

Hie
First Book of KIA\

Edited by

JIM BUTTERFIELD • STAN OCKERS • ERIC REHNKE

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

I
Dedicated to the person who just purchased a KIM-1

and doesn't know what to do with it...

Individual programs in this book were contributed by the various authors
without copyright restrictions.

These programs may be used or copied without restriction. It is, how-
ever, common courtesy to quote author and source when copying; and a
copy of any published material should be sent directly to the author.

In general, program authors welcome comments, suggestions or revi-
sions to their programs. Depending on circumstances, they may not find it
possible to reply to all correspondence.

If you develop a program that you'd like to share with other KIM users,
send it in to KIM/6502 User Notes, 109 Centre Avenue, W. Norriton, Penn-
sylvania 19401. It might appear in User Notes ... and even in a future Book
of KIM.

ISBN 0-8104-5119-0
Library of Congress Catalog Card Number 78-53963
Copyright © 1977, 1978 by F. J. Butterfield. All rights reserved. Except as
noted above, no part of this book may be reprinted, or reproduced, or
utilized in any form or by any electronic, mechanical, or other means, now
knovyn or hereafter invented, including photocopying and recording, or in
any information storage and retrieval system, without permission in writing
from the copyright holder, application for which should be addressed to
the Publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 PRINTING

78 79 SO 81 82 83 84 85 86 YEAR

IN THIS BOOK YOU'LL FIND:

A BEGINNER'S GUIDE TO KIM PROGRAMMING: 5
guidelines which take the absolute beginner, step by step, through
the fundamentals of understanding and writing programs.

RECREATIONAL PROGRAMS: 23
dozens of programs including games, diversions and educational
programs; fully detailed so that you can learn from the programming
techniques as well as have fun. All programs run on the basic
KIM-1 system.

DIAGNOSTIC AND UTILITY PROGRAMS: 114
to help you test your KIM computer — to help you test other devices,
such as cassette recorders — and to make your KIM a more
powerful machine.

EXPANDING YOUR KIM: 143
guidelines on how to expand your KIM from the basic small-but-
powerful KIM-1 system to a huge-and-super-powerful machine;
understanding the jargon; seeing what's available in both hardware
and software.

CONNECTING TO THE WORLD: 155
an introduction to the methods by which KIM can read or sense
other devices, and can in turn control other mechanisms.

POTPOURRI: 166
other useful pieces of information about your KIM system; reference
material, hints, etc.

r

Acknowledgments
Thanks to all who have supported the KIM-1/6502 User Notes, from which
much of this material was taken. A special thanks to Earl Nied for the use
of his KIM-interfaced Selectric.

The KlM-1 microcomputer is manufactured by Commodore/MOS Technol-
ogy, 950 Rittenhouse Road, Norristown, Pennsylvania 19401. It may be
obtained directly from the manufacturer or from many hobbyist computer
retail stores. At the time of writing, the complete KIM-1 system (less power
supply) sells for $245.

All programs in this book run on the basic KIM-1 system; two require an
audio amplifier.

A BEGINNER'S GUIDE TO KIM PROGRAMMING.'

Running programs can be fun. But writing programs can be
even more fun .. and exasperating, and exhilirating, too!

When you get the hang of it - and it will take time -
you'll be able to create your own games, diversions, or
useful routines. This section tries to introduce you to
the mechanics of programming, so you can find your own way
at your own speed.

Don't be afraid to use ideas from other parts of this book.
If you like, try changing parts of a program or two and see
what happens. And you can borrow whole sections of coding
from another program if it does something you want.

LOOKING AT MEMORY

Random Access Memory.

If you've just turned your KIM system onf press the
RS (Reset) button to get things started. Hit the following
keys: AD (for ADDRESS) 0 0 0 0 . You've just entered the
address of memory cell 0000, the lowest numbered one in
memory. The display will show 0000 (the number you
entered) on the left. On the right, you'll see the
contents of cell 0000: it will be a two digit number. That
number might be anything to start with; let's change it.

Press key DA (for DATA). Now you're ready to change the
contents of cell 0000. Key in 44, for example, and you'll
see that the cell contents have changed to 44.

Hit the + button, and KIM will go to the next address.
As you might have guessed, the address following 0000 is
0001. You're still in DATA mode (you hit the DA key,
remember?), so you can change the contents of this cell.
This time, put in your lucky number, if you have one.
Check to see that it shows on the right hand part of the
display.

This kind of memory - the kind you can put information into
- is called RAM, which stands for Random Access Memory.
Random access means this: you can go to any part of memory
you like, directly, without having to start at the lowest
address and working your way through. Check this by going
straight up to address 0123 and looking at its contents
(key AD 0 1 2 3); then address 0000 (key AD 0 0 0 0), which
should still contain the value 44 that we put there.

Hexadecimal Numbers

Now that you're back at address 0000, let's step through
several locations using the + key. Don't worry about
contents too much. 0001 will still contain your lucky
number, of course, but keep stepping with the + key until
you reach 0009. What will the next address be? Most people
would think that the next number should be 0010, and that
would be correct if KIM used the familiar decimal numbering
scheme. But KIM still has six more digits to go past 9,
because it uses a computer numbering scheme called
Hexadecimal. Hit the + key and you'll see address OOOA come
up.

Don't let the alphabetic confuse you - to KIM, A is just
the digit that comes after 9. And there are more digits to
come. Keep pressing the + button and you'll see that A is
followed by B, C, D, E and F. Finally, after address OOOF,
you'll see address 0010 appear.

A word about pronunciation: don't call address 0010 "ten";
say "one zero" instead. After all, it isn't the tenth value
after 0000; it's really the sixteenth (the word Hexadecimal
means: based on sixteen).

If you don't understand why the letters appear, don't worry
about it too much. Just understand, for the moment, that
the alphabetics represent genuine numbers. So if you're
asked to look at address 01EB, you'll know that it's a
legitimate address number like any other. And if you're
told to store a value of FA in there, go right ahead -
you're just putting a number into memory.

When you get time, you'll find lots of books that explain
Hexadecimal numbering in detail. There's even an appendix
in your 6502 Programming Manual on the subject. It makes
important and worth-while reading. But for now, just
recognize that although the numbers may look a little
funny, they are still exactly that: numbers.

Read Only Memory

So far, we've talked about one kind of memory, called RAM.
You recall that we said that you can store numbers into
RAM.

There's another kind of memory in KIM, but you can't store
numbers there. It's called ROM, for Read Only Memory. This
kind of memory contains fixed values that cannot be
changed.

For example, let's look at address 1C3A (key AD 1 C 3 A).
You'll see the value 18, and that value never changes. Try
it: press DA 6 6 to try to change the contents to 66. See
how it won't work?

ROM contains pre-stored programs which do important things
like lighting the display, detecting keyboard input, and
reading or writing your cassette tape. These programs are
called the Monitor. In fact, the name KIM stands for
Keyboard Input Monitor in recognition of the importance of
these programs. We'll talk briefly about the Monitor
programs later.

Special Memory Locations

A few addresses in KIM are connected to things that aren't
really memory at all. You can read up on them in the KIM
User Manual when you're ready; we'll just point out a few
examples here.

If you try to store a number into address 1700, for
example, you might find that instead of storing the value,
KIM will convert it to voltages and deliver these voltages
to certain pins on your Application Connector at the edge
of the board! Another example: address 1704 connects to a
very fast timer - look at that address and you'll see
"time going by" as a blur!

MINI-PROGRAM A; Swap the contents of two locations

This is our first beginner's program.

It doesn't do much: just exchanges the contents of
locations 0010 and 0011. But it's a start, and you'll
learn quite a few things about getting KIM programs
going.

CAUTION: Before running this or any other program, be
sure that you have set the contents of the KIM "vector"
locations as follows:

Set address 17FA to 00
Set address 17FB to 1C
Set address 17FE to 00
Set address 17FF to 1C

The first two locations are needed so that your SST
switch and ST key will work right. The last two make the
BRK (break) instruction behave properly. YOU MUST ALWAYS
SET UP THESE LOCATIONS AS SOON AS YOU TURN ON YOUR KIM
SYSTEM.

Loading the Program

We'll take time to describe how the program works later.
First, let's see how to load it. A listing usually
looks something like this:

0200 A5 10
0202 A6 11
0204 85 11
0206 86 10
0208 00

START LDA 10
LDX 11
STA 11
STX 10
BRK

address 10 to A
address 11 to X
A to address 11
X to address 10
stop the program

The business end of the program - the part that goes into
the computer - is the group of numbers on the left hand
side. The stuff on the right helps explain what the
program does.

If you look at the numbers on the left, you'll see that
the first one, 0200, looks like an address. That's
exactly what it is, and we can start by entering it with
AD 0 2 0 0. The next number is A5, and that will be its
contents. So hit DA A 5, and the display will confirm
that we've put it in.

Keep going on the same line. Each line of the program
listing may contain more than one value - for more than
one address.

The next value is 10, and it needs to go into 0201.
You don't need to enter the address. Just hit the +
key and there you are - enter 1 0 and you've got it.
Notice you didn't need to hit DA; you stay in Data mode
until you press the AD key. Continue to the next
line: just hit + A 6 + 1 1 and keep going until you've
put the 00 in location 0208. Congratulations! You've
loaded your first program. Now go back and check it
for correctness. Hit AD 0 2 0 0 and use the + key to
step through and check the values.

Now let's run the program and see if it works. First,
look at the contents of addresses 0010 and 0011. Make
a note of them; when the program runs, it will swap
those two values.

Keep in mind that loading the program doesn't make
anything happen. You have to run it to do the job -
and that's what we'll do next. ,

Running the Program

Set address 0200. That's where the first instruction
in the program is located - you may have noticed that
it's marked START in the listing. Now the display
shows 0200 A5, and we're ready to go. So - hit GO.
And the program will run.

Doesn't take long, does it? The display will have
changed to 020A xx. If the display shows any other
address, something's wrong. Check that your SST switch
is off (left), that the program is entered correctly,
and that your vectors are OK.

Your program ran in less than a fifty thousandth of a
second. No wonder you didn't see the display
flicker.

Now check that the program did indeed run correctly by-
looking at the contents^ of locations OQIO and CX011.
You'll see that they have been exchanged.

10

How it works

Inside the Central Processor (the heart of the
computer) are several temporary storages called
registers. You can LOAD many of these registers with
the contents of memory; and you can STORE the contents
of the registers into memory. The two registers we are
using here are called A and X.

If we Load A from address 10, A now contains a copy of
the contents of 0010. Location 0010 itself won't be
changed; it will also contain that number. We do the
same thing when we Load X from address 0011.

Now our A and X registers contain copies of the numbers
in 0010 and 0011 respectively. If we Store A into
address 0011, that address will now contain a copy of
the value in A - which was originally the contents of
address 0010, remember? Finally, we Store X into 0010
to complete the swap.

Look at the listing again. On the right hand side, we
have the program exactly as we have described it, but
abbreviated. You can see that LDA means Load A and so
forth. The BRK (Break) at the end stops the program.

Step by Step

Let's go through the program a step at a time -
literally. Maybe you're satisfied that it works. Even
so, follow this procedure. It will show you how to
test any KIM program.

First go back to addresses 0010 and 0011 and put a
couple of brand new numbers there. This will help you

the computer operating.

Bow set address 0200 again, but don't press GO yet.

V> 're going to "Single Step" our program, and see every
?truction work. So slide the SST (Single STep)

^•itch over to the right ... and then read the next ,
:tion carefully.

11

Seeing the Registers

Registers A and X, plus quite a few we haven't talked
about, are inside the 6502 microprocessor chip. There's
no way you can view them - they are buried deep within
the electronics.

To help you out, the KIM Monitor system will write out
a copy of these registers into memory where you can
inspect them. The contents of the A register may be
seen at address OOFS, and the contents of the X
register are at OOFS.

Don't be confused: These locations are not the actual
registers, just copies made for your convenience. But
it's a great convenience, for it allows you to see
everything that's going on inside the microprocessor.

A Small Step for a Computer, but ...

If you're set up at location 0200 and your SST switch
is on, hit the GO button once. The display will show
0202. That means: instruction at 0200 completed, ready
to do the one at 0202.

Okay, let's check everything in sight. The first
instruction was to load the A register, right? Enter
address OOFS and check that its contents (which
correspond to the contents of A) are indeed the value
from address 0010. If you like, look at 0010 and
confirm that it hasn't changed.

Now for a clever KIM touch. If you're ready to proceed
with the next instruction, hit PC (for Program Counter)
and you'll find yourself back at address 0202, ready to
perform the next instruction.

You've executed one instruction, performed one program
step. Remember this: No matter how complex the program,
it always operates one simple step at a time. And now
you know how to check out each step, individually.

Hit GO and execute one more instruction. Check it out -
remember that you'll find X at address OOFS.

12

From this point, find your own way through the last two
instructions. Don't bother about the BRK (Break); it
just stops the program. As the two registers are
stored, you'll want to check that the memory addresses
have been changed as expected.

Summary

The most important things that you've learned about
coding are:

—the BRK (code 00) command stops the program;
—the SST switch causes a single instruction to be

executed;
—the internal registers can be viewed.

BUT YOU MUST SET YOUR VECTORS PROPERLY (see the
beginning of this section) OR NONE OF THE ABOVE WILL
WORK!

A complete list of the register image addresses can be
found in the KIM User Guide on page 39, Fig. 3-13 -
when you need it.

From here on, you don't have to take anybody's word for
any KIM operation. You can go to your KIM, set SST,
and try it for yourself.

Exercises

1. Can you change the program so that it swaps the
contents of locations 0020 and 0021?

2. Billy Beginner wrote the following program to swap
the contents of locations 0010 and 0011:

0200 A5 10
0202 85 11
0204 A6 11
0206 86 10
0208 00

START LDA 10
STA 11
LDX 11
STX 10
BRK

put 0010 into A
store A to 0011
put 0011 into X
store X to 0010
stop

It didn't work. Can you see why?

3. Can you write a program to take the contents of
address 0010 and place the same value in locations
0011, 0012, and 0013?

