed by X, Absolute, Absolute Indexed
by X, and a special Accumulator (or Register) mode. The four shift in­
structions all have register A operations; the incremented or decremented
Load X and Store X instructions also have accumulator modes although the
Increment and Decrement Accumulator has been reserved for other purposes.
Load X from A has been assigned its own mnemonic, TAX. Also included in
this group are the special functions of Decrement X which is one of the
special cases of Store X. Included also in this group in the X decodes
are the TXS and TSX instructions.

All Group One instructions have all addressing modes available to
each instruction. In the case of Group Two instructions, another address­
ing mode has been added; that of the accumulator and the other special de­
codes have also been implemented in this basic group. However, the primary
function of Group Two instructions is to perform some memory operation using
the appropriate index.

It should be noted for documentation purposes that the X instructions
have a special mode of addressing in which register Y is used for all in­
dexing operations; thus, instead of Zero Page Indexed by X, X instructions
have Zero Page Indexed by Y, and instead of having Absolute Indexed by X,
X instructions have Absolute Indexed by Y.

A. 3 GROUP TWO INSTRUCTIONS

A-4

There are really two major classifications of Group Three in­
structions; the modify Y register instructions, Load Y (LDY), Store Y
(STY) , Compare Y (CPY) , and Compare X (cj?X) , instructions actually
occupy about half of the OP CODE space ft>r the Group Three instructions.
Increment X (INX) and Increment Y (INY) £re special subsets of the Compare X
and Compare Y instructions and all of th£ branch instructions are in the
Group Three instructions.

Instructions in this group consist <t>f all of the branches: BCC, BCS,
BEQ, BMI, BNE, BPL, BPC and BPS. All of the flag operations are also de­
voted to one addressing mode; they are: CLC, SEC, CLD, SED, CLI, SEI and
CLV. All of the push and pull instructions and stack operation instructions
are Group Three instructions. These include: BRK, JSR, PHA, PHP, PLA and
PLP. The JMP and BIT instructions are also included in this group. There
is no common addressing mode available t0 members of this group. Load Y,
Store Y, BIT, Compare X and Compare Y haijre Zero Page and Absolute, and all
of the Y and X instructions allow Zero P^ge Indexed operations and Immediate.

A.4 GROUP THREE INSTRUCTIONS

APPENDIX B

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

WITH OP CODES, EXECUTION CYCLES

AND MEMORY REQUIREMENTS

B-1

The following notation applies to this summary:

A Accumulator
X, Y Index Registers
M Memory
P Processor Status Register
S Stack Pointer
J Change
_ No Change
+ Add
A Logical AND

Subtract
¥ Logical Exclusive Or
+ Transfer from Stack
+ Transfer to Stack
-*■ Transfer to

Transfer to
V Logical OR
PC Program Counter
PCH Program Counter High
PCL Program Counter Low
OPER OPERAND
// IMMEDIATE ADDRESSING MODE

Note: At the top of each table is located in parentheses a
reference number (Ref: XX) which directs the user to
that Section in the MCS6500 Microcomputer Family
Programming Manual in which the instruction is defined
and discussed.

B-2

Operation: A + H + C + A, C N 2 - C I D V
/ / / ___/(Ref: 2.2.1)

A D C A dd memory to accumulator with carry ADC

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate ADC # Oper 69 2 2

Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 4*
Absolute, Y ADC Oper, Y 79 3 4*
(Indirect, X) ADC (Oper, X) 61 2 6

(Indirect), Y ADC (Oper), Y 71 2 5*

* Add 1 if page boundary is crossed.

AND " A N D ” m em o ry w ith accum ula tor AND
Logical AND to the accumulator
Operation: A A H - > A N Z C I D V

(Ref: 2.2.3.0) / / -------

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate AND # Oper 29 2 2

Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4*
Absolute, Y AND Oper, Y 39 3 4*
(Indirect, X) AND (Oper, X) 2 1 2 6

(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 if page boundary is crossed.

B-3

ASL
Operation: C

ASL Shift L eft One Bit |M em ory or Accumulator)

-0

ASL
7 6 5 4 3 2 1 0 N * C I D V

y / / --------

(Ref: 10.2)
Addressing
Mode

Assembly Lknguage
Forjn

OP
CODE

No.
Bytes

No.
Cycles

Accumulator ASL A 0A 1 2
Zero Page ASL Oper 06 2 5
Zero Page, X ASL Oper, |x 16 2 6

Absolute ASL Oper 0E 3 6

Absolute, X ASL Oper, X
— 1

IE 3 7

BCC
l: Branch on C = 0

BCC Branch on Carry Clear

(Ref: 4.1.1.3)

N 2 C I D V
BCC

Addressing Assembly Language OP No. No.
Mode FoiV CODE Bytes Cycles

Relative BCC Oper 90 2 2 *

* Add 1 if branch occurs to same pag^.
* Add 2 if branch occurs to different page.

B-4

BCS
Operation: Branch on C = 1

BCS Branch On carry set

(Ref: 4.I.1.4)

BCS
N Z C I D V

Addressing
Mode

-------------- 1---------
Assembly Language

Forjn
OP
CODE

No.
Bytes

No.
Cycles

Relative BCS Oper B0 2 2 *

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.

BEQ
Operation: Branch on Z = 1

BEQ B ranch on result zero

(Ref: 4.1.1.5)
N Z C I D V

* Add 1 if branch occurs to same page*
* Add 2 if branch occurs to next page.

BEQ

Addressing
Mode

Assembly Language
Foriti

OP
CODE

No.
Bytes

No.
Cycles

Relative BEQ Oper F0 2 2 *

B-5

BIT BIT Test bits in memory with accumulator
Operation: A A M, + N, + V

Bit 6 and 7 are transferred to the statjis register. N % C I D V
If the result of A AM is zero then Z = t, otherwise M.,/------ M,

BIT

Z = 0 (Ref: 4.2.1.1)

Addressing Assembly Language OP No. No.
Mode For̂ n CODE Bytes Cycles

Zero Page BIT Oper 24 2 3
Absolute BIT Oper

-------------- j_________
2C 3 4

BMI BMI Branch on result minus
Operation: Branch on N = 1

(Ref: 4 jl.1.1)

BMI
N % C I D V

Addressing
Mode

Assembly I
For

anguage
m

OP
CODE

No.
Bytes

No.
Cycles

Relative BMI Oper 30 2 2*

* Add 1 if branch occurs to same pag^.
* Add 2 if branch occurs to different^ page.

BNE BNE Branch on result not zero BNE
Operation : Branch on Z = 0

(Ref: 4.1.1.6)

N £ C I D V

Addressing
Mode

Assembly Language
Form

0?
CODE

No.
Bytes

No.
Cycles

Relative BNE Oper D0 2 2 *

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different p£ge.

BPL
Operation: Branch on N = 0

BPL Branch on result plus

(Ref: 4.1,1.2)

BPL

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Relative BPL Oper 1 0 2 2*

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

B-7

BRK BRK F orce \fireak
Operation: Forced Interrupt PC + 2 + p +

BRK
N i C I D V

(Ref: 9.11)

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied BRK 0 0 1 7

1. A BRK command cannot be masked bji setting I.

BVC BVC Branch on\ overflow clear BVC
Operation: Branch on V = 0 N % C I D V

(Ref: 4.1 .1 .8)

Addressing
Mode

Assembly
Fc
Language
rm

OP
CODE

No.
' Bytes

No.
Cycles

Relative BVC Opei 50 2 2 *

* Add 1 if branch occurs to same pa^e.
* Add 2 if branch occurs to different page.

BVS BVS Branch on overflow set BVS
Operation: Branch on V = 1 N Z C I D V

(Ref: 4.1.1.7)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Relative BVS Oper 70 2 2 *

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

CLC CLC Clear carry flag CLC
Operation: 0 -> C N - 2 C I D V

(Ref: 3.0.2) 0

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied CLC 18 1 2

CLD CLD Clear decim al m o d e CLD
Operation: 0 D N £ C I D V

------------------0 -

(Ref: 3.3.2)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied CLD D8 1 2

CLI CLI Clear in te rru p t disable b it CLI
Operation: 0 I N 2 C I D V

(Ref: 3.2.2) ------------ 0 - -

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied CLI 58 1 2

B-10

CLV CLV Clear overflow flag CLV
Operation: | + V N 2 - C I D V

(R ef: 3 .6 .1) 0

Addressing Assembly Language OP No. No.Mode Form CODE Bytes Cycles

Implied CLV B8 1 2

CMP CMP Compare memory and accumulator CMP
Operation: A - M N Z C I D V

/ / / ____(Ref: 4.2.1)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate CMP #Oper C9 2 2

Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper CD 3 4
Absolute, X CMP Oper, X DD 3 4*
Absolute, Y CMP Oper, Y D9 3 4*
(Indirect, X) CMP (Oper, X) Cl 2 6

(Indirect), Y CMP (Oper), Y D1 2 5*

* Add 1 if page boundary is crossed.

B-ll

Operation: X - M N Z C I D V
/ / / --------

(Ref: 7.8)

CPX CPX Compare Memory and Index X CPX

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate CPX # Oper E0 2 2

Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4

CPY CPY Compare memory and index Y CPY
Operation: Y - M N Z C I D V

/ / / --------
(Ref: 7.9)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate CPY #Oper C0 2 2

Zero Page CPY Oper C4 2 3
Absolute CPY Oper CC 3 4

B-12

DEC DEC Decrement memory by one DEC
Operation: M - 1 ->- M N Z C I D V

/ / -----------
(Ref: 10.7)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Zero Page DEC Oper C6 2 5
Zero Page, X DEC Oper, X D6 2 6

Absolute DEC Oper CE 3 6

Absolute, X DEC Oper, X DE 3 7

DEX DEX Decrement index X by one DEX
Operation: X - 1 ->- X N Z C I D V

(Ref: 7.6) ^

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied DEX CA 1 2

B-13

DEY DEY Decrement index Y by one DEY
Operation: Y - 1 Y N Z C I D V

/ / -----------
(Ref: 7.7)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied DEY 8 8 1 2

EOR EOR "Exclusive—Or” memory with accumulator EOR
Operation: A ̂ M A N Z C I D V

(Ref: 2.2.3.2) ^

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate EOR #Oper 49 2 2

Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4*
Absolute, Y EOR Oper, Y 59 3 4*
(Indirect, X) EOR (Oper, X) 41 2 6

(Indirect),Y EOR (Oper), Y 51 2 5*

* Add 1 if page boundary is crossed.

B-14

INC
Operation: M + 1 M

INC Increment memory by one
N Z C I D V
/ / -----------

INC

(Ref: 10.6)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6

Absolute INC Oper EE 3 6

Absolute, X INC Oper, X FE 3 7

INX INX Increment Index X by one INX
Operation: X + 1 X N Z C I D V

/ / -----------
(Ref: 7.4)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied INX E8 1 2

B-15

INY INY Increment Index Y by one INY
Operation: Y + l + Y N Z C I D V

(Ref: 7.5) / / --------

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied INY C8 1 2

JMP JMP Jump to new location JMP
Operation: (PC + 1) PCL N Z C I D V

(PC + 2") -*■ PCH (Ref: 4.0.2) ___________(PC + L) (Ref. 9 .8 .1)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Absolute JMP Oper 4C 3 3
Indirect JMP (Oper) 6 C 3 5

JSR JSR Jump to new location saving return address JSR
Operation: PC + 2 +, (PC + 1) ->■ PCL N Z C I D V

(PC + 2) ->■ PCH ___________
(Ref: 8.1)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Absolute JSR Oper 2 0 3 6

LDA LDA Load accumulator with memory LDA
Operation: M ->■ A N Z C I D V

/ / ______(Ref: 2.1.1)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate LDA # Oper A9 2 2

Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper, X B5 2 4 ,
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4*
Absolute, Y LDA Oper, Y B9 3 4*
(Indirect, X) LDA (Oper, X) A1 2 6

(Indirect), Y LDA (Oper), Y B1 2 5*

* Add 1 if page boundary is crossed.

B-17

LDX LDX Load index X with memory LDX
Operation: M -> X N Z C I D V

(Ref: 7.0) / / _

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate LDX # Oper A2 2 2

Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 4*

* Add 1 when page boundary is crossed.