13

MINI-PROGRAM B; Setting many locations to zero

Here's the program:

0200
0202
0204
0206
0207
0209

A9
A2
95
CA
10
00

00
09
30

FB

START

LOOP

LDA
LDX
STA
DEX
BPL
BRK

#0
19
30, X

LOOP

value 0 into A
start X at 9
zero into 0030+X
decrease X by 1
back if X positv
stop the program

This program, when you load and run it, will set the
value of the ten locations from 0030 to 0039 to zero.

We can't give you a whole programming course here.
Hopefully, you'll use the Programming Manual and the
single-step feature to trace-out exactly what the
program does. But here are a few highlights:

When we load registers A and X in the first two
instructions, we don't want to load the contents of a
memory location. Instead, we want the actual values 0
and 9. To do this, we use a new kind of addressing
called IMMEDIATE addressing.

Immediate addressing, when we use it, says "Don't go to
memory - use this value." Immediate addressing can be
spotted two ways. First, note the I sign that we use
in writing the program: that signals that we are using
immediate mode adressing. Secondly, you may have
noticed that the computer instruction (called the Op
Code) has changed: the previous program used code A5
to mean LDA; now we're using A9, which also means LDA
but signals immediate addressing.

You can - and should - use the SST feature to check
that immediate addressing works as advertised.

The instruction at 0204 uses the X register for
INDEXING. That means that instead of storing the A
value in address 30, the computer first calculates an
effective address by adding the contents of the X
register to the "base address" of 30. Since X contains
9 the first time through, the effective address will be
30+9 or 39 - and that's where we store our A value of
00. Later, X will be decreased to a value of 8, so
we'll store into address 38.

14

Indexing seems complicated, but remember that it's a
very powerful feature of KIM. Try to giet the hang of
it; it's well worth the effort.

The DEX instruction (Op Code CA) is the one that
decreases X from 9 to 8 (and later to 7, 6, 5 and so
on). Eventually, as this part of the program is
automatically repeated, X will reach a value of 00.
Finally, when we decrement X one more time, X will go
to value FF, which KIM "sees" as a negative number,
kind of like the value -1. KIM views all values in the
range 80 to FF as negative - when you're ready, the
Programming Manual will tell you more.

The BPL instruction at line 0207 is a CONDITIONAL
TEST. BPL means Branch plus. If the result of our
previous operation (Decrement X) gives us a positive,
or plus, number, we will branch back to address 0204
and repeat the instructions from that point. The X
values of 9, 8, 7 ... down through 0 are all positive
or plus; so each time we'll go back and set one more
location in memory to value zero. Finally, X becomes
equal to value FF - a negative number. So in this
case, BPL won't branch: the "plus" or "positive"
condition isn't satisfied.

This last time, since BPL doesn't take us back, we
proceed to the following instruction, BRK, which stops
the program. That's OK because we've done our job of
setting addresses 0030-0039 to value zero.

Single Step the program carefully, checking the value
of X from time to time (location OOF5, remember?).
Satisfy yourself that you can see it working.

By the way, that funny address on the branch
instruction (FB) is a special kind of addressing mode
called RELATIVE addressing. All branches use it; it's
worth reading up on.

Exercises

1. Can you change the program to place value 55 in the
above locations?

2. Can you change the program to place value 00 in
locations 0030 to 0037?

3. Can you change the program to place value FF in
locations OOAO to OOBF?

.
15

INTERLUDE - PROGRAM TESTING

You've met one very powerful tool for checking out
programs - the Single Step mode of operation. Let's
review it and talk about a few others.

The SST mode is especially useful because you can pause
between instructions and look at memory or registers.
The register values are copied into memory locations
from OOEF to OOF5, and while they are not real
registers, just copies, they are just as good for
testing purposes. Not only can you look at them, you
can change them to new values. This ability to change a
register can be handy in solving the "what if ... " type
of question, or shortening testing of a loop.

For example, if you are single-stepping through
mini-program B and you don't want to go around the loop
a full ten times, you might use this trick. Go around a
couple of times to get the loop started, and then change
X (OOFS) to a much lower value, say 1 or 2. Go back to
single-stepping. A couple more turns around the loop,
and you're out. Using this method, you won't have set
the whole ten locations to zero, of course. But you
will see that the loop itself is working right.

The Inserted BRK (Break)

Sometimes SST seems slow. You might have a long
program, and you're sure that the first part is
working. What you want is a way to run directly through
the first bit, and then stop and single-step the rest.

It's not hard. Decide where you want the program to
stop, so you can start single-stepping. Then put a BRK
command, code 00, at that point.

You'll have to wipe out a live instruction, of course,
but that's OK. You can put it back after the halt has
happened.

Let's try doing that on mini-program B. Let's say we
want to run straight through to the BPL instruction at
0207, and then single-step from that point on.

16

Change 0207 (previously 10) to value 00, the BRK
command. Now go to the beginning of the program
(0200), be sure SST is off, and hit GO. You'll see
0209 00 on the display, which tells you that the halt
at 0207 has worked. Now go back to 0207, put the value
of 10 (for BPL) back in, set the SST switch on, and
you're ready to step. Easy? You bet - and you can save
lots of time this way in testing big programs.

No Operation (NOP, code EA)

It sounds funny, but a very handy instruction is one
that doesn't do anything. When the microprocessor
encounters Op Code EA (NOP), it does nothing - just
passes on to the next instruction.

The biggest use of the NOP instruction is to take out
another instruction that you don't want any more; or to
leave room in the coding to add another instruction
later if you need to.

Some programmers write their programs in sections, and
at first they put a BRK instruction between each
section. That way, when they are testing, the program
will stop after each part, and they can check to see
that each part runs OK. When they are finished
testing, they change the BRK's to NOP's and the program
will run straight through.

The ST (Stop) Key

When everything is under control in program testing,
you won't need the ST key. But sometimes the program
'gets away1 on you - and the only way to find out what
it's doing is to use this key.

Let's wreck mini-program B by wiping out the DEX
instruction. We'll do this by replacing it with a NOP;
so write value EA into location 0206. What will
happen?

When we run the program, the X register will never
change from its starting value of 9 because we don't
have a DEX instruction. So the program will keep
branching back to LOOP forever, and it will never
stop. We've created this situation artificially, of
course, but it could have happened by oversight when we
were writing the program.

17

Set address 0200, SST off, and hit GO. Everything goes
dead. Our program is running but it will never stop.
Meanwhile, the display is dark. This time we know why
it's happening. But if we didn't, how would we solve
it?

Press ST - stop - and the computer will freeze. The
display will light showing the next instruction we were
about to execute. If we wanted to pinpoint the
trouble, we could flip over to SST now and track the
problem down, step by step.

A last comment on the ST button: If the display goes
dark and pressing ST doesn't relight it, the computer
has a different problem. It has gone berserk due to a
completely illegal Op Code. Press the RS (Reset)
button; now you'll need to start over and use the BRK
and SST features to track down the trouble.

18

MINI-PROGRAM C; Displaying values

KIM has a 6-digit display. You can show information on
the display quite easily, if you know how.

In the KIM Monitor programs there are several packages
called subroutines that you can call upon to do
certain jobs. You could write the same coding for
these jobs yourself; but use the Monitor subroutines to
save time and trouble.

When you give the command JSR SCANDS (coded 20 IF IF),
the Monitor will briefly light the display with the
data it finds in addresses OOFB, OOFA, and OOF9.
That's three locations, each displaying as two digits,
so the full six-digit display is filled.

"Briefly" means exactly that. The display lights for a
split second. To get a steady display, you must repeat
the JSR SCANDS command over and over again. Use a
loop, of course; no point in filling up your program
with JSR SCANDS instructions.

You should also know that when you call this Monitor
subroutine, the contents of your registers are wiped
out. So if you have something important in the A
register that you will want to use after giving JSR
SCANDS, be sure to put it safely somewhere in memory or
you'll lose it. The same goes for other registers like
X and Y.

Here's a simple program to show 0000 00 on the
display. Note that we must put the value 00 into
addresses FB, FA, and F9 before we call JSR SCANDS.

0200
0202
0204
0206
0208
020B

A9
85
85
85
20
4C

00
FB
FA
F9
IF
08

IF
02

START LDA
STA
STA
STA

LOOP JSR
JMP

#0
POINTH
POINTL
INK
SCANDS
LOOP

zero
first
next
last
light
do it

into A

2
2

2 digits
digits
digits
up!
again

19

This program never ends, so eventually you'll have to
stop it with the RS or ST keys. See how the last
instruction jumps back to address 0208 so the display
is lit continuously? Another interesting point: see
how the jump address at 020B is "backwards" - 08 02
instead of 0208? This is called "low order first"
addressing and you'll see a lot of it on the KIM
system.

The single-step feature doesn't work too well on
Monitor subroutines. That's normal, and it's not
serious. These subroutines are well tested and
dependable, so you shouldn't need to use SST with
them.

Exercises

1. Can you change the program to make the display show
5555 55?

2. Can you write a program to make the display show
1234 56?

3. How about a program to show the word EFFACE? or
FACADE? or COOCOO?

20

MINI-PROGRAM D; reading the keypad

To read the KIM pushbuttons you have another Monitor
subroutine called GETKEY. You "call" it with
JSR GETKEY (20 6A IF). This subroutine will give you
the identity of the key that is being pressed at that
moment as a value in the A register. You can continue
by using this value any way you want. If no key is
being pressed at the time, you'll get a value of 15 in
A.

There are a couple of cautions on the use of
JSR GETKEY. First, you must not be in Decimal Mode.
If you're not sure about this, give a CLD (D8)
instruction at the beginning of your program.
Secondly, before giving JSR GETKEY, you must "open up
the channel" from the keyboard with either one of two
subroutines: JSR SCANDS or JSR KEYIN. You've met
JSR SCANDS before: it's used to light the display. If
you don't want to light the display, use JSR KEYIN
(20 40 IF) before using JSR GETKEY.

This program reads the keyboard and displays what it
sees:WJ^Vi 0 •

0200
0201
0203
0205
0207
0209
020C
020F

D8
A9
85
85
85
20
20
4C

00
FB
FA
F9
IF
6A
03

START CLD
LDA

STORE STA
STA
STA

IF JSR
IF JSR
02 JMP

clr dc mode
#0
POINTH
POINTL
INK
SCANDS
GETKEY
STORE

zero into A

light display
test keys

Exercises

1. Do you think that the instruction at 0201 is really
needed? Try removing it (change 0201 and 0202 to EA)
and see.

2. What values do you get for the alphabetic keys? For
keys like PC and GO? Are there any keys that don't
work with JSR GETKEY?

3. Try running in decimal mode (change 0200 to SED,
code F8). What happens? Is it serious? How about key
F?

4. Can you change the program so that only the last
digit of the display changes with the keyboard?

21

CONCLUSION

You've reached the end of our little Beginner's Guide.
But you've only started on the road towards
understanding programming.

Use the tools we have given you here to forge your own
path. KIM is a very rich machine. You have 56 Op
Codes to choose from, and many powerful addressing
combinations. You don't need to learn them all right
away, but when you need them, they'll be there.

The KIM Programming Manual makes good reading. Don't
try to go through the whole thing at one sitting. Stop
and try a few things; you have the Single Step feature
to help you understand what each instruction really
does.

Try leafing through - or stepping through - other
people's programs, to understand what makes them tick.
Change the coding, if you like, to see what happens.
When you see a program that does something you want to
do, borrow the coding - you don't need to re-invent the
wheel.

Don't be discouraged when your program doesn't work on
the first try. Even experts have to spend time getting
the "bugs" out of their coding. It's part of the
game: Think of yourself as Sherlock Holmes,
methodically tracking down the elusive villains.

A proverb says that a journey of a thousand miles
starts with the first step. In the same way, the
biggest programs still operate one step at a time.

So forge ahead at your own speed. Communicate with
other KIM owners; you'll have a lot of information to
swap.

But most of all: have fun.

22

RECREATIONAL
PROGRAMS

Clear Decimal Mode: Set 00?1 to 00 before running these programs.

ADDITION BY JIM BUTTERFIELD

DIRECTIONS -

HERE'S A HANDY LITTLE ADDING MACHINE PROGRAM. KIM BECOMES
A SIX DIGIT ADDER. "GO" CLEARS THE TOTAL SO YOU CAN START
OVER. THEN ENTER A NUMBER AND HIT THE PLUS KEY TO ADD IT
TO THE PREVIOUS TOTAL. IF YOU MAKE A MISTAKE IN ENTERING
A NUMBER, JUST HIT THE "0" KEY SEVERAL TIMES AND ROLL THE
BAD NUMBER OUT BEFORE ENTERING THE CORRECTION. NO OVERFLOW
INDICATOR, AND NO SUBTRACTION OR MULTIPLICATION - MAYBE YOU
WOULD LIKE TO TRY YOUR HAND AT ADDING THESE. THE PROGRAM
IS FULLY RELOCATABLE.