LDY
Operation: M -> Y

LDY Load index Y with memory

(Ref: 7.1)

LDY
N Z C I D V
/ / -----------

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate LDY #Oper A0 2 2

Zero Page LDY Oper A4 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4*

* Add 1 when page boundary is crossed.

B-18

LSR
Operation: 0 —^

LSR Shift right one b it (memory or accumulator)
-+ C

LSR
7 6 5 4 3 2 1 0

(Ref: 10.1)

N Z C I D V
0 / / -----

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Accumulator LSR A 4A 1 2

Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6

Absolute LSR Oper 4E 3 6

Absolute, X LSR Oper, X 5E 3 7

NOP NOP No operation
Operation: No Operation (2 cycles) N Z C I D V

NOP

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied NOP EA 1 2

Operation: A V M A N Z C I D V
/ / ______(Ref: 2.2.3.1)

ORA ORA “OR" m em ory with accumulator ORA

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate ORA #Oper 09 2 2

Zero Page ORA Oper 05 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper 0D 3 4
Absolute, X ORA Oper, X ID 3 4*
Absolute, Y ORA Oper, Y 19 3 4*
(Indirect, X) ORA (Oper, X) 0 1 2 6

(Indirect), Y ORA (Oper), Y 1 1 2 5

* Add 1 on page crossing

PHA
Operation: A +

PHA Push accumulator on stack

(Ref: 8.5)

PHA
N Z C I D V

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles'

Implied PHA 48 1 3

B-20

PHP
Operation: P+

PHP Push processor s ta tu s on sta ck

(Ref: 8.11) -----------
N Z C I D V

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied PHP 08 1 3

PLA PLA P ull accu m u la tor fro m s ta c k PLA
Operation: A t N Z C I D V

/ / -----------
(Ref: 8 .6)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied PLA 6 8 1 4

B-21

PLP PLP P ull p rocessor sta tus fro m s ta c k PLP
Operation: P + N Z C I D V

From Stack(Ref: 8.12)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied PLP 28 1 4

ROL
Operation:

R O L R o ta te one b it le f t (m em o ry or accum ula tor) ROL
M or

7 6 5 4 3 2 1 0 ZS7

(Ref: 10.3)

N Z C I D V
/ / / --------

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Accumulator ROL A 2A 1 2

Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6

Absolute ROL Oper 2E 3 6

Absolute, X ROL Oper, X 3E 3 7

B-22

ROR ROR Rotate one bit right (memory or accumulator) ROR

Operation: — ► c ► 7 6 5 4 3 2 1 0

(Ref: 10.4)

N Z C I D V
/ / / -------

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Accumulator ROR A 6A 1 2

Zero Page ROR Oper 6 6 2 5
Zero Page,X ROR Oper,X 76 2 6

Absolute ROR Oper 6 E 3 6

Absolute,X ROR Oper,X 7E 3 7

Note: ROR instruction will be available on MCS650X micro­
processors after June, 1976.

RTI RTI Return from interrupt RTI
Operation: P+ PC+ N Z C I D V

 ̂ n From Stack(Ref: 9.6)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied RTI 40 1 6

RTS RTS Return from subroutine RTS
Operation: PC+, PC + l-> PC N Z C I D V

(Ref: 8.2)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied RTS 6 0 1 6

B-23

SBC SBC S u b tra c t m em o ry fr o m accu m u la tor w ith borrow SBC
Operation: A - M - C A N Z C I D V

Note: C = Borrow (Ref: 2.2.2) / / / --- /

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Immediate SBC # Oper E9 2 2

Zero Page SBC Oper E5 2 3
Zero Page, X , SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4*
Absolute, Y SBC Oper, Y F9 3 4*
(Indirect, X) SBC (Oper, X) El 2 6

(Indirect), Y SBC (Oper), Y FI 2 5*

* Add 1 when page boundary is crossed.

SEC SEC S e t carry flag SEC
Operation: 1 + C N Z C I D V

(Ref: 3.0.1) ---1 ------

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied SEC 38 1 2

B-24

SED
Operation: 1 -> D

SED Set decimal mode

(Ref: 3.3.1)

N Z C I D V
SED

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied SED F8 1 2

SEI SEI Set interrupt disable status SEI
Operation: 1 I N Z C I D V

(Ref: 3.2.1) 1

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied SEI 78 1 2

B-25

STA STA Store accumulator in memory STA
Operation: A M N Z C I D V

(Ref: 2.1.2)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8 D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6

(Indirect), Y STA (Oper), Y 91 2 6

STX STX Store index X in memory STX
Operation: X + M N Z C I D V

(Ref: 7.2)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Zero Page STX Oper 8 6 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8 E 3 4

STY
Operation: Y ->■ M

STY Store index Y in memory
N Z C I D V

(Ref: 7.3)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8 C 3 4

TAX TAX Transfer accumulator to index X TAX
Operation: A -»■ X N Z C I D V

/ / -----------
(Ref: 7.11)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied

TAX AA 1 2

B-27

m T A YTAY Transfer accumulator to index Y I M I
Operation: A -> Y N Z C I D V

/ / -----------
(Ref: 7.13)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied TAY A8 1 2

TYA TYA Transfer index Y to accumulator TYA
Operation: Y -> A N Z C I D V

/ / -----------
(Ref: 7.14)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied TYA 98 1 2

B-28

TSX TSX Transfer stack pointer to index X TSX
Operation: S -> X N Z C I D V

(Ref: 8.9) ^

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied TSX BA 1 2

TXA TXA Transfer index X to accumulator TXA
Operation: X -> A N Z C I D V

J J ______(Ref: 7.12) v v

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied TXA 8A 1 2

TXS TXS Transfer index X to stack pointer TXS
Operation: X + S N Z C I D V

(Ref: 8 .8)