0200 20 IF IF START
0203 20 6A IF
0206 C5 60
0208 FO F6
020A 85 60
020C C9 OA
020E 90 29
0210 C9 13
0212 FO 18
0211* C9 12
0216 DO E8
0218 F8 18
021A A2 FD
021C B5 FC ADD
021E 75 65
0220 95 FC
0222 95 65
022ii E8
0225 30 F5
0227 86 61
0229 D8
022A 10 DU
022C A9 00 DOGO
022E 85 61
0230 A2 02
0232 95 F9 CLEAR
023k CA
0235 10 FB
0237 30 C 7
0239 Al* 61 NUM
023B DO OF
023D E6 61
023F 1*8
021*0 A2 02

JSR SCANDS
JSR GETKEY
CMP PR3V
BEQ START
STA PREV
CMP #$OA
BCC NUM
CMP #$13
BEQ DOGO
CMP #$12
BNE START
SED CLC
LDX #$FD
LDA POINTH+1,X
ADC ACCUM+3,X
STA POINTH-»-l,X
STA ACCUM+3,X
INX
BMI ADD
STX FIAG
CLD
BPL START
LDA #0
STA FLAGLDX n
STA INH,X
DEX
BPL CLEAR
BMI START
LDY FIAG
BNE PASS
INC FIAG
PHA
LDX #2

light display
read keyboard
same as last time?
yes, skip
no, save new key
numeric key?
yes, branch
GO key?
yes, branch
+ key?
no, invalid key
prepare to add
minus 3; 3 digits
display digit
add total
total to display
& to total accum

next digit
last digit?
flag total-in-disnlay

return to start
set flap for
total- in- di SDlay
for 3 digits . . .
clear disnlay
next digit
last digit?
finished, back to go
total-in-display?
no, add new digit
clear t-i-d flag
save key
3 digits to move

24

02^2 B5 F9
02UU 95 62
02U6 9U F9
02U8 CA
02U9 10 F7
02UB 68
02i|C OA OA
02l|E QA OA
0250 A2 OU
02^2 OA
0253 26 F9
0255 26 FA
0257 26 FB
0259 CA
025A DO F6
025C FO A2

MOVE IDA INK, I
STA ACCUM,X
STY INH,X
DEX
BPL MOVE
PLA

PASS ASL A ASL A
ASL A ASL A
LDX #b

SHIFT ASL A
ROL INH
ROL POINTL
ROL POINTH
DEX
BNE SHIFT
BEQ START

get display digit
copy to total Accum
clear display
next digit
last digit?
recall key
move digit..
..into position
h bits
move bit from A
..to INH..
..to rest of

display
next bit
last bit?
yes. back to start

«xxx:: HEX DUMP - ADDITION KXXJCX

0200 20 IF IF 20 6A IF C5 60 FO F6 85 60 C9 OA 90 29
0210 C9 13 FO 18 C9 12 DO E8 F8 18 A2 FD B5 FC 75 65
0220 95 FC 95 65 E8 30 F5 86 61 D8 10 D4 A9 00 85 61
0230 A2 02 95 F9 CA 10 FB 30 C7 A4 61 DO OF E6 61 48
0240 A2 02 B5 F9 95 62 94 F9 CA 10 F7 68 OA OA OA OA
0250 A2 04 OA 26 F9 26 FA 26 FB CA DO F6 FO A2

NOTE: WHENEVER SPACE PERMITS, A HEX DUMP OF THE
PROGRAMS LISTED WILL BE GIVEN. THESE DUMPS
WERE TAKEN FROM ACTUAL RUNNING PROGRAMS. SO,
IF THERE IS A DISCREPANCY BETWEEN THE LISTING
AND THE DUMP, THE LISTING IS MOST PROBABLY IN
ERROR.

25

ASTEROID BY STAN OCKERS

YOU ARE PILOTING YOUR SPACECRAFT BETWEEN MARS AND JUPITER WHEN
YOU ENCOUNTER A DENSE PORTION OF THE ASTEROID BELT. PRESS KEY
ZERO TO MOVE LEFT, THREE TO MOVE RIGHT. WHEN YOUR CRAFT IS HIT
THE DISPLAY WILL GIVE A NUMBER TO INDICATE HOW SUCESSFUL YOU
WERE. THE PROGRAM STARTS AT 0200.

26

0200
0202
0204
0206
0208
020A
020D
020F
0210
0212
0214
0216
0218
02 1A

. 021D
0220
0221
0223
0226
0229
022B
022D
022F
0231
0233
0235
0237
Q239
023B
023D
023F
0241
0243
0244
0246

A9 00
85 F9
85 FA
85 FB
A2 06
BD CE 02
95 E2
CA
10 F8
A5 E8
49 FF
85 E8
A2 05
20 48 02
20 97 02
CA
DO F7
20 40 IF
20 6A IF
C9 15
10 E5
C9 00
FO 06
C9 03
FO OA
DO DB
06 E7
A9 40
C5 E7
DO D3
46 E7
DO CF
38
26 E7
DO CA

LDA tt$00
STA 00 F9
STA OOFA
STA 00 FB
LDX tt$06

INIT LDA 02CE/X
STA OOE2,X
DEX
BPL INIT

TOGG LDA OOE8
EOR #$FF
STA OOE8
LDX tt$05

LITE JSR DISP
JSR CHEK
DEX
BNE LITE
JSR KEYIN
JSR GETKEY
CMP ti$15
BPL TOGG
CMP tt$00
BEQ LEFT
CMP tt$03
BEQ RT
BNE TOGG

LEFT ASL OOE7
LDA tt$40
CMP OOE7
BNE TOGG

RT LSR OOE7
BNE TOGG
SEC
ROL OOE7
BNE TOGG

...INITIALIZE COUNTER...

...INITIALIZE OOE2-OOE8

...TOGGLE OOE8...

CFLASHER FLAG)
DELAY BETWEEN FLASHES
DISPLAY AND..
CHECK FOR MATCH

SET DIRECTIONAL REGS.
GET KEYBOARD ENTRY
A VALID KEY?
NO
KEY 0?
YES, GO LEFT
KEY 3?
YES, GO RIGHT
NOT A VALID KEY
SHIFT CRAFT LEFT
LEFT HAND EDGE?

NO, RETURN
SHIFT RIGHT
NOT RIGHT SIDE, RETURN
OFF EDGE, RETURN TO
RIGHT SIDE
RETURN

—" DISPLAY SUBROUTINE -""
0248
024A
024D
024F
0252
0254
0256
0258
025A

A9 7F
8D 41 17
A9 09
8D 42 17
A9 20
85 EO
AO 02
A9 00
85 El

DISP LDA tt$7F
STA 1741
LDA tt$09
STA 1742
LDA tt$20
STA OOEO

BIT LDY tt$02
LDA tt$00
STA OOE1

PORT TO OUTPUT

INIT. DIGIT

BIT POSITION TO
6TH BIT
3 BYTES
ZERO CHARACTER

025C
025E
0260
0262
0264
0267
0269
026A
026C
026E
0270
0272
0274
0276
0278
02 7A
027D
027F
0282
0285
0287
0289
028C
028F
0292
0294
0296

0297
0299
029B
029D
029F
02AO
02A1
02 A3
02A4
02A5
02A7
02A9
02AB
02 AC
02AE
02AF
02BO
02B1
02B3
02B5
02B7
02B9
02BB
02BD
02BF
02C1

Bl
25
FO
A5
19
85
88
10
A5
C4
DO
A4
C4
DO
09
8D
A9
8D
AD
FO
A9
8D
EE
EE
46
DO
60

C6
DO
A9
85
8A
48
A2
F8
38
B5
69
95
E8
DO
D8
68
AA
E6
A5
C9
FO
AO
A5
31
DO
60

E2
EO
07
El
E4
El

FO
El
E8
08
EO
E7
02
08
40
30
06
07
FB
00
40
42
42
EO
CO

E9
1A
30
E9

FD

FC
00
FC

F7

E2
E2
30
09
00
E7
E2
07

BYTE IDA
AND

(OOE2),Y
OOEO

BEQ NOBT
LDA

00 ORA
STA
DEY
BPL
LDA
CPY
BNE
LDY
CPY
BNE
ORA

17 DIGT STA
LDA

17 STA
17 DELA LDA

BEQ
LDA

17 STA
17 INC
17 INC

LSR
BNE
RTS

OOE1
OOE4,Y
OOE1

BYTE
OOE1
OOE8
DIGT
OOEO
OOE7
DIGT
tt$08
1740
tt$30
1706
1707
DELA
tt$00
1740
1742
1742
OOEO
BIT

»""" CHECK SUbKUUiiiNt "•
CHEK DEC OOE9

BNE
LDA
STA
TXA
PHA
LDX
SED
SEC

NXTB LDA
ADC
STA
I NX
BNE
CLD
PLA
TAX
INC
LDA

MORE CMP
BEQ

MATCH LDY
LDA
AND
BNE
RTS

MORE
tt$20
OOE9

#$FD

OOFC,X
tt$00
OOFC,X

NXTB

OOE2
OOE2
#$30
RECY
tt$00
OOE7
OOE2,Y
FIN

GET BYTE
NTH BIT = 1?
NO, SKIP
YES, UPDATE
CHARACTER

NEXT BYTE
CHAR. IN ACCUM.
SHIP ON?
NO, SKIP
IS THIS SHIP
DIGIT?
NO, SKIP
ADD IN SHIP
LIGHT DIGIT
DELAY (DIGIT ON)

TIME UP?
NO
TURN OFF SEGMENTS

SHIFT TO NEXT DIGIT

SHIFT TO NEXT BIT
MORE BITS

DEC. TIMES THRU COUNT
SKIP IF NOT 48TH TIME
RESET TIMES THRU COUNT

SAVE X

NEGATIVE 3 IN X
DECIMAL MODE
(TO ADD ONE)
..INCREMENT COUNTER
WHICH IS MADE OF BYTES
IN DISPLAY AREA (OOF9-
OOFB)..
NEXT BYTE

RETURN X

..SET UP FOR NEXT GROUP
OF BYTES..
ALL GROUPS FINISHED?
YES, RECYCLE ASTR. FIELD
SHIP - ASTEROID MATCH?
LOAD CRAFT POSITION
AND WITH ASTEROID BYTE
IF MATCH, YOU'VE HAD IT
EXIT MATCH SUBROUTINE

27

02C2
02C4
02C6
02C8
02CB

02CE
02CF
02DO
02D1
02D2
02D3
02D4

A9 00
85 E2
FO Fl
20 IF IF
ifC C8 02

RECY LDA #$00
STA OOE2
BEQ MATCH

FIN JSR SCANDS
JMP FIN

D5 LOW POINTER, ASTEROID
02
08
40
01
04
FF

HIGH POINTER, ASTEROID
MASK, BOTTOM SEGMENT
MASK, MIDDLE SEGMENT
MASK, TOP SEGMENT
CRAFT POSITION
FLAG (SHIP ON)

GO THRU ASTEROID FIELD
AGAIN
UNCONDITIONAL BRANCH
DISPLAY COUNT
CONTINUOUSLY

BELT
BELT

02D5-
02E5-
02F5-
0305-

00
16
2E
10

00
00
00
00

00
29
09
00

04
00
00

00 08
16 00
IB 00

00 06
2B 00
24 00

12
26
15

00
00
00

11 00
19 00
39 00

05 00
17 00
OD 00

2C 00
38 00
21 00

:{:{"::" HEX DUMP - ASTEROID "5««"«

0200-
0210-
0220-
0230̂
0240-
0250-
0260-
0270-
0280-
0290-
02AO-
02BO-
02CO-
02DO-
02EO-
02FO-
0300-

pO,

A9
10
CA
06
E7
42
FO
DO
06
42
48
AA
07
08
00
00
00

.
00
F8
DO
C9
DO
17
07
08
17
17
A2
E6
60
40
05
17
OD

85 F9
A5 E8
F7 20
03 FO
CF 38
A9 20
A5 El
A4 EO
AD 07
46 EO
FD F8
E2 A5
A9 00
01 04
00 2C
00 38
00 21

5

85
49
40
OA
26
85
19
C4
17
DO
38
E2
85
FF
00
00
00

FA 85
FF 85
IF 20
DO DB
E7 DO
EO AO
E4 00
E7 DO
FO FB
CO 60
B5 FC
C9 30
E2 FO
00 00
16 00
2E 00
10 00

-7 *

FB A2
E8 A2
6A IF
06 E7
CA A9
02 A9
85 El
02 09
A9 00
C6 E9
69 00
FO 09
Fl 20
00 04
29 00
09 00
00 , ~

1
06
05
C9
A9
7F
00
88
08
8D
DO
95
AO
IF
00
16
IB

A p
BD CE
20 48
15 10
40 C5
8D 41
85 El
10 FO
8D 40
40 17
1A A9
FC E8
00 A5
IF 4C
08 00
00 2B
00 24

c
02
02
E5
E7
17
Bl
A5
17
EE
30
DO
E7
C8
06
00
00

O
95
20
C9
DO
A9
E2
El
A9
42
85
F7
31
02
12
26
15

^T
E2 CA
97 02
00 FO
D3 46
09 8D
25 EO
C4 E8
30 8D
17 EE
E9 8A
D8 68
E2 DO
D5 02
00 11
00 19
00 39

CHANGES -
YOU CAN MAKE YOUR OWN ASTEROID FIELD STARTING AT 02D5. THE
GROUP COUNT, C02B6), WILL HAVE TO BE CHANGED IF THE FIELD SIZE
DIFFERS. THE SPEED OF THE CRAFT MOVING THROUGH THE FIELD IS
CONTROLLED BY 027E.'' WHAT ABOUT A VARYING SPEED, SLOW AT FIRST
AND SPEEDING UP AS YOU GET INTO THE FIELD? WHAT ABOUT A FINAL
"DESTINATION COUNT" AND A SIGNAL TO INDICATE YOU HAVE REACHED
YOUR DESTINATION? HOW ABOUT ALLOWING A HIT OR TWO BEFORE YOU
ARE FINALLY DISABLED?

28

x:c::;::: ASTEROID FIELD «•»»'"

BAGELS BY JIM BUTTERFIELD

DIRECTIONS -
THE COMPUTER HAS CHOSEN FOUR LETTERS, ALL OF WHICH ARE

A,B,C,D,E, OR F. LETTERS MAY BE REPEATED - FOR EXAMPLE,
THE COMPUTER'S "SECRET" COMBINATION MIGHT BE CACF OR BBBB.

YOU GET TEN GUESSES. EACH TIME YOU GUESS, THE COMPUTER
WILL TELL YOU TWO THINGS: HOW MANY LETTERS ARE EXACTLY CORRECT
(THE RIGHT LETTER IN THE RIGHT PLACE); AND HOW MANY LETTERS
ARE CORRECT, BUT IN THE WRONG POSITION.

FOR EXAMPLE, IF THE COMPUTER'S SECRET COMBINATION IS
CBFB AND YOU GUESS BAFD, THE TWO NUMBERS WILL BE 1 AND 1
(THE F MATCHES EXACTLY; THE B MATCHES BUT IN THE WRONG PLACE).
THESE NUMBERS WILL SHOW ON THE RIGHT HAND SIDE OF THE DISPLAY;
THE CODE YOU ENTERED WILL APPEAR ON THE LEFT.