Addressing
Mode

Assembly Language
Form

OP
CODE

No.
Bytes

No.
Cycles

Implied TXS 9A 1 2

B-29

APPENDIX C

INSTRUCTION ADDRESSING

MODES AND

RELATED EXECUTION TIMES

J>o>•o
o_o
o

C/5LU
s

z
o
h-
D
O1X1XUJ
QUJ

UJ
cc
QZ
<
00UJ
Q
O
2

CDZ
COC/5UJ
cc
o
Q
<
z
o
h“O
D
CC
h“C/5z

).3ej;pu| ein|osqv
A'(̂ eJipui)
(X 'laa-MPUl)

aAijeiay
p3l|dlU|

A amiosqv
X 'amiosqv

amiosqv
A '06ej ojaz
X '«6ej oiaz

aBej o» 2

siejpeuiuui
joie|niun33V

).33j;pu| ain|osqv
A '(iMJipul)
(X '»3»i!PU|)

3Aî e|ay
pai|duj|

A 'ajnjosqv
X *a»n|osqv

amiosqv
A 'aBej ojez
X 'aBej ojez

sited ojaz
3ieipeiuui|

jo}B|niunDov

* * CM • CO C W . ■ <0 <0 • CM CM CM* *• 5f <* . . . in . .
* * * *

• ̂ ^ ^ . . .in . .

. .<o<o •

. CM CM CM CM CM CM

. <0 CO

. in lo
. co • . •
■ ro ro ro m -co . .

■ CM CM CM . .CM........
-•••CM........CM CM

• ̂
■ CO
■ CM

. CO CO CO

* * *cc^X£er£<<a.<a.;J£-«/>ooa-<x>-X>x<«2 < QQQtflOOClI j j O OI-l-ajLUUjLUl-(-l-<<W)XX> J J J J Z O l L L L l C CCCCCCc0 C0 C0 C0 C0 C0 C0 t-t-t-t-t-l-

co
®ao
CTc
1coc<0

egco
>T3 m “O.. in -S®

* * * § ?
in i n ..mi n g g.Q
<0 < 0 co...... <0 . • • • "O* * * * * * * % £3 *n

* * * * * * * *• • • CM CM CM . CM CM CM . CM CM..................... **•
............ . . CM CM CM CN CM CM . . CM CM . <»§

* * * *^ ̂**.... o ™
* * * * ” „^ ̂ ^ . r* . . ̂ r* . - • o>—

siTt Tt (D ■ ■ . Tt.............. ^ ̂ ̂ <D ■ . ̂ <D . . CO X Oa> c ■O <o
... .E .o

t oto • .T t t o . . . ^ it

to to in . . . t oto to to in . .c o i n . . • - - 2

> >CN CM......................CN CN CN . CN OO
O s>■ CM..................................... C CO O
-a 73 73 73 <<

C-2

APPENDIX D

OPERATION CODE INSTRUCTION LISTING

HEXIDECIMAL SEQUENCE

0 0 - BRK 2(1 - JSR
0 1 - ORA - (Indirect,X) 2 :. - AND - (Indirect,X)
0 2 - Future Expansion 2\\ - Future Expansion
03 - Future Expansion 23 - Future Expansion
04 - Future Expansion 2H - BIT - Zero Page
05 - ORA - Zero Page 25 - AND - Zero Page
06 - ASL - Zero Page 2 (> - ROL - Zero Page
07 - Future Expansion 27 - Future Expansion
08 - PHP 21! - PLP
09 - ORA - Immediate 2 !) - AND - Immediate
0A - ASL - Accumulator 2 a - ROL - Accumulator
0B - Future Expansion 21! - Future Expansion
0C - Future Expansion 2<: - BIT - Absolute
0D - ORA - Absolute 2 D - AND - Absolute
0E - ASL - Absolute 21! - ROL - Absolute
0F - Future Expansion 21 •’ - Future Expansion
1 0 - BPL 30 - BMI
1 1 - ORA - (Indirect),Y 31 - AND - (Indirect),Y
1 2 - Future Expansion 3:> - Future Expansion
13 - Future Expansion 33 - Future Expansion
14 - Future Expansion 34 - Future Expansion
15 - ORA - Zero Page,X 35 - AND - Zero Page,X
16 - ASL - Zero Page,X 3'3 - ROL - Zero Page,X
17 - Future Expansion 37 - Future Expansion
18 - CLC 33 - SEC
19 - ORA - Absolute,Y 39 - AND - Absolute,Y
1A - Future Expansion 3 A - Future Expansion
IB - Future Expansion 35 - Future Expansion
1C - Future Expansion 3: - Future Expansion
ID - ORA - Absolute,X 33 - AND - Absolute,X
IE - ASL - Absolute,X 3E - ROL - Absolute,X
IF - Future Expansion 3F - Future Expansion

D-2

40 - RTI 60 - RTS
41 - EOR - (Indirect,X) 6 :. - ADC - (Indirect,X)
42 - Future Expansion 62 - Future Expansion
43 - Future Expansion 62 - Future Expansion
44 - Future Expansion 64 - Future Expansion
45 - EOR - Zero Page 65 - ADC - Zero Page
46 - LSR - Zero Page 6 6 - ROR - Zero Page
47 - Future Expansion 67 - Future Expansion
48 - PEA 6 8 - PLA
49 - EOR - Immediate 69 - ADC - Immediate
4A - LSR - Accumulator 6 A - ROR - Accumulator
4B - Future Expansion 6 B - Future Expansion
4C - JMP - Absolute 6 C - JMP - Indirect
4D - EOR - Absolute 6D - ADC - Absolute
4E - LSR - Absolute 6 E - ROR - Absolute
4F - Future Expansion 6 F - Future Expansion
50 - BVC 70 - BVS
51 - EOR - (Indirect),Y 71 - ADC - (Indirect),Y
52 - Future Expansion 72 - Future Expansion
53 - Future Expansion 73 - Future Expansion
54 - Future Expansion 74 - Future Expansion
55 - EOR - Zero Page,X 75 - ADC - Zero Page,X
56 - LSR - Zero Page,X 76 - ROR - Zero Page,X
57 - Future Expansion 77 - Future Expansion
58 - CLI 78 - SEI
59 - EOR - Absolute,Y 79 - ADC - Absolute,Y
5A - Future Expansion 7A - Future Expansion
5B - Future Expansion 7B - Future Expansion
5C - Future Expansion 7C - Future Expansion
5D - EOR - Absolute,X 7D - ADC - Absolute,X
5E - LSR - Absolute,X 7E - ROR - Absolute,X
5F - Future Expansion 7F - Future Expansion