MAKE A NOTE OF YOUR GUESSES AND THE COMPUTER'S RESPONSE.
WITH A LITTLE MENTAL WORK, YOU SHOULD BE ABLE TO BREAK THE
CODE EXACTLY IN SEVEN OR EIGHT WORDS. A CORRECT GUESS WILL
PRODUCE A RESPONSE OF if - 0. IF YOU DON'T GUESS RIGHT IN
TEN MOVES, THE-COMPUTER WILL GIVE YOU THE ANSWER.

AFTER A CORRECT GUESS, OR AFTER THE COMPUTER TELLS YOU
THE ANSWER, IT WILL START A NEW GAME (WITH A NEW SECRET CODE)
THE INSTANT YOU TOUCH A NEW KEY.

0200 E6 16 GO
0202 20 40 IF
0205 DO F9
020? D8
0208 A9 OA NEW
020A 85 18
020C A9 03
020E 85 10
0210 38 RAND
0211 A5 13
0213 65 16
0215 65 1?
0217 85 12
0219 A2 04
021B B5 12 RLP
021D 95 13
021F CA
0220 10 F9
0222 A6 10
0224 AO CO
0226 84 11
0228 AO 06
022A C5 11 SET
022C 90 02
022E E5 11
0230 46 11 PASS
0232 88
0233 DO F5
0235 18
0236 69 OA

INC RND+4
JSR KEYIN
BNE GO
CLD
LDA #$OA
STA COUNT
LDA #3
STA POINTR
SEC
LDA RND+1
ADC RND+4
ADC RND+5
STA RND
LDX #4
LDA RND,X

randomize
on pushbutton delay

ten guesses/game
new game starting
create 4 mystery codes

one plus ...
. . . three previous

random numbers

=new random value

move random numbers over
STA RND+1, X
DEX
BPL RLP
LDX POINTR
LDY #$CO
STY MOD
LDY #6
CMP MOD
BCC PASS
SBC MOD
LSR MOD
DEY
BNE SET
CLC
ADC #$OA

divide by 6
keeping remainder

continue division

random value A to F

29

0238 95 00
023A C6 10
023C 10 D2
023E C6 18
0240 30 7 A
02*4-2 A9 00
0244 A2 OC
0246 95 04
0248 CA
0249 10 FB

024B 20 CE 02
024E FO FB
0250 20 CE 02
0253 FO F6
0255 A5 08
025? FO 08
0259 29 60
025B 49 60
025D FO A9
025F DO DD
0261 20 6A IF
0264 C9 10
0266 BO E3
0268 09 OA
026A 90 DF
026C A8
026D A6 10
026F E6 10
0271 B9 E7 IF
0274 95 04
0276 98
0277 D5 00
0279 DO 03
027B E6 OE
027D 8A
027E 95 OA
0280 A5 07
0282 FO 31
0284 AO 03
0286 B9 oA 00
0289 29 18
028B FO 12
028D B9 00 00
0290 A2 03
0292 D5 OA
0294 FO 05
0296 CA
0297 10 F9
0299 30 04
029B E6 OF
029D 16 OA
029F 88
02AO 10 E4

STA SECRET, X
DEC POINTR
BPL RAND

GUESS DEC COUNT new guess starts here
BMI FINISH ten guesses?
LDA #0
LDX #$OC clear from WINDOW. . .

WIPE STA WINDOW, X ...to POINTR
DEX
BPL WIPE

•

'; WAIT FOR KEY TO BE DEPRESSED
•

WAIT JSR SHOW
BEQ WAIT
JSR SHOW
BEQ WAIT debounce key
LDA WINDOW+4 new guess?
BEQ RESUME no, input digit
AND #$60
EOR #$60 previous game finished?
BEQ NEW ...yes, new game;
BNE GUESS ...no, next guess

RESUME JSR GETKEY
CMP #$10 guess must be in
BCS WAIT range A to F
CMP #$OA
BCC WAIT
TAY
LDX POINTR zero to start
INC POINTR
LDA TABLE, Y segment pattern
STA WINDOW, X
TYA
CMP SECRET, X exact match?
BNE NOTEX
INC EXACT
TXA destroy input

NOTEX STA INPUT, X
LDA WINDOW+3 has fourth digit arrived?
BEQ BUTT . . .no
LDY #3 ...yes, calculate matches

STEP LDA INPUT ,Y for each digit:
AND #$18 . .has it already been
BEQ ON matched?
LDA SECRET, Y
LDX #3 if not, test

LOOK CMP INPUT, X ...against input
BEQ GOT
DEX
BPL LOOK
BMI ON

GOT INC MATCH increment counter
ASL INPUT, X and destroy input

ON DEY
BPL STEP

30

02A2
02A4
02A6
02A9
02AB
02AC
02AE
02B1
02B3
02B5
02B8
02BA

02BC
02BE
02CO
02C3
0205
02C6
0208
02CA
02CC

A2
B4
B9
95
CA
10
20
E6
DO
20
DO
FO

A2
B4
B9
95
CA
10
A9
85
DO

01
GE
E7
08

F6
CE
OF
F9
CE
FB
8F

03
00
E7
04

F6
E3
08
EO

TRANS
IF

02 DELAY

02 BUTT

J
!
•
FINISH
FIN2

IF

LDX
LDY
LDA
STA
DEX
BPL
JSR
INC
BNE
JSR
BNE
BEQ

TEN

LDX
LDY
LDA
STA
DEX
BPL
LDA
STA
BNE

#1
EXACT, X
TABLE, Y

display counts

WINDOW+4.X

TRANS
SHOW
MATCH
DELAY
SHOW
BUTT
WAIT

GUESSES

#3
SECRET, X
TABLE , Y
WINDOW, X

FIN2
#$e3 '
WINDOW+4

long pause for debounce

wait for key release

MADE - SHOW ANSWER

square ' flag

DELAY unconditional jimp

SUBROUTINE TO DISPLAY
AND TEST KEYBOARD

02CE AO 13 SHOW
02DO A2 05
02D2 A9 7F
02D4 8D 41 17
02D7 B5 04 LITE
02D9 8D 40 17
02DC 80 42 17
02DF E6 11 POZ
02E1 DO FC
02E3 88
02E4 88
02E5 CA
02E6 10 EF
02E8 20 40 IF
02EB 60

LDY #$13
LDX #5
LDA #$7F
STA PADD
LDA WINDOW, X
STA SAD
STY SBD
INC MOD pause loop
BNE POZ
DEY
DEY
DEX
BPL LITE
JSR KEYIN
RTS
END

Program notes t
1. Program enforces a pause of about 4 seconds after

displaying counts or answer. This guards against
display being 'missed1 due to bounce, hasty keying.

2. After count displayed, or at end of game(s), user
can blank display, if desired, by pressing GO or
any numeric key. Game operation is not affected,
but user may feel it 'separates' games better.

31

When a digit from the user's guess is matched, it
is destroyed so that it will not be matched again.
There are two significantly different types of
'destruction1, however (at 2?D and 29D); the test
at label STEP is sensitive to which one is used.

0000
0004
OOOA
OOOE
OOOF
0010
0011
0012
0018

LINKAGES TO KIM MONITOR
•

KEYIN =551F^O
GETKEY =:;iF6A
TABLE ={>1FE7
PADD =!517*H
SBD =5 517^-2
SAD =J51740
*

; WORK AREAS

SECRET *=*+̂ computer's secret code
WINDOW *=*+6 display window
INPUT *=*+4 player"s input area
EXACT #=*+! # of exact matches
MATCH *=*+! # of other matches
POINTR *=*+! digit being input
MOD *=*+! divisor/delay flag
RND *=*+6 random number series
COUNT *=*+! number of guesses left

ttxxswe HEX DUMP - BAGELS --""»

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02AO
02BO
02CO
02DO
02EO

E6 16 20
38 A5 13
10 F9 A6
46 11 88
30 7A A9
20 CE 02
DD 20 6A
10 B9 E7
A5 07 FO
A2 03 D5
10 E4 A2
02 E6 OF
B9 E7 IF
A2 05 A9
11 DO FC

40 IF
65 16
10 AO
DO F5
00 A2
FO F6
IF C9
IF 95
31 AO
OA FO
01 B4
DO F9
95 04
7F 8D
88 88

DO F9
65 17
CO 84
18 69
OC 95
A5 08
10 BO
04 98
03 B9
05 CA
OE B9
20 CE
CA 10
41 17
CA 10

D8 A9
85 12
11 AO
OA 95
04 CA
FO 08
E3 C9
D5 00
OA 00
10 F9
E7
02

IF
DO

F6 A9
B5 04
EF 20

OA 85
A2 04
06 C5
00 C6
10 FB
29 60
OA 90
DO 03
29 18
30 04
95 08
FB FO
E3 85
8D 40
40 IF

18 A9
B5 12
11 90
10 10
20 CE
49 60
DF A8
E6 OE
FO 12
E6 OF
CA 10
8F A2
08 DO
17 8C
60

03 85 10
95 13 CA
02 E5 11
D2 C6 18
02 FO FB
FO A9 DO
A6 10 E6
8A 95 OA
B9 00 00
16 OA 88
F6 20 CE
03 B4 00
EO AO 13
42 17 E6

32

Label Table for Program BAGELS
ADDRESS LABEL WHERE USED

02B5
0018
02AE
OOOE
02BE
02BC
1F6A
0200
029B
023E
OOOA
1F40
02D7
0292
OOOF
0011
0208
027E
029F
174]
0230
0010
02DF
0210
0261
021B
0012
1740
1742
0000
022A
02CE
0286
1FE7
02A4
024B
0246
0004

BUTT
COUNT
DELAY
EXACT
FIN2
FINISH
GETKEY
GO
GOT
GUESS
INPUT
KEYIN
LITE
LOOK
MATCH
MOD
NEW
NOTEX
ON
PADD
PASS
POINTR
POZ
RAND
RESUME
RLP
RND
SAD
SBD
SECRET
SET
SHOW
STEP
TABLE
TRANS
WAIT
WIPE
WINDOW

0282
020A
02B3
027B
02C6
0240
0261
0205
0294
025F
027E
0202
02E6
0297
029B
0226
025D
0279
0299
02D4
022C
020E
02E1
023C
0257
0220
0200
02D9
02DC
0238
0233
024B
02AO
0271
02 AC
024B
0249
0246

02B8
023E
02CC
02A4

0286 0292 029D
02E8

02B1
022A 022E 0230 02DF

0222 023A 026D 026F

0211 0213 0215 0217 021B 021D

0277 028D 02BE

0250 02AE 02B5

02A6 02CO

0253 0266 026A 02BA

0255 0274 0280 02A9 02C3 02CA 02D7

Label tables, when available, are often useful
for studying a program. For each label (alphabetically
arranged) you can see, on the left, the address
belonging to the label; and on the right, where the
label is used in the program.

33

BANDIT JIM BUTTERFIELD

Start the program at 0200 and on the right, you'll see the $25
that KIM has given you to play with. The funny symbols on the
left are your "wheels" - hit any key and see them spin.

Every time you spin the wheels by hitting a key it costs you $1.
When the wheels stop, you might have a winning combination,
in which case you'll see money being added to your total
on the right. Most of the time, you'll get nothing ...
but that's the luck of the game.

The biggest jackpot is $15: that's three bars across the
disolay. Other combinations pay off, too; you'll soon learn
to recognize the "cherry" symbol, which pays $2 every time
it shows in the left hand window.

There's no house percentage, so you can go a long time on
your beginning $25. The most you can make is $99; and if
you run out of money, too bad: KIM doesn't give credit.

-77V
-i J J

BANDIT MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 01

0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
0200:

02D1
02D1
02D1
02D1
02D1
02D1

02D1
02D1
02D1
02D1
02D1

«*«ftft»*»»ft»»ft»ft»ft»ft**»*X**
««» ONE ARMED BANDIT *****
***** BY JIM BUTTERFIELD *****
*«**»*»*»**»«*««***«*»«**«»«»»

WINDOW
AMT
ARROW
RWD
STALLA
TUMBLE

KEYIN
PADD
SAD
SBD
TABLE *

$0000
$0005
$0006
$0007
$0008
$0009

LINKAGES TO KIM

$1F40
$1741
$1740
$1742
$1FE7

DISPLAY WINDOW
CASH CACHE

REWARD
WAIT WHILE

IS KEY DEPRESSED?

HEX:7 SEG

34

0210:
0220:
0230:
0240:
0250:
0260:
0270:
0280:
0290:
0300:
0310:
0320:
0330:
0340:
0350:
0360:
0370:
0380:
0390:
0400:
0410:
0420:
0430:
0440:
0450:
0460:
0470:
0480:
0490:
0500:
0510:
0520:
0530:
0540:
0550:
0560:
0570:
0580:
0590:
0600:
0610:
0620:
0630:
0640:
0650:
0660:
0670:
0680:
0690:
0700:
0710:
0720:
0730:
0740:
0750:
0760:
0770:
0780:
0790:

0200
0200
0202
0204
0207
0209

020B
020E
0210
0212
0215

0217
0219
021B
02 1C
02 1D
021F
0221
0223
0226

0228
022B
022D
022F
0231
0233
0235

0237
0239
023B
023D
023F

A9
85
20
A9
85

20
DO
E6
20
FO

A9
85
F8
38
A5
E9
85
20
26

20
C6
DO
A6
A5
29
09

95
46
46
C6
DO

25
05
BA 02
00
06

8D 02
FB
09
8D 02
F9

03
06

05
01
05
BA 02
09

8D 02
08
F9
06
09
06
40

01
09
09
06
E7

MAIN PROGRAM

BANDIT ORG
GO LDAIM

STA
JSR
LDAIM
STA

MAIN DISPLAY

LPA JSR
BNE

ROLL INC
JSR
BEQ

LDAIM
STA
SED
SEC
LDA
SBCIM
STA
JSR
ROL

LPB JSR
DEC
BNE
LDX
LDA
ANDIM
ORAIM

STAAX
LSR
LSR
DEC
BNE

$0200
$25
AMT
CVAMT
$00
ARROW

LOOP

DISPLY
LPA
TUMBLE
DISPLY
ROLL

$03
ARROW

AMT
$01
AMT
CVAMT
TUMBLE

DISPLY
STALLA
LPB
ARROW
TUMBLE
$06
$40

WINDOW
TUMBLE
TUMBLE
ARROW
LPB

ALL WHEELS STOPPED

0241
0243
0245
0247
0249
024B
024D
024F
0251
0253
0255
0257
0259
025B
025D

A5
C5
DO
C5
DO
A2
C9
FO
A2
C9
FO
A2
C9
FO
CA

04
03
37
02
33
10
40
OD
OB
42
07
06
44
01

LDA
CMP
BNE
CMP
BNE
LDXIM
CMPIM
BEQ
LDXIM
CMPIM
BEQ
LDXIM
CMPIM
BEQ
DEX
35

WINDOW
WINDOW
NOMAT
WINDOW
NOMAT
$10
$40
PAY
$08
$42
PAY
$06
$44
PAY

GIVE HIM
TO START
AND SHOW

$25
WITH
IT TO HIM.