D-3

80 - Future Expansion
81 - STA - (Indirect,X)
82 - Future Expansion
83 - Future Expansion
84 - STY - Zero Page
85 - STA - Zero Page
8 6 - STX - Zero Page
87 - Future Expansion
8 8 - DEY
89 - Future Expansion
8A - TXA
8 B - Future Expansion
8 C - STY - Absolute
8D - STA - Absolute
8 E - STX - Absolute
8 F - Future Expansion
90 - BCC
91 - STA - (Indirect),Y
92 - Future Expansion
93 - Future Expansion
94 - STY - Zero Page,X
95 - STA - Zero Page,X
96 - STX - Zero Page.Y
97 - Future Expansion
98 - TYA
99 - STA - Absolute,Y
9A - TXS
9B - Future Expansion
9C - Future Expansion
9D - STA - Absolute,X
9E - Future Expansion
9F - Future Expansion

A? - LDY - Immediate
A1 - LDA - (Indirect,X)
A2 - LDX - Immediate
A3 - Future Expansion
A4 - LDY - Zero Page
A5 - LDA - Zero Page
A6 - LDX - Zero Page
A7 - Future Expansion
A8 - TAY
A9 - LDA - Immediate
AA - TAX
AB - Future Expansion
AC - LDY - Absolute
AD - LDA - Absolute
AE - LDX - Absolute
AF - Future Expansion
B0 - BCS
Bl - LDA - (Indirect),Y
B2 - Future Expansion
B3 - Future Expansion
B4 - LDY - Zero Page,X
B5 - LDA - Zero Page,X
B6 - LDX - Zero Page,Y
B7 - Future Expansion
B8 - CLV
B9 - LDA - Absolute,Y
BA - TSX
BB - Future Expansion
BC - LDY - Absolute,X
BD - LDA - Absolute,X
BE - LDX - Absolute,Y
BF - Future Expansion

C0 - CPY - Immediate E0 - CPX - Immediate
Cl - CMP - (Indirect,X) El - SBC - (Indirect,X)
C2 - Future Expansion E2 - Future Expansion
C3 - Future Expansion E3 - Future Expansion
C4 - CPY - Zero Page E4 - CPX - Zero Page
C5 - CMP - Zero Page E5 - SBC - Zero Page
C6 - DEC - Zero Page E6 - INC - Zero Page
C7 - Future Expansion E7 - Future Expansion
C8 - INY E8 - INX
C9 - CMP - Immediate E9 - SBC - Immediate
CA - DEX EA - NOP
CB - Future Expansion EB - Future Expansion
CC - CPY - Absolute EC - CPX - Absolute
CD - CMP - Absolute ED - SBC - Absolute
CE - DEC - Absolute EE - INC - Absolute
CF - Future Expansion EF - Future Expansion
D0 - BNE F0 - BEQ
D1 - CMP - (Indirect),Y FI - SBC - (Indirect),Y
D2 - Future Expansion F2 - Future Expansion
D3 - Future Expansion F3 - Future Expansion
D4 - Future Expansion F4 - Future Expansion
D5 - CMP - Zero Page,X F5 - SBC - Zero Page,X
D6 - DEC - Zero Page,X F6 - INC - Zero Page,X
D7 - Future Expansion F7 - Future Expansion
D8 - CLD F8 - SED
D9 - CMP - Absolute,Y F9 - SBC - Absolute,Y
DA - Future Expansion FA - Future Expansion
DB - Future Expansion FB - Future Expansion
DC - Future Expansion FC - Future Expansion
DD - CMP - Absolute,X FD - SBC - Absolute,X
DE - DEC - Absolute,X FE - INC - Absolute,X
DF - Future Expansion FF - Future Expansion

D-5

APPENDIX E

SUMMARY OF ADDRESSING MODES

E-1

This appendix is to serve the user in providing a reference
for the MCS650X addressing modes. Each mode of address is shown
with a symbolic illustration of the bus status at each cycle
during the instruction fetch and execution. The example number
as found in the text is provided for reference purposes.

El IMPLIED ADDRESSING

Example 5.3: Illustration of implied addressing

Clock
Cycle

1

2

Address Bus Program Counter Data Bus

PC
PC + 1

PC + 1

PC + 1
PC + 1

PC + 2

o:5 CODE
Niw
0? CODE

New
OP CODE

Comments

Fetch OP CODE
Ignore New
OP CODE;
Decode Old
OP CODE
Fetch New
OP CODE;
Execute Old
OP CODE

E-2

E.2 IMMEDIATE ADDRESSING

Example 5.4: Illustration of immediate addressing

Clock
Cycle

j.

2

Address Bus Program Counter Data Bus

PC
PC + 1

PC + 2

PC + 1
PC + 2

PC + 3

OP CODE
Data

New
OP CODE

Comments

Fetch OP CODE
Fetch Data,
Decode OP CODE
Fetch New
OP CODE,
Execute Old
OP CODE

E.3 ABSOLUTE ADDRESSING

Example 5.5: Illustration of absolute addressing

Clock
Cycle

1

2

4
5

Address Bus Program Counter Data Bus

PC
PC + 1

PC + 2

ADH, ADL
PC + 3

PC + 1
PC + 2

PC + 3

PC + 3
PC + 4

OP CODE
ADL

ADH

Data
New
OP CODE

Comments

Fetch OP CODE
Fetch ADL,
Decode OP CODE
Fetch ADH,
Retail ADL
Fetch Data
Fetch New
OP CODE,
Execute Old
OP CODE

E-3

E.4 ZERO PAGE ADDRESSING

Example 5.6: Illustration of zero page addressing

Clock
Cycle

1

2

3
4

Address Bus Program Counter Data Bus

PC
PC + 1

00, ADL
PC + 2

PC + 1
PC + 2

PC + 2
PC + 3

OP CODE
ADL

Data
New
OP CODE

Comments

Fetch OP CODE
Fetch ADL, De­
code OP CODE
Fetch Data
Fetch New
OP CODE, Exe­
cute Old
OP CODE

E.5 RELATIVE ADDRESSING - (Branch Positive, no crossing of page boundaries)

Example 5.8: Illustration of relative addressing— branch positive
taken, no crossing of page bcundaries

Cycle

1

Address Bus

0100

0101

0102

0152

Data Bus

OP CODE

+50

Next
OP CODE

Next
OP CODE

External Internal
Operation Operation

Fetch Finish Previous Oper-
OP CODE ation, Increment Pro­

gram Counter to 101
Fetch Interpret Instruction,
Offset Increment Program

Counter to 102
Fetch Next Check Flags, Add Rela-
OP COD'S tive to PCL, Increment

Program Counter to 103
Fetch text Transfer Results to
OP COD I PCL, Increment Program

Counter to 153

E-4

Step 5 is deleted and the data in step 4 is valid when no page crossing occurs.