RESET ARROW.

DISPLAY
[GO] IS
RANDOMIZ
DISPLAY
A KEY IS

UNTIL
RELEASED.
E TUMBLE.
UNTIL
HIT.

CHARGE ONE BUCK.

CONVERT

DISPLAY

MAKE

FOR LED.

A WHILE.

A
RESULT

+01

DO ALL
3 WINDOWS.

- COMPUTE

+04

PAYOFF

+03 CHECK FOR
A

+02

PAY $15

PAY $10

MATCH.

FOR 3 BARS

FOR 3 UPS

PAY $5 FOR 3 DOWNS

0̂800:
0810:
0820:
0830:
0840:
0850:
0860:
0870:
0880:
0890:
0900:
0910:
0920:
0930:
0940:
0950:
0960:
0970:
0980:
0990:
1000:
1010:
1020:
1030:
1040:
1050:
1060:
1070:
1080:
1090:
1100:
1110:
1120:
1130:
1140:
1150:
1160:
1170:
1180:
1190:
1200:
1210:
1220:
1230:
1240:
1250:
1260:
1 270 :
1 280 :
1 290 :
1300:
1310:
1320:
1330:

025E
0260
0262
0264
0267
0269
026B
026D
026F
0270
0271
0273
0275
0277
0279
027C

86
A9
85
20
C6
DO
C6
FO
18
F8
A5
69
BO
85
20
DO

07
80
08
8D 02
08
F9
07
9C

05
01
94
05
BA 02
E2

A WIN! ! ! PAY

PAY STX
PAX LDAIM

STA
LPC JSR

DEC
BNE
DEC
BEQ
CLC
SED
LDA
ADCIM
BCS
STA
JSR
BNE

AMOUNT

RWD
$80
STALLA
DISPLY
STALLA
LPC
RWD
LPA

AMT
$01
LPA
AMT
CVAMT
PAX

IN X

HIDE REWARD

DISPLAY
FOR A HALF
A WHILE.

SLOWLY ADD
THE PAYOFF
TO THE AM'T.

WHEELS NOT ALL THE SAME - CHECK FOR SMALL PAYOF

027E
0280
0282
0284
0287
0289
028B

A2
C9
FO
20
A5
DO
FO

03
46
DA
8D 02
05
80
F7

NOMAT LDXIM
CMPIM
BEQ

LOK JSR
LDA
BNE
BEQ

$03
$46
PAY
DISPLY
AMT
LPA
LOK

A CHERRY?

CAN'T PLAY
WITH NO DOUGH!

DISPLAY SUBROUTINE

028D
028F
0291
0293
0294
0296
0298
029B
029D
029F
02A1
02A4
02A7
02A8
02AA
02AC
02AE
02B1
02B2

A6
10
F6
CA
10
A9
8D
AO
A2
B5
8C
8D
D8
A9
E9
DO
8D
C8
C8

06
02
02

FB
7F
41 17
OB
04
00
42 17
40 17

7F
01
FC
42 17

DISPLY LDX
BPL

OVER INCAX
INDIS DEX

BPL
LDAIM
STA
LDYIM
LDXIM

LITE LDAAX
STY
STA
CLD
LDAIM

ZIP SBCIM
BNE
STA
INY
INY

ARROW
INDIS
WINDOW

OVER
$7F
PADD
$08
$04
WINDOW
SBD
SAD

$7F
$01
ZIP
SBD

ROLL
+02 THE DRUM

LIGHT
ALL THE
WINDOWS

36

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

340:
350:
360:
370:
380:
390:
400:
410:
420:
430:
440:
450:
460:
470:
480:
490:
500:
510:
520:
530:
540:

02B3
02B4
02B6
02B9

02BA
02BC
02BE
02BF
02C2
02C4
02C6
02C7
02C8
02C9
02CA
02CB
02CE
02DO

CA
10
20
60

A5
29
AA
BD
85
A5
4A
4A
4A
4A
AA
BD
85
60

E9
40

05
OF

E7
00
05

•
E7
01

1F

1F

1F

DEX
BPL
JSR
RTS

LITE
KEYIN

AMOUNT CONVERSION

CVAMT LDA AMT
ANDIM $OF TRANSLATE
TAX AMOUNT
LDAAX TABLE TO LED
STA WINDOW CODE.
LDA AMT
LSRA
LSRA
LSRA
LSRA
TAX
LDAAX TABLE
STA WINDOW +01
RTS

SYMBOL
AMI
DISPLY
LITE
LPC
PAX
SAD
TUMBLE

TABLE
0005
028D
029F
0264
0260
1740
0009

3000 30A2
ARROW 0006
GO 0200
LOK 0284
NOMAT 027E
PAY 025E
SBD 1742
WINDOW 0000

0006
0200
0284
027E
025E
1742
0000

BANDIT
INDIS
LPA
OVER
ROLL
STALLA
ZIP

0200
0293
020B
0291
0210
0008
02AA

CVAMT
KEYIN
LPB
PADD
RWD
TABLE

02BA
1F40
0228
1741
0007
1FE7

You'll notice that the listing for BANDIT looks a little
different from others in this book. That's because it
is the output of a resident assembler operating in
an expanded KIM system. See the section on expansion
for a further discussion of assemblers .

You might like to change the payouts so that there is
a "house percentage". That way, visitors will eventually
run out of money if they play long enough. This has
two possible advantages: it will teach them the evils
of gambling, and they won't hog your KIM all day playing
this game.

37

3172 BY JIM BUTTERFIELD

A teaching program which drills you on "binary and
hexadecimal numbering schemes. It's kind of fun
just as a speed testc
Start the program at 0200 and you'll see eight bits
on the left side of the display. Some of the bits
are in the lower position, meaning 'off* or zero.
Others will be in the top row, where they mean 'on1
or logic one.
All you have to do is translate those bits into hexadecimal
notation, and enter the hex value. For example, if all
bits happen to be 'on*, the number you'd enter is FF;
or if all the bits were 'off, you'd enter 00.
KIM rewards a correct answer with another problem.
If you're not yet at ease with the concept of bits
and how they relate to hexadecimal numbering, a few
runs of this program will help a lot.

0200 D8 START
0201 A9 01
0203 85 ID
0205 20 40 IF MAIN
0208 20 6A IF020B 05 14
020D FO 50
020F 85 14
0211 C9 15
0213 FO 1C
0215 A6 1C
021? DO OC
0219 C5 16
021B DO 42
021D AA
021E BD E? IF
0221 85 1C
0223 DO 3A
0225 C5 1? DIG1
0227 DO 36
0229 AA
022A BD E7 IF
022D 85 ID
022F DO 2E
0231 A6 ID NOKEY
0233 FO 2A
0235 A9 00
0237 85 1C
0239 85 ID
023B AD 04 17
023E AA
023F 29 OF
0241 85 17

CLD
LDA #1 Set FLAG2 . .
STA FLAG2 . . to new problem
JSR KEYIN set directnl reg
JSR GETKEY get key input
CMP PREV same as last time?
BEQ LIGHT yes, skip
STA PREV record new input
CMP #$15 no key?
BEQ NOKEY yes, brnch
LDX FLAG1 first digit found?
BNE DIG1 yes, check second
CMP SEED1 first digit match?
BNE LIGHT no, ignore input
TAX.
LDA TABLE, X change to segment
STA FLAG1 ..store. .
BNE LIGHT .. and exit
CMP SEED2 second digit match?
BNE LIGHT no, ignore input
TAX
LDA TABLE, X change to segment
STA FLAG2
BNE LIGHT
LDX FLAG2 problem solved?
BEQ LIGHT not yet, skip
LDA #0 Clear. .
STA FLAG1 . . for new problem
.STA FLAG2
LDA TIMER get random value
TAX
AND #$OF extract last digit
STA SEED2 . . and store

38

024-3
0244
0246
024-8
024A
024C
024E
0250
0252
0253
0255
0256
0257
025A
025C
025D
025F
0261
0264
0266
0268
026A
026D
0270
0272
0274
0276
0277
0279
027B
027D

8A
4A 4A
4A 4A
85 16
86 15
A2 FC
A9 00
26 15
2A
26 15
2A
A8
B9 7B 02
95 1C
E8
DO EF
A9 7F
8D 41 17
AO 09
A2 FA
B5 IE
8D 4-0 17
80 42 17
C6 11
DO FC
08 08
E8
30 EF
10 8A
14 12
24 22

PATT

LIGHT

SHOW

WAIT

TXA
LSRA LSRA
LSRA LSRA
STA SEED1
STX SEED
LDX #$FC
LDA #0
ROL SEED
ROL A
ROL SEED
ROL A
TAY
LDA TAB,Y
STA FLAG1.X

Extract first digit

..and store
Store whole number
Minus 4 for window
Clear Accum
..then roll in..
..two bits..
.•and.•
. .convert..
..to..
..segments

next segment

Set directional..
..registers

Minus 6
Window contents

TAB
l end

INX
BNE PATT
LDA #$7F
STA SADD
LDY #9
LDX #$FA
LDA FLAG2+1.X
STA SAD
STY SBD
DEC MOD
BNE WAIT
INY INY
INX
BMI SHOW
BPL MAIN
.BYTE $14,$12,$24,$22

xssssstt: HEX DUMP - BITZ "»"""

0200-
0210-
0220-
3230-
0240-
0250-
0260-
0270-

D8
14
IF
2E
0F
26
7F
C6

A9
C9
85
A6
65
15
8D
11

01
15
1C
ID
17
2A
41
D0

85
F0
D0
F0
8A
26
17
FC

IE
1C
3A
2A
4A
15
A0
C8

20
A6
C5
A9
4A
2A
09
C8

40
1C
17
00
4A
A3
A 2
E8

IF
D0
D0
85
4A
59
FA
30

20
0C
36
1C
85
7E
E5
EF

6A
C5
AA
85
16
02
IE
10

IF
16
ED
ID
86
95
8D
8A

C5
D0
E7
AL
15
1C
40
14

14
42
IF
04
A2
E8
17
12

F0
AA
85
17
FC
D0
6C
24

50
ED
ID
AA
A9
EF
42
22

85
E7
D0
29
00
A9
17

39

BLACKJACK BY JIM BUTTERFIELD

Descriptions
KIM uses a 'real* deck of cards in this game.

So when youfve seen four aces going by, you know
that there will be no more - until the next shuffle.
BLACKJACK starts at address 0200. You'll see the
cards being shuffled - the word SHUFFL appears on the
display - and then KIM will ask how much you want to bet.
You'll start with an initial amount of $20. Your balance
is always shown to the right of the BET? question, so
on the first hand, you'll see BET? 20 on the display.
You may bet from $1 to $9, which is the house limit.
The instant you hit key 1 to 9 to signal your bet,
KIM will deal. Of course, you can't bet more money
than you have ... and KIM ignores freeloaders who try
to bet a zero amount.
After the deal, you'll see both your cards on the left
of the display, and one of KIM's cards on the right.
(KIM's other card is a "hole" card, and you won't see
it until it's KIM's turn to play). Aces are shown
as letter A, face cards and tens as letter F, and
other cards as their value, two to nine. As always,
Aces count value 1 or 11 and face cards count 10.
You can call for a third card by hitting the 3 button .•
then the fourth card with the 4 button, and so on.
If your total goes over 21 points, KIM will ungrammatically
say BUSTED, and you'll lose. If you get five cards
without exceeding 21 points, you'll win automatically.
If you don't want any more cards, hit key 0. KIM will
report your point total, and then will show and play
its own hand. KIM, too, might go BUSTED or win on
a five-card hand. Otherwise, the most points wins.
From time to time, KIM will advise SHUFFL when the
cards start to run low.
Remember that you have a good chance to beat KIM at
this game. Keep track of the cards that have been
dealt (especially aces and face cards), and you're
likely to be a winner.'