E.6 ABSOLUTE INDEXED ADDRESSING - (with page crossing)

Example

Cycle

1

2

3

4

5

6.7: Absolute Indexed; With Page Crossing

Internal
Operation

Finish Previous
Operation Increment
PC to 101

Interpret Instruction
Increment PC to 102

Add BAL + Index
Increment PC to 103

Add BAH + Carry

Finish Operation

E-5

Address Data
Bus Bus

External
Operation

0100 OP CODE Fetch OP CODE

0101 BAL Fetch BAL

0102 BAH Fetch BAH

BAH,BAL
+X

Data
(Ignore)

Fetch Data
(Data is
ignored)

BAH+1,
BAL+X

Data Fetch Data

0103 Next OP
CODE

Fetch Next
OP CODE

E. 7 ZERO PAGE INDEXED ADDRESSING

Example 6 .8 : Illustration of Zero Page Indexing

Cycle

1

Address
Bus____

0100

Data
Bus

OP CODE

Externa L
Operation

Fetch OP :0DE

0101

00,BAL

BAL

Data
(Dis­
carded

Fetch Base
Address Low
(BAL)

Fetch
Discarded
Data

00,BAL
+X

Data Fetch Data

0102 Next OP
CODE

Fetch Next OP
CODE

Finish Previous
Operation

Interpret Instruct­
ion

Add: BAL + X

Internal
Operation

Finish Operation

E-6

E.8 INDEXED INDIRECT ADDRESSING

Example 6.10: Illustration of Indexed Indirect Addressing

Cycle

1

2

3

4

5

6

7

Internal
Operation

Finish Previous
Operation

Interpret In­
struction

Add BAL + X

Add 1 to BAL + X

Hold ADL

Finish Operation
CODE

E-7

Address Data
Bus Bus

0100 OP CODE

External
Operation

Fetch OP CODE

0101 BAL Fetch BAL

00,BAL DATA (Dis­
carded)

00,BAL ADL
+ X

00,BAL
+ X + 1

Fetch Discard­
ed DATA

Fetch ADL

Fetch ADH

ADH,ADL DATA

0102 Next OP

Fetch DATA

Fetch Next 01’

Step 6 is deleted and the data in step 5 is valid when no page crossing occurs.

E. 9 INDIRECT INDEXED ADDRESSING (with page crossing)

Example 6.12: Indirect Indexed Addressing (With Page Crossing)

Cycle

1

Address Data
Bus Bus

0100

010L

OP CODE

IAL

00,IAL BAL

00,IAL BAH
+ 1

BAH,BAL DATA (Dis-
+ Y carded)

BAH + 1 DATA
BAL + Y

0102 Next OP
CODE

External
Operation

Load OP CODE

Fetch IAL

Fetch BaL

Fetch BAH

Fetch Dl̂ TA
(Discarded)

Fetch Data

Fetch Is ext OP
CODE

Internal
Operation

Finish Previous
Operation

Interpret In­
struction

Add 1 to IAL

Add BAL to Y

Add 1 to BAH

Finish This
Operation

E-8

APPENDIX F

MCS650X

PROGRAMMING

MODEL

F-l

COcc
LU
I—
M

CJ
LUoc

Xo
(Oto
O

LU
Q
O

C3

2
<CC
(D
OCC
0 .

cco

ID
oo
<

DC
LUI—
C/3
o
LUCC
X
LUQz

DC
LUI—W
C3
LUCC
X
LUQ

cc
LU

<cc
uoQC
Q-

cc
LU

O
0 -

o
<
1 -
C/3

r- 1 o
; 1 | j

o o o o

1 1
j I
1 1 _i1 1 <. >- X o CO
j 1
1 1

a.

1 1
j 1
1. .. J f" r~ r~ i-'.
1 1 1 1 1
1 1 1 1 1 o
I 1 1
1 1 1

1
1

1
1 ---

1 1 1
1 1 1

1| 1| Io1 1 1
1 1 1

1
1
1

1
1
1

O-

1- 1__
_

15 ___ s ___ £ --- if? £ ___

DC
LU
(“
CO

C3
LUCC
c/3
D

c/3
cco
c/3
C/3
LU
Oocc
O-

LU
_1
CD
<
C/3 LU^ Q

UJcc
r>
i -
<
LU
Li-

CS

Q o >Q- O
^ U U

cc o £ i < l - C C <
CC cc t l O LU CC LU CD < LU 5 LU QC o > LU O N - Q C Q U-02

O

N

CD CD

3 _
03 O OJ -Q

>

E
03

> + -
> + -
O
</>

-O

>03

E
CDECD
C

Eo
o

-C

TJ a> JZ
o jOco Q

F-2

APPENDIX G

DISCUSSION - INDIRECT ADDRESSING

G-1

The MCS650X microprocessors have a special form of addressing known
as Indirect. The writeup on Indirect addressing describes the basic
operation of Indirect.

It is the intent of this discussion to acquaint the user with some
of the uses and applications of Indirect addressing.

The Indirect address is really an address that would have been coded
in line as in the case of Absolute except for the fact that the address
is not known at the time the user writes the program. As has been in­
dicated several times in the basic body of the documentation, it is sig­
nificantly more efficient with the organization of the MCS650X to assign
addresses and implement them if the addressing structure is known. How­
ever, that is not always possible to do. For instance, in order to mini­
mize the coding of a subroutine or general purpose set of coding, it is
often desirable to work with a range of addressing that is not possible
to cover in a normal index, or in the case of subroutine where it is neces­
sary for the addresses to be variable depending on which part of the whole
program called the address.

It is probably this discussion which best amplifies the need for
calculated addresses. It should be fairly obvious to the user that a
general purpose subroutine cannot contain the; address of the operations.
Therefore, instead of having the instruction LDA followed by the value
that the programmer wants to load, in a subroutine it may be desirable to
do a Load A from a calculated or specified address.

The use of the Indirect Addressing Mode is to give the user a loca­
tion in Page Zero in which can be put the calculated address. Then the
subroutine instruction can call this calculated address using the form
Load A from an address pointed to by the next byte in program sequence.
The word "indirect" technically comes from the fact that instead of taking
the address which is immediately following the instruction, the next value
in program sequence is a pointer to the address.

The Indirect pointer will be referred to from now on as IAL, because
it is a Zero Page address and, therefore, is a low order byte. The in­
direct instructions are written in the form "Load A" followed by IAL.

G-2

IAL points to an address which had been previously stored into Page Zero.
This gives the user the flexibility of addressing anywhere in memory

with a calculated address. However, the real value of Indirect is not in
just having Indirect but having the ability to have Indirect modified.
This is the reason for which indirect indexed Instruction is implemented
rather than straight indirect. An example of che indirect indexed in sub-
routining is covered in Section 6.5, , but it should be noted that the in­
direct indexed instruction should be used whenever the user does not know
the exact address at time of compilation. Although there may be other in­
teresting and esoteric uses of the indirect index instruction, this is the
most common one.

The second form of indirect is very powerful for certain types of
applications. Chapter 11 shows the use of tabJ.es which have pointers and
the advantage of running down one table of pointers until a match is found
and then using the same index to address a second table to perform an opera­
tion. This is the classical stack processor type of architecture but it
requires a special discipline at the time a program is originally defined.
Both the indirects require a concept of memory management that is not
obvious to the novice programmer.

The concept of indexed indirect is that memory has to be viewed as
a series of tables, in which access to one set of tables is accomplished
by indexing through a list of pointers. One set of tables might be searched
to perform some type of testing or operation. Then the same index is then
used to process another set of pointers. This concept is only applicable
to operations in which a variety of inputs are being serviced. A classical
application is when several remote devices are being managed by the same
control program. An example might be having three teletypes tied on to
a device, each teletype is being manually controlled and can be under con­
trol of the user program. In this type of message handling environment,
the control program for the teletypes does nothing more than collect strings
of data from the input device and then performs operations on the string

G-3

upon seeing a control signal, usually a carriage return in this case of
the teletype. Because any one of the teletypes can be causing any one of
the series of operations, this program does not lend itself well to the
concept of absolute addressing. In fact, most: of the subroutines which
deal with the individual processing should be written address independent.
This normally allows the addition of more devices without paying any penal­
ty in terms of programming. Therefore, this is a subroutine or nonabsolute
type of operation in which the indirect indexed would not apply because
each of the various operations use a function of position. In other words,
one can assign a series of tables that point at the teletype itself; an­
other set that points at an outgoing message jitream and another set that
points to a series of tables which keep the status of the device. Each
of these pointers is considered to be an individual address at the be­
ginning of a string. Each string is a variable length. The teletype
strings may consist of a three character message followed by a character
return or a 40 character message followed by a character return. In the
MCS650X, this system will be implemented by means of developing a series
of indirect pointers. Each teletype will have an indirect pointer. Its
I/O port has another indirect pointer that points at the put-away string,
another one that points at the teletype message output string, another one
that points at its status table. If all of the teletypes work this way,
it can be seen that the coding to put data into the input message table
is the same for all the teletypes and is totally independent of the
teletype in which data is being stored.

The index register X serves as a control for the tables so that if all
tables were sequentially organized, X would point at the proper value for
each operation. A sample operation might be: read teletype three, trans­
fer the data to teletype three input register, update teletype three counter,
check to see that teletype three is still active, and decide whether or
not to return to signal teletype three back. The coding to perform each
of these operations would be exactly the same as coding for teletype two,
if the tables were organized such that X was an index register for the
pointers.

This is the type of string manipulation ,application for which indexed

G-4

indirect was designed and only when a program can be organized for this
technique is the indirect used to its maximum potential. The advantages
for organizing for this type of approach when the problem requires string
manipulation is significant; the comprehensive I/O program is roughly
one half the memory and one fourth the execution time of several other
microprocessors which do not have this indexed indirect feature.

APPENDIX H

REVIEW OF BINARY

AND

BINARY CODED DECIMAL

ARITHMETIC

H-1

The number 1789 is assumed by most people to mean one thousand, seven
hundred eighty-nine, or 1 x lO3 + 7 x 102 + 8 x 101 + 9 x 10°. However,
until the number base is defined, it might mean

1 x 163 + 7 x 162 + 8 x 161 -h 9 x 16°

which is hexadecimal and the form used in the microprocessor.
In order to distinguish between numbers on different bases, mathema­

ticians usually write 1789^0 or just 1789 for base 10, or decimal, and
1789^0 for base 16 for hexadecimal. Because very few computers or I/O de­
vices allow subscripting, all hexadecimal numbers are preceded by a $
notation. Then 1789 means base 10 and $1789 means base 16. Why hexadeci­
mal? This is a convenient way of representing 2 digits in 8 bits.

The MCS650X is a byte-oriented microprocessor which means most opera­
tions have 8 -bit operations.

There are 2 ways to look at 8 bits. The first is as 8 individual
bits in which 00001000 means that bit 3 (bit 7 to 0 representation) is on
and all other bits are off or as an 8 -bit binary number in which case the
value is
0 x 2 7 + 0 x 2 6 + 0 x 2 5 + 0 x 2 tt + l x 2 3 + 0 x 2 2 + 0 x 2 1 + 0 x 2 ° = 8

or $08.
For logic analysis purposes, each bit is unique, but for arithmetic

purposes, the 8 bits are treated as a binary lumber.