,

0200 A2 33 START
0202 8A DK1
0203 95 ̂ 0
0205 CA
0206 10 FA
0208 A2 02
020A BD BB 03 INLOP
020D 95 75
020F CA

LDX #51
TXA
STA DECK.X
DEX
BPL DK1
LDX #2
LDA INIT,X
STA PARAM.X
DEX

52 cards in deck
Create deck
by inserting cards
into deck
in sequence

Set up 3 locations
..into..
zero page

addresshi/ dpt/ amt

40

0210 10 F8
0212 AD 04- 1?
0215 85 80
021? D8
0218 A6 76
021A EO 09
021C BO 34

DEAL

use random timer
to seed random chain

main loop repeats here
next-card pointer
less than 9 cards?
9 or morei don't shuffl

021E AO
0220 20
0223 AO
0225 84
0227 20
022A 38
022B A5
022D 65
022F 65
0231 85
0233 A2
0235 B5
0237 95
0239 CA
023A 10
023C 29
023E C9
0240 BO

D8
57 03
33
76
30 03 SHLP

81
82
85
80
04
80
81

BPL INLOP-
LDA TIMER
STA RND
OLD
LDX DPT
CPX #9
BCS NOSHUF

shuffle deck
LDY #SHUF-$300 Set up SHUFFL msg
JSR FILL put in WINDOW
LDY #51 ripple 52 cards
STY DPT set full deck
JSR LIGHT illuminate display
SEC
LDA RND+1 Generate
ADO RND+2 new
ADC RND+5 random

number

RMOV

F9
3F
34
E5

STA RND
LDX #4
LDA RND,X
STA RND+1,X
DEX
BPL RMOV
AND #$3F
CMP #52
BCS SHLP

move over
the random
seed numbers

0242 AA
0243 B9 40 00
0246 48
0247 B5 40
0249 99 40 00
024C 68
024D 95 40
024F 88
0250 10 05

Strip to 0-63 range
Over 51?
yes, try new number

swap each card into random slot
TAX
LDA DECK,Y get next card

save it
get random card
into position N
and the original card
into the random slot
next in sequence
bck for next card

PHA
LDA DECK,X
STA DECK,Y
PLA
STA DECK.X
DEY
BPL SHLP

0252
0254
0257
0259
025C
025F
0261
0263
0264
0266
0267
0269
026B

AO DE
20 57 03
A5 77
20 A6 03
20 30 03
C9 OA
BO F9
AA
86 79
CA
30 F3
E4 77
BO EF

; ready to accept bet
NOSHUF LDY #MBET-$300

JSR FILL
LDA AMT
JSR NUMDIS

BETIN JSR LIGHT
CMP #10
BCS BETIN
TAX
STX BET
DEX
BMI BETIN
CPX AMT
BCS BETIN

Set up BET? msg
put in WINDOW

display balance
.. put in WINDOW

illuminate display
not key 0 to 9?
nope, ignore

store bet amount

026D A2 OB
026F A9 00
0271 95 90
0273 CA
0274 10 FB

zero bet?
sufficient funds?
no, refuse bet

; bet accepted - deal
LDX #11 Clean WINDOW and
LDA #0 card counters

CLOOP STA WINDOW,X
DEX
BPL CLOOP

41

I
0276 20 78 03
0279 20 8F 03
027C 20 78 03
027F 20 64 03
0282 86 7A
0284 20 28 03

0287 20 30 03 TRY
028A AA CA
028C 30 11
028E E4 96
0290 DO F5

here come the cards
JSR YOU one for you..

& one for me..
another for you..
put my second card..
..in the hole

wait a moment
wait for Hit or Stand

JSR ME
JSR YOU
JSR CARD
STX HOLE
JSR WLITE

deal complete
JSR LIGHT
TAX DEX
BMI HOLD
GPX UGNT
BNE TRY

0292 20 78 03
0295 C9 22
0297 BO 40
0299 EO 05
029B FO 53
029D DO E8

029F A5 95
02A1 48
02A2 A2 00
02A4 20 OF 03
02A7 A2 04
02A9 A9 00
02AB 95 90
02AD CA
02AE 10 FB

02BO 68
02B1 85 95
02B3 A6 7A
02B5 20 6D 03
02B8 20 92 03

Hit - deal another card

key input?
zero for Stand?
N for card #n?
nope, ignore key

JSR YOU
CMP #$22
BCS UBUST
CPX #5
BEQ UWIN
BNE TRY

deal it
22 or over?
yup, you bust
5 cards?
yup, you win
nope, keep going

; Stand - show player's total
HOLD LDA WINDOW+5 save KIM card

PHA on stack
LDX #0 flag player ..
JSR SHTOT .. for total display
LDX #4
LDA #0

HLOOP STA WINDOW,X clean window
DEX
BPL HLOOP

\ restore display card and hole card
PLA display card
STA WINDOW+5 back to display

02BB
02BE
02CO
02C2
02C4
02C6
02C8
02CA
02CC
02CE
02DO
02D2
02D4
02D7

20 28 03 PLAY
A5 9A
C9 22
BO 29
65 9B
A6 91
DO 18

LDX HOLE
JSR CREC
JSR MEX

KIM plays here
JSR WLITE
LDA MTOT
CMP #$22
BCS IBUST
ADC MACE
LDX WINDOW+1
BNE IWIN

C9 22 CMP #$22
90 02 BCC POV
A5 9A LDA MTOT
C9 17 POV CMP #$17
BO 2C BCS HOLD2
20 8F 03 JSR ME
DO E2 BNE PLAY

; KIM wins here
JSR WLITE
JSR BUST
JSR WLITE

02D9 20 28 03 UBUST
02DC 20 55 03
02DF 20 28 03

get hole card
rebuild
play and display

pause to show cards
point total
..22 or over?
yup, KIM bust

add 10 for aces?
five cards?
yes, KIM wins

22+ including aces?
nope, count ace high
yup, ace low
17 or over?
yes, stand.,
no, hit..
unconditional Branch

show player's hand.,
make BUST message..
..and show it

42

02E2 A5 77
02E4 P8 38
02E6 E5 79
02E8 85 77
02EA 4-C 17

IWIN

JLINK
02 XLINK

LDA AMT
SED SEC
SBC BET
STA AMT
JMP DEAL

decrease balance

..by amount of bet
store new balance
next play

02ED
02FO
02F3
02F5
02F7
02F9
02FB
02FD
02FE

20
20
A5
F8
65
AO
90
98
DO

55
28
77
18
79
99
01
E8

03
03

IBUST
UWIN
ADD

JSR
JSR
LDA
SED
ADC
LDY
BCC
TYA
BNE

BUST
WLITE
AMT
CLC
BET
#$99
NOFLO

JLINK

0300 A2 03
0302 20 OF
0305 A5 9A
0307 C5 97
0309 FO DF
030B BO D5
030D 90 E4

Player wins here
make BUST message..
display pause
increase balance

by amount of bet
$99 maximum..
have we passed it?
yes, restore $99
unconditional branch

KIM stands - compare points
HOLD2

03
LDX #3
JSR SHOTOT
LDA MTOT
CMP UTOT
BEQ XLINK
BCS IWIN
BCC ADD

flag KIM..
.. for total display

KIM's total.,
vs. Player's total.,
same, no score;
KIM higher, wins;
KIM lower, loses.

030F B5
0311 F8
0313 75
0315 C9
0317 BO
0319 95
031B D8
031C B5
031E 4-8
031F AO
0321 20
0324- 68
0325 20

0328 AO
032A 20
032D 88
032E DO

0330 84
0332 AO
033̂ A2
0336 A9
0338 8D
033B B5
033D 8D
0340 8C
0343 E6

97
18
98
22
02
97

97
E2
57 03

A6 03
80
30 03

FA

7F
13
057F
4-1 17
90
4o 17
42 17
7B

; subroutines start here
; SHTOT shows point totals per X register
SHTOT LDA UTOT.X player's or KIM's total

SED CLC
ADC UACE,X try adding Ace points

exceeds 21 total?
yes, skip
no, make permanent

CMP #$22
BCS SHOVER
STA UTOT,X

SHOVER CLD
LDA UTOT,X
PHA

get revised total
save it

LDY #TOT-$300 set up TOT- msg
JSR FILL put in WINDOW
PLA recall total
JSR NUMDIS insert in window

display pause, approx 1 second
timing constant
illuminate screen
countdown

WLITE LDY #$80
WDO JSR LIGHT

DEY
BNE WDO

; illuminate display
LIGHT STY YSAV

LDY # 13
save register

6 digits to show

DIGIT

WAIT

LDX #(
LDA
STA PADD set directional reg
LDA WINDOW,X
STA SAD character segments
STY SBD character ID
INC PAUSE

43

0345 DO PC
0347 88 88
03*1-9 CA
034A 10 EF
034C 20 40 IF
034F 20 6A IF
0352 A4 ?F
0354 60
0355 AO E6
0357 84 74
0359 AO 05
035B Bl 74
035D 99 90 00
0360 88
0361 10 F8
0363 60

0364 A6 76
0366 C6 76
0368 B5 40
036A 4A 4A
036C AA
036D 18
036E DO 01
0370 38
0371 BD BE 03
0374 BC CB 03
0377 60

0378 20 64 03
037B E6 96
037D A6 96
037F 94 8F
0381 AO 10
0383 90 02
0385 84 98
0387 18 F8
0389 65 97
038B 85 97
038D D8
038E 60

038F 20 64 03
0392 C6 99
0394 A6 99
0396 94 96
0398 AO 10
039A 90 02
0390 84 9B
039E 18 F8
03AO 65 9A
03A2 85 9A
03A4 D8
03A5 60

switch Dir Reg
test keyboard
restore Y value

BNE WAIT wait loop
DEY DEY
DEX
BPL DIGIT
JSR KEYIN
JSR GETKEY
LDY YSAV
RTS

; fill WINDOW with BUST or other message
BUST LDY #$BST-$300
FILL STY POINTR

LDY #5 six digits to move
FILLIT LDA (POINTR),Y load a digit

STA WINDOW,Y put in window
DEY
BPL FILLIT
RTS

; deal
CARD

a card, calc value & segments

CREC

LDX DPT
DEC DPT
LDA DECK,X
LSRA LSRA
TAX
CLC
BNE NOTACE
SEC
LDA VALUE,X
LDY SEGS.X

Pointer in deck
Move pointer
Get the card
Drop the suit
0 to 12 in X
no-ace flag
branch if not ace
ace flag
value from table
segments from table

; card
YOU

RTS
to player, including display & count
JSR CARD deal card
INC UCNT card count
LDX UCNT use as display pointer
STY WINDOW-1,X put card in Wndw

YOVER

ten count for aces
no ace?
ace, set 10 flag

add points to..
..point total

; card
ME
MEX

LDY #$10
BCC YOVER
STY UACE
CLC SED
ADC UTOT
STA UTOT
CLD
RTS
to KIM, including display & counts
JSR CARD deal card
DEC MCNT inverted count
LDX MCNT use as (r) display pontr
STY WINDOW+6.X into window

MOVER

LDY #$10
BCC MOVER
STY MACE
CLC SED
ADC MTOT
STA MTOT
CLD
RTS

ten count for aces
no ace?
ace, set 10 flag

add points to..
.. point total

44

03A6 48
03A? 4A 4A
03A9 4A 4A
03AB A8
03AC B9 E?
03AF 85 94
03B1 68
03B2 29 OF

' A8
03B5 B9 E7
03B8 85 95
03BA 60
03BB 03 00
03CB F7 DB
03D8 ED F6
03E2 F8 DC

; transfer number in A to display
NUMDIS PHA save number

ISRA LSRA extract left digit
LSRA LSRA
TAY

IF LDA TABLE,Y convert to segments
STA WINDOW+4
PLA restore digit
AND #$OF extract right digit
TAY

IF LDA TABLE,Y convert to segments
STA WINDOW+5
RTS

; tables in hex format
20 01 02 03 04 05 06 0? 08 09 10 10 10 10
OF E6 ED FD 8? FF EF Fl Fl Fl Fl
BE Fl Fl B8 FC F9 F8 D3
F8 CO FC BE ED 8? F9 DE

"""-"" HEX DUMP - BLACKJACK """""

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02AO
02BO
02CO
02DO
02EO
02FO
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03AO
03BO
03CO
03DO
03EO

A2 33 8A
10 F8 AD
20 57 03
85 85 80
BO E5 AA
10 D5 AO
OA BO F9
00 95 90
64 03 86
DO F5 20
95 48 A2
68 85 95
C9 22 BO
C9 17 BO
28 03 A5
20 28 03
A2 03 20
97 F8 18
E2 20 57
84 7F AO
8C 42 17
6A IF A4
88 10 F8
38 BD BE
8F AO 10
64 03 C6
65 9A 85
94 68 29
03 04 05
FD 87 FF
F8 D3 F8

95 40
04 17
AO 33
A2 04
B9 40
DE 20
AA 86
CA 10
7A 20
78 03
00 20
A6 7A
29 65
2C 20
77 F8
A5 77
OF 03
75 98
03 68
13 A2
E6 7B
7F 60
60 A6
03 BC
90 02
99 A6
9A D8
OF A8
06 07
EF Fl
DC F8

CA 10
85 80
84 76
B5 80
00 48
57 03
79 CA
FB 20
28 03
C9 22
OF 03
20 6D
9B A6
8F 03
38 E5
F8 18
A5 9A
C9 22
20 A6
05 A9
DO FC
AO E6
76 C6
CB 03
84 98
99 94
60 48
B9 E7
08 09
Fl Fl
CO FC

FA A2
D8 A6
20 30
95 81
B5 40
A5 77
30 F3
78 03
20 30
BO 40
A2 04
03 20
91 DO
DO E2
79 85
65 79
C5 97
BO 02
03 AO
7F 8D
88 88
84 74
76 B5
60 20
18 F8
96 AO
4A 4A
IF 85
10 10
Fl ED
BE ED

02 BD BB
76 EO 09
03 38 A5
CA 10 F9
99 40 00
20 A6 03
E4 77 BO
20 8F 03
03 AA CA
EO 05 FO
A9 00 95
92 03 20
18 C9 22
20 28 03
77 4C 17
AO 99 90
FO DF BO
95 97 D8
80 20 30
41 17 B5
CA 10 EF
AO 05 Bl
40 4A 4A
64 03 E6
65 97 85
10 90 02
4A 4A A8
95 60 03
10 10 F7
F6 BE Fl
87 F9 DE

03 95
BO 34
81 65
29 3F
68 95
20 30
EF A2
20 78
30 11
53 DO
90 CA
28 03
90 02
20 55
02 20
01 98
D5 90
B5 97
03 88
90 8D
20 40
74 99
AA 18
96 A6
97 D8
84 9B
B9 E7
00 20
DB CF
Fl B8

75 CA
AO D8
82 65
C9 34
40 88
03 C9
OB A9
03 20
E4 96
E8 A5
10 FB
A5 9A
A5 9A
03 20
55 03
DO E8
E4 B5
48 AO
DO FA
40 17
IF 20
90 00
DO 01
96 94
60 20
18 F8
IF 85
01 02
E6 ED
FC F9

SLACK MATCH by Ron Kushnier
(modified by
the editors)

Description -
There are 21 matches. Each player must take 1,2, or

3 matches per turn. The player who winds up with the last
match loses. The player plays against the computer and goes
first. Starting address - 0200, press "GO". Player enters
a number on the keyboard; the left two digits display the
players number. The centre digits display the computer's
choice after some "think time". The rightmost digits display
a running total of matches left. The computer has an I.Q.
and will become dumber if you lose, smarter if you win.

0200 A9
0202 85
0204 A9
0206 85
0208 A9
020A 85
020C 20
020F 20
0212 C9
0214 10
0216 C9
0218 FO
021A 85
021C A9
021E 85
0220 F8
0221 38
0222 A5
0224 E5
0226 30
0228 85
022A A9
022C 85
022E A9
0230 8D
0233 20
0236 2C
0239 10
023B C6
023D DO
023F 18
0240 A5
0242 FO
0244 69
0246 E9
0248 FO
024A C9
024C BO
024E AE
0251 E4
0253 BO
0255 A9

21
ED
21
F9
00
FB
IF IF
6A IF
04
F2
00
EE
FB
00
FA

F9
FB
EO
F9
08
EE
FF
0? 17
IF IF
07 17
F8
EE
EF

F9
26
04
04
OB
04
F8
46 17
ED
02
01

START

NEW

PLAY

TIME

DISP

SUB

DUMP

LDA #$21
STA IQ
LDA #$21
STA INK
LDA #0
STA POINTH
JSR SCANDS
JSR GETKEY
CMP #4
BPL PLAY
CMP #0
BPL PLAY
STA POINTH
LDA #0
STA POINTL
SED
SEC
LDA INH
SBC POINTH
BMI PLAY
STA INH
LDA #8
STA SLOW
LDA #$FF
STA CLOCK
JSR SCANDS
BIT CLOCK
BPL DISP
DEC SLOW
BNE TIME
CLC
LDA INH
BEQ DEAD
ADC #4
SBC #4
BEQ DUMP
CMP #4
BCS SUB
LDX 1746
CPX IQ
BCS COMP
LDA #1

46

initial IQ

21 matches
to start game

clear player's move

light display
and test keys

key 4 or over?
go back

key 0? go "back

record move
wipe last KIM move

decimal mode

get total matches
subtract move
not enough matches?
OK, new total

set slow counter
slowest count into..
..slowest KIM timer

get total
player loses?
divide m-1 by 4

keep dividing
random, timer#2
KIM smart enough?
Yes
No

0257 85 FA
0259 38
025A A5 F9
025C E5 FA
025E 85 F9
0260 DO A6
0262 A2 5A
0264 AO FE
0266 46 ED
0268 10 0?
026A A2 DE
026C AO AD
026E 38
026F 26 ED
0271 86 FB
0273 84 FA
0275 20 IF IF
0278 DO 8A
027A FO F9
027C

COMP

DEAD

SHOW

LOK

end

STA POINTL
SEC
LDA INH
SBC POINTL
STA INH
BNE PLAY
LDA #$5A
LDY #$FE
LSR IQ
BPL SHOW
LDX #$DE
LDY #$AD
SEC
ROL IQ
STX POINTH
STY POINTL
JSR SCANDS
BNE NEW
BEQ LOK

Record the move

Subtract KIM move
from total

Player wins:
SAFE

get smart

KIM wins:
DEAD

get dumb

new game if key

xxxxx HEX MATCH """""

0200-
0210-
0220-
0230-
0240-
0250-
2260-
0270-

A9
6A
F8
8D

17
D0
ED

21
IF
38
07
F9
£4
A 6
86

85
C9
A 5
17
F0
ED
A 2
FB

ED
04
F9
20
26
50
5A
84

A9
10
E5
IF
69
02
A0
FA

21
F2
FE
IF
04
A 9
FE
20

85
C9
30
2C
E9
01
46
IF

F9
00
E0
07
04
85
ED
IF

A9
F0
85
17
F0
FA
10
D0

00
EE
F9
10
0B
38
07
8A

85
85
A9
F8
C9
A 5
A 2
F0

FB
Ft
08
C6
04
F9
DE
F9

20
A9
85
EE
B0
E5
A0

IF
00
EE
D0
F8
FA
AD

IF
85
A9
EF
AE
85
38

20
FA
FF
18
46
F9
26

47

CARD DEALS ft I
BY DM LEWART

DESCRIPTION -
THIS PROGRAM WILL DEAL A FULL DECK OF 52 CARDS.

THE VALUE AND SUIT OF THE CARDS APPEARS IN THE RIGHT
TWO DIGITS OF THE DISPLAY. PRESS ANY KEY TO GET
ANOTHER CARD. EACH WILL APPEAR ONLY ONCE. WHEN ALL
CARDS HAVE BEEN DEALT, THE PROGRAM MUST BE RESTARTED
AT 0000.

0000
0002
0004
0006
0007
0009
OOOA
OOOC
OOOE
OOOF
0011
0012
0014
0016
0018
00 IB
00 IE
0020
0023
0025
0027
0028
0029
002B
002D
002F
0031
0033
0036
0038
0039
00 3B
003D
00 3E
0040
0042
0044
0045
0046
0047

A2 06 INIT
AO 00
94 8B INIT 1
CA
DO FB
D8
A2 34
86 92
C8
94 92 INIT 2
CA
DO FB
A5 92 NEWCRD
DO 03
4C 4F 1C
AD 04 17 RANDOM
DO OB
AD 44 17
DO 06
A5 92
4A
18
69 01
C5 92 FASTER
90 07
FO 05
E5 92
4C 2B 00
A2 33 FIND
38 FIND 1
F5 93
FO 03
CA
10 F8
95 93 UPDATE
C6 92
8A
4A
4A
A8

LDX #$06
LDY #$00
STY 008B,X
DEX
BNE INIT 1
CLD
LDX #$34
STX 0092
I NY
STY 0092,X
DEX
BNE INIT 2
LDA 0092
BNE RANDOM
JMP START
LDA 1704
BNE FASTER
LDA 1744
BNE FASTER
LDA 0092
LSR
CLC
ADC #$01
CMP 0092
BCC FIND
BEQ FIND
SBC 0092
JMP FASTER
LDX -$33
SEC
SBC 0093,X
BEQ UPDATE
DEX
BPL FIND 1
STA 0093,X
DEC 0092
TXA
LSR
LSR
TAY

CLEAR DISPLAY
C8C-91)=0

FILL DECK
STORE CARDS LEFT (52)
C93-C6)=1

DECK FINISHED?

YES, STOP
GET RANDOM # (1-FF)

BOTH CLOCKS OUT OF RANGE
APPROX. MIDDECK

GET NUMBER 1-34

FIND THE CARD
KEEP SUBTRACTING CARD
CARD^O MEANS PICKED
CARD=1 MEANS IN DECK
X=CARD POSITION

CARD=0
1 LESS CARD LEFT
GET FIRST 6 BITS OF X
Y=(0-C)

48

0048
00 4B
004D
00 4E
0050
0051
0054
0056
0059
005B
005E
0060
0062
0064
0067
0069
006B
006E
0070
0073
0074
0076
0078

00 7B
00 7C
00 7D
00 7E
007F
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
00 8A
00 8B

B9
85
8A
29
A8
B9
85
20
DO
20
DO
FO
A9
8D
AO
A2
B9
84
20
C8
CO
90
4C

77
5B
4F
66
6D
7D
07
7F
6F
78
IE
67
70
6D
76
5E
39

0000
0010
0020
0030
0040
0050
0060
0070
0080

7B
90

03

88
91
62
FB
62
B4
F9
7F
41
00
08
8C
FC
4E

06
F3
3D

A2
92
AD
05
95
A8
FO
20
7D

00

00

00

00

17

00

IF

IF

06
CA
44
E5
93
B9
F9
4E
07

LDA
STA
TXA
AND
TAY

007B,Y
0090

#$03

LDA 0088,Y

K DOWN

K UP

DISP

DISP 1

VALTBL

SUITBL

HEX DUMP

AO 00 94
DO FB A5
17 DO 00
92 4C 2B
C6 92 8A
88 00 85
A9 7F 8D
IF C8 CO
7F 6F 78

STA
JSR
BNE
JSR
BNE
BEQ
LDA
STA
LDY
LDX
LDA
STY
JSR
I NY
CPY
BCC
JMP

TABLES
"A"
112"
llTll

Hij.ll

licit
II6II

tl^ll

llgll

ttgll
lljil
lljll

MQII

"K"
lien

"H"
"D"
"C"

0091
DISP
K DOWN
DISP
NEWCRD
K UP
#$7F
1741
#$00
#$08
008C,Y
OOFC
1F4E

#$06
DISP 1
1F3D

XXJCC9CCX

GET VALUE FROM VALTBL
STORE AS 5TH DISPLAY DIG
GET LAST 2 BITS OF
Y=CO-3)

X

GET SUIT FROM SUITBL
STORE AS 6TH DISP.
DISPLAY C8C-91)
UNTIL KEY UP
DISPLAY C8C-91)
UNTIL KEY DOWN

SEGMENTS TO OUTPUT

INITIALIZE

GET CHARACTER

DISPLAY CHARACTER
NEXT CHARACTER

DONE, KEY DOWN?

DIGIT

- CARD DEALER "5««{-

8B CA
92 DO
A5 92
00 A2
4A 4A
91 20
41 17
06 90
IE 67

DO FB D8
03 4C 4F
4A 18 69
33 38 F5
A8 B9 7B
62 00 DO
AO 00 A2
F3 4C 3D
70 6D 76

A2 34 86 92 C8 94
1C AD 04 17 DO OB
01 C5 92 90 07 FO
93 FO 03 CA 10 F8
00 85 90 8A 29 03
FB 20 62 00 DO B4
08 B9 8C 00 84 FC
IF 77 5B 4F 66 6D
5E 39

49

CHESS CLOCK BY CASS LEWART

DESCRIPTION -
THE PROGRAM STARTS AT LOCATION 0200. TWO INDEPENDENT

CLOCKS ARE OPERATED BY THE TWO PLAYERS BY DEPRESSING KEYS
1 OR 2 RESPECTIVELY. THE RIGHT TWO DIGITS SHOW THE MOVE
NUMBER, THE LEFT FOUR DIGITS SHOW MINUTES AND SECONDS.
MAXIMUM TIME IS 99 MINUTES 59 SEC. THE CLOCK PROGRAM CAN
BE FINELY TUNED BY CHANGING THE VALUE OF WORD 027F, INCREASE
BY 1 SLOWS THE CLOCK BY APPROXIMATELY 6 SEC/24 HOURS AND
VICE VERSA.

ZERO ALL OF PAGE ZERO0200
0202
0203
0206
0207
0209
020C
020F
0211
0213
0215
0217
02 1A
021D
021F
0221
0224
0225
0227
0229
022B
022E

0231
0233
0235
0237
0239
023B
023D
023F
0241
0243
0245
0247
0248
024A
024C
02 4E
0250
0252
0254
0256
0258

A9 00
AA
9D 00 00 ZERO
E8
DO FA
20 IF IF DISP
20 6A IF
C9 02
DO F6
A9 01 LOOP
85 D4
20 60 02
20 31 02
A9 02
85 D4
20 60 02
18
A5 F9
69 01
85 F9
20 31 02
4C 13 02

xx see SAVE TIME
A9 02 SAVE
C5 D4
DO 11
A5 FB
85 D2
A5 FA
85 D3
A5 DO
85 FB
A5 Dl
85 FA
60
A5 FB CLK1
85 DO
A5 FA
85 Dl
A5 D2
85 FB
A5 D3
85 FA
60

LDA #$00
TAX
STA 0000, X
INX
BNE ZERO
JSR SCANDS
JSR GETKEY
CMP #$02
BNE DISP
LDA #$01
STA OOD4
JSR TIME
JSR SAVE
LDA #$02
STA OOD4
JSR TIME
CLC
LDA OOF9
ADC #$01
STA OOF9
JSR SAVE
JMP LOOP
INDICATED SI
LDA #$02
CMP OOD4
BNE CLK1
LDA 00 FB
STA OOD2
LDA OOFA
STA OOD3
LDA 00 DO
STA OOFB
LDA OOD1
STA OOFA
RTS
LDA OOFB
STA OODO
LDA OOFA
STA OOD1
LDA OOD2
STA OOFB
LDA OOD3
STA OOFA
RTS
50

DISPLAY ZEROS
KEY PRESSED?
KEY # 2?
NO, WAIT TILL 2 DOWN
FLAG TO 1
CCLOCK #1 TO RUN)
GET CLOCK RUNNING
SAVE TIME ON DISPLAY
FLAG TO 2
CCLOCK #2 TO RUN)
GET OTHER CLOCK RUNNING
...INCREMENT MOVE
NUMBER...

SAVE CLOCK 2 TIME
BACK TO CLOCK # 1

JTINE »>s:x
CLOCK # 2 ?

NO, STORE FOR CLOCK # 1
... STORE VALUES FOR
CLOCK # 2 IN OOD2
AND OOD3 ...

... LOAD DISPLAY WITH
VALUES FOR CLOCK # 1 ...

... STORE VALUES FOR
CLOCK # 1 IN OODO
AND OOD1 ...

... LOAD DISPLAY WITH
VALUES FOR CLOCK # 2 .

:s«::: CLOCK ADVANCE SUBROUTINE :c"":!