H-2

Binary Arithmetic Rules;
0 + 0 = 0
0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 with a carry
Carry occurs when the resulting number is too long for the base. In

decimal, 8 + 4 = 2 + 10.
In hexadecimal, $ 8 + $4 = $C (see hexadecimal details), so that 8 + 4 has
a carry in base 1 0 but not in base 16.

Using these rules to add 8 + 2 in binary gives the following:

0 0 0 0 1 0 0 0 8 1 x 2 3

0 0 0 0 0 0 1 0 + 2 1 x 2 1

0 0 0 0 1 0 1 0 1 0 1 x 2 3 + 1 x 2 1

Therefore, any number from 0 - 255 may be represented in 8 bits, and
binary addition performed using the basic binary add equation,
R. = (A. ¥ B. VC. ,), where, as defined previously, V is notation forJ J J J - 1
Exclusive-Or.

In most applications, it is also necessary to subtract. Subtract
operations either require a different hardware implementation or a new way
of representing numbers.

A combination of this is to implement a simple inverter in each bit.
This would make

00001100 12

11110011 -12

However, when subtracting 12 from 12, the result should also be 0.

00001100 +12

11110011 -12

1 1 1 1 1 1 1 1 0

However, if a carry is added to the complemented number:
1 Carry

00001100 12
11110011 -12
0 0 0 0 0 0 0 0 = 0

If, instead of representing -12 as the complement of 12, it is represented
as the complement plus carry, the following is obtained:

H-3

11110011 = 12
1 = Carry

11110100 = -12

00001100 +12

0 0 0 0 0 0 0 0 = 0

This representation is called two's complement and represents the way that
negative numbers are kept in the microcomputer. Below are examples of
negative numbers represented in two's complement form.

- 0 = 0 0 0 0 0 0 0 0

- 1 = 1 1 1 1 1 1 1 1

-2 = 11111110
-3 = 11111101
-4 = 11111100
-5 = 11111011
-6 = 11111010

' -7 = 11111001
-8 = 11111000
-9 = 11110111

Hexadecimal is the representation of numbers to the base 16. The fol­
lowing table shows the advantages of Hex:

Hexadecimal Binary Decimal
0 0 0 0 0 0 0
1 0 0 0 1 0 1
2 0 0 1 0 0 2
3 0C11 03
4 0100 04
5 0101 05
6 0 1 1 0 06
7 0111 07
8 1 0 0 0 08
9 1001 09
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

H-4

Because 16 is a multiple of 2, hexadecimal is a convenient shorthand
for representation of 4 binary digits or bits. The rules on arithmetic
also hold.

Binary Hex
0100 1111 4F

+ QUO 0010 + 62
1011 0001 B1

To take advantage of this shorthand, all addresses in this manual are
shown in hexadecimal notation. It should be nc ted that the reader should
learn to operate in Hex as soon as possible. Continual translation back
to decimal is both time consuming and error prcne. Working in Hex and
binary will quickly force learning of hexadecimal manipulation and the famil­
iarity with working with this convenient representation.

Although many microcomputer applications cin successfully be accom­
plished with binary operations, some applications are best performed in
decimal. Although the use of 1 decimal character per byte would be a
legitimate way to solve this problem, this is an inefficient use of the cap­
ability of the 8 -bit byte.

The microprocessor allows the use of packed BCD representation. This
representation is, in 4 -bit form:

0 = 0 0 0 0

1 = 0001
2 = 0010

3 = 0011
4 = 0100
5 = 0101
6 = 0110

7 = 0111
8 = 1000

9 = 1001

In BCD, the number 79 is represented:

Binary BCD Hex
01111001 = 79 = 79

H-5

The microprocessor automatically takes this into account and corrects
for the fact that

Decimal BCD Hex
79 = 01111001 79 = 01111001

+12 = 00010010 12 = 00010010
91 = 10010001 8 8 ' = 10001011

The only difference between Hex and BCD representation is that the
microprocessor automatically adjusts for the fact that BCD does not allow
for Hex values A - F during add and subtract operations.

The offset which follows a branch instruction is in signed two's
complement form which means that

The sign for this operation is in bit 7 whore an 0 equals positive and
a 1 equals negative.

This bit is correct for the two's complement representation but also
flags the microprocessor whether to carry or borrow from the address high
byte.

The following 4 examples represent the combinations of offsets which
might occur (all notations are in hexadecimal):

Example H.4.1: Forward reference, no page crossing

$+50 = +80 = 01010000
and $-50 = -80 = 10110000

Proof = 00000000

0105 INE
0106 +55
0107 Next CP CODE

To calculate next instruction if the branch is taken
Offset +55 0101C101
Address Low

for next
OP CODE 07 00000111

5C 01011100
with no carry, giving 015C as the result.

H-6

Example H.4.2: Backward reference, no page crossing

015A BNE
015B -55
015C Next OP CODE

To calculate If branch is taken,

Offset -55 = AB = 10101011
+ Address Low for

Next OP CODE +5C = 5C = 01011100
07 07 00000111

The carry is expected because of the negative offset and is ignored,
thus giving 0107 as the result.

Example H.4.3: Backward reference if page boundary crossed
0105 BNE
0106 -55
0107 Next OP CODE

To calculate if branch is taken, first calculate a low byte

Offset -55 = AB = 10101011
Address Low for

Next OP CODE _07_ = 07̂ = 00000111
B2 = B2 = 10110010

There is no carry from a negative offset; therefore, a carry must be
made:

-1 = -1 = FF = 11111111
+ Address High = 01̂ = 01 = 00000001

00 00 00000000
This gives 00 B2 as a result.

Example H.4.4: Forward reference across page bcundary
00B0 BNE
00B1 +55
00B2 Next OP COEE

To calculate next instruction if branch is taken,

H^7

Offset 55 = 01010101
Address Low

for Next
OP CODE B2 = 1011(010

07 0000(111

with carry on positive number.

+1 1 = 0000C001
Address High 00 = 0000C000

1 = oooooooT
which gives 0107.

H-8

MOSTECHNOLOGY INC.
___________VALLEY FORGE CORPORATE CENTER
950 RITTENHOUSE ROAD, NORRISTOWN, PA. 19401
TEL: (215) 666-7950 TWX: 510/660/4033