0260
0261
0263
0265
0267
026A
026D
0270
0272
0274
0275
0278
027A
027C
027E
0280
0283
0286
0288
0289
02 88
028D
028F
0291
0293
0294
0296
0298
029A
029C
029E

F8
A9
85
A9
8D
20
20
C5
DO
60
2C
10
C6
DO
A9
8D
2C
10
18
A5
69
85
C9
DO
38
A9
85
A5
69
85
4C

04
D5
FO
07
IF
6A
D4
01

07
FO
D5
E7
BF
06
07
FB

FA
01
FA
60
05

00
FA
FB
00
FB

17
IF
IF

17

17
17

TIME

LOAD

LITE

WAIT

TINY

NOMN

60 02

SED
LDA #$04
STA OOD5
LDA #$FO
STA 1707
JSR SCANDS
JSR GETKEY
CMP OOD4
BNE WAIT
RTS
BIT 1707
BPL LITE
DEC OOD5
BNE LOAD
LDA #$BF
STA 1706
BIT 1707
BPL TINY
CLC
LDA 00 FA
ADC #$01
STA OOFA
CMP #$60
BNE NOMN
SEC
LDA #$00
STA OOFA
LDA OOFB
ADC #$00
STA OOFB
JMP TIME

SET DECIMAL MODE
TIME MULTIPLIER TO

SET TIMER

DISPLAY CLOCK
GET KEYBOARD ENTRY
EQUAL TO FLAG?

4

NO, TIME OUT THEN UPDATE
YES, RETURN FROM SUBR.
TIME DONE?
NOT YET
DECREMENT TIME MULT •

NOT ZERO, RESET TIMER
LAST LITTLE BIT OF
INTO TIMER
DONE?
NO
..ONE SECOND ADDED
TO CLOCK..

(CENTER TWO DIGITS)
A MINUTE UP?
NOT YET
YES, SEC. TO ZERO

TIME

... MINUTES INCREMENTED
IF CARRY SET ...

LOOP

xxxxx HEX DUMP - CHESS CLOCK ""»"-

0200-
0210-
0220-
0230-
0240-
0250-
0260-
0270-
0280-
0290-
02A0-

A9
02
D4
02
D0
A5
F8
C5
8D
60
02

00
D0
20
A9
85
D2
A9
DA

AA
F6
60
02
FB
85
04
D0

06 17
D0 05

9D 00
A9 01
02 18
C5 DA
A5 Dl
FB A5
85 D5
01 60
2C 07
38 A9

00 E8 D0 FA
85 D4 20 60
A5 F9 69 01
D0 11 A5 FB
85 FA 60 A5
D3 85 FA 60
A9 F0 8D 07
2C 07 17 10
17 10 FB 18
00 85 FA A5

20 IF IF 20 6A IF
02 20 31 02 A9 02
85 F9 20 31 02 AC
85 D2 A5 FA 85 D3
FE 85 D0 A5 FA 85

17 20 IF IF 20 6A
F0 C6 D5 D0 E7 A9
A5 FA 69 01 85 FA
FE 69 00 85 FB AC

C9
85
13
A5
Dl

IF
BF
C9
60

51

CLOCK - Charles Parsons

This clock routine uses KIM's built in interval timer with the
interrupt option. It works by loading $F̂ f into the timer (/1024) each
time the Non-Maskable Interrupt (NMI) occurs. This theoretically pro-
duce a time of 2̂ 9»856 microseconds or just under % second. The adjust-
ment to % second is done with the timer (/I) in the interrupt routine.
A fine adjustment of the clock can be made by modifying the value in
location $0366. Only two subroutines will be documented here (ESCAPE
TO KIM & HOUR CHIME) but many more can be added by simply replacing
the NOP codes starting at $03DE with jumps to your own subroutines.
For instance, a home control system could be set up using the clock
program.

The escape to KIM allows KIM to run without stopping the clock.
This means that you can run other programs simultaneously with the
clock program unless your program also needs to use the NMI (such as
single step operation) or if there could be a timing problem (such as
with the audio tape operation). Pressing the KIM GO button will get
you out of the KIM loop.

To start the clock:

1. Connect PB? U-15) to NMI (E-6).
2. Initialize NMI pointer (17FA, 1?FB) with 60 and 03.
3. Set up the time and AM-PM counter locations in page

zero.
k. Go to address S03CO and press GO.

To get back into the clock display mode if the clock is run-
ning - start at location $03̂ 9•

NOTE; These routines are not listed in any particular order
so be watchful of the addresses when you load them.

PAGE ZERO LOCATIONS

0070 NOTE . Sets frequency of note
0080 QSEC % second counter
0081 SEC second counter
0082 MIN minute counter
0083 HR hour counter
0084 DAY day counter for AM-PM

52

INTERRUPT EOUTINE

This routine uses the NMI to update a clock in zero page
locations. Since the crystal may be slightly off one MHz a
fine adjustment is located at 0366. NMI pointers must be set
to the start of this program.

save A

save X

save Y
fine adjust timing

test timer
loop until time out
count H seconds
do four times before
updating seconds

reset K second counter

advance clock in decimal

advance seconds

until 60 seconds

then start again

and advance minutes

until 60 minutes

then start again

and advance hours

until 12 hours

advance % day
if 13 hours
start again with one

go back to hex mode
start timer with interrupt
in 249,856 microseconds

0360
0361
0362
0363
0364
0365
0367
036A
036D
036F
0371
0373
0375
0377
0379
037B
037C
037D
037F
0381
0383
0385
0387
0389
038B
038D
038E
0390
0392
0394
0396
0398
039A
039C
039D
039F
03A1
03A3
03A5
03A7
03A9
03AB
03AD
03AF
03BO
03B2

48
8A
48
98
48
A983
8D0417
2C0717 TM
10FB
E680
A904
C580
D038
A900
8580
18
F8
A581
6901
8581
C960
D028
A900
8581
A582
18
6901
8582
C960
D019
A900
8582
A583
18
6901
8583
C912
D002
E684
C913 TH
D004
A901
8583
D8 RTN
A9F4
8DOF17

PHA
TXA
PHA
TYA
PHA
LDA #$83
STA TIME4
BIT TIME?
BPL TM
INC QSEC
LDA #$04
CMP QSEC
BNE RTN
LDA #$00
STA QSEC
CLC
SED
LDA SEC
ADC #$01
STA SEC
CMP #$60
BNE RTN
LDA #$00
STA SEC
LDA MIN
CLC
ADC #$01
STA MIN
CMP #360
BNE RTN
LDA #$00
STA MIN
LDA HR
CLC
ADC #$01
STA HR
CMP #$12
BNE TH
INC DAY
CMP #313
BNE RTN
LDA #301
STA HR
CLD
LDA #3F4
STA TIMEF

03B5 68
03B6 A8
03B7 68
03B8 AA
03B9 68
03BA 40

PLA
TAY
PLA
TAX
PLA
RTI

restore Y

restore X
restore A
return from interrupt

ESCAPE TO KIM IF 1 ON KIM IS PRESSED

This is a subroutine which will return to the KIM monitor routine
without stopping the real time clock. It is done by pressing 1 on the
KIM keyboard.

0300 206A1F KIM
0303 G901
0305 DOOD
0307 201F1F
030A 206A1F
030D C901
030F D003
0311 4co5ic
0314 60

JSR GETKEY
CMP #»01
BNE ENDR
JSR SGANDS
JSR GETKEY
CMP #301
BNE ENDR
JMP SAVE1

go back to KIM if
KIM keyboard is one

delay to make sure

ENDR RTS

TWO TONE SOUND TO INDICATE HOURS

This is a subroutine which when added to the clock display
routine will use the real time clock data to produce one sound
per hour on the hour. The output is a speaker circuit as shown
on Pg. 57 of the KIM-1 Manual. It is hooked to PBO rather than
PAO. The specific notes can be changed by altering 0330 and 033C«

I

0320
0322
0324
0326
0327
0329
032B
032D
032F
0331
0333
0335
0337
0339
033B
033D
033F
0341
0344
0347
0349
034A
034B
034D
034F

A582
D029
A581
38
E583
1024
A58o
D006
A91E
8570
DOOA
A901
C580
D014
A928
8570
A901
8D0317
EE0217
A570
AA
CA
10FD
30DC
60

BEEP

AGAIN

ONE

DEC

END

LDA MIN
BNE SND
LDA SEC
SEC
SBC HR
BPL END
LDA ŜEC
BNE ONE
LDA #S1E
STA NOTE
BNE GO
LDA #301
CMP QSEC
BNE END
LDA #$28
STA NOTE
LDA #$01
STA PBDD
INC PBD
LDA NOTE
TAX
DEX
BPL DEC
BMI AGAIN
RTS

on the hour?
if not return
execute until SEC = HR

first # second?

set high note

sound note for % second
second % second?

set low note

set I/O ports

toggle speaker

set delay

keep sounding

54

DISPLAY CLOCK ON KIM-1 READOUT

I

*

03CO
03C2
QJCk
03C6
03C9
03CB
03CD
03CF
03D1
03D3
03D5
03D8
03DB
03DE
03E1
03E4
03E?
03EA
03ED
03FO
03F3
03F6
03F9
03FC

A900
8580
A9F*f
8DOF1?
A581 DSP
85F9
A582
85FA
A583
85FB
201F1F
200003
202003
EAEAEA
EAEAEA
EAEAEA
EAEAEA
EAEAEA
EAEAEA
EAEAEA
EAEAEA
EAEAEA
EAEAEA
4CC903

LDA #$00 reset % s<
STA QSEC
LDA #$FV start timi
STA TIMEF
LDA SEC start her.
STA INH display c.
LDA MIN
STA POINTL
LDA HR
STA POINTH
JSR SCANDS
JSR KIM escape to
JSR BEEP sound on

JMP DSP

***** Hex Dump - Clock *****

0300- 20 6A IF C9 01 D0 0D 20 IF IF 20 6A IF C9 01 D0
0310- 03 4C 05 1C 60
0320- AS 82 D0 29 A5 81 38 E5 83 10 24 A5 80 D0 06 A9
0330- IE 85 70 D0 0A A9 01 C5 80 D0 14 A9 28 85 70 A9
0340- 01 8D 03 17 EE 02 17 A5 70 AA CA 10 FD 30 DC 60

0360- 48 8A 48 98 48 A9 83 8D 04 17 20 C0 17 10 FB E6
0370- 80 A9 04 C5 80 D0 38 A9 00 85 80 18 F8 A5 81 69
0380- 01 85 81 C9 ̂ 2 D0 28 A9 00 85 81 A5 82 18 69 01
0390- 85 82 C9 60 V&' 19 A9 00 85 82 A5 83 18 69 01 85
03A0- 83 C9 12 D0 02 E6 84 C9 13 B0 04 A9 01 85 83 D8
03B0- A9 F4 8D 0F 17 68 A8 68 AA 68 40
03C0- A9 00 85 80 A9 F4 8D 0F 17 A5 81 85 F9 A5 82 85
03D0- FA A5 83 85 FB 20 IF IF 20 00 03 20 20 03 EA EA
03E0- EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA
03F0- EA EA EA EA EA EA EA EA EA EA EA EA 4C C9 03

55

CODE TfST BY STAN OCKERS

DESCRIPTION -
THIS PROGRAM REQUIRES THAT A SPEAKER BE HOOKED

TO PAO AS IN FIGURE 5.1 OF THE KIM MANUAL. WHEN STARTED
AT 0200, THE PROGRAM WILL SEND 5 LETTER CODE GROUPS,
(INTERNATIONAL MORSE), OVER THE SPEAKER. THE CODE GROUPS
WILL CONSIST OF RANDOM CHARACTERS INCLUDING A-Z, 0-9, A
PERIOD, COMMA, QUESTION MARK AND EQUAL SIGN. AFTER THIS
TRANSMISSION, YOUR RECEPTION CAN BE CHECKED BECAUSE THE
GROUPS SENT WILL BE SHOWN ON THE DISPLAY. PRESSING ANY
KEY WILL CAUSE THE NEXT GROUP TO BE DISPLAYED. LIMITATIONS
IMPOSED BY THE 7 SEGMENT DISPLAYS MAKE SOME CHARACTERS
PRETTY STRANGE AND THERE IS SOME REDUNDANCY; BUT BY SLOWING
THE TRANSMISSION YOU SHOULD BE ABLE TO FIGURE OUT WHAT
EACH CHARACTER IS.

0200
0202
0205
0207
0208
020A
020C
020F
0211
0213
0215
0217
0219
021C
021F
0221
0223
0225
0226
0229
022B
022E
0230
0232
0234
0236
0239
02 3B
02 3D
023F
0241
0243
0246

A2 OC
BD DF 02 INIT
95 E2
CA
10 J~8
A2 b f GRUP
20 AO 02
A9 06
85 EO
C6 EO CHAR
FO F3
A2 03
20 AO 02
20 CB 02 NUMB
29 3F
C9 28
10 F7
AA
BD 13 03
A4 E2
99 3B 03
E6 E2
A5 E2
C9 1A
FO 20
BD EB 02
85 DF
06 DF BITS
FO D4
BO OD
A2 01
20 82 02
A2 01 SPAC

LDX #$OC
LDA 02DF,X
STA OOE2,X
DEX
BPL INIT
LDX #$04
JSR SPACE
LDA #$06
STA OOEO
DEC OOEO
BEQ GRUP
LDX #$03
JSR SPACE
JSR RAND
AND #$3F
CMP #$28
BPL NUMB
TAX
LDA 0313,X
LDY OOE2
STA 033B,Y
INC OOE2
LDA OOE2
CMP #$1A
BEQ DEBO
LDA 02EB,X
STA OODF
ASL OODF
BEQ CHAR
BCS DASH
LDX #$01
JSR MARK
LDX #$01

... INITIALIZATION ...

.. 12 VALUES ARE LOADED
FROM OOE2 ON UP ..

(SPACE LENGTH)
SPACE FOR ANOTHER GROUP
GROUP SIZE, 5 CHAR.

NEXT CHAR. IN GROUP
FINISHED, GET NEW GROUP
(SPACE LENGTH)
SPACE BETWEEN CHAR.
GET A RANDOM ft
MAKE SURE POSITIVE
LESS THAN 41 (DECIMAL)?
NO, GET ANOTHER
USE AS INDEX
GET DISPLAY CONVERSION
CHAR. INDEX IN Y
STORE CONVERSION
INDEX UP ONE
LAST CHARACTER?

YES, GO READOUT
GET CODE CHARACTER
TEMPORARY STORE
SHIFT
EMPTY, GET NEXT CHAR.
IF CARRY SET, SEND DASH
..ELSE SEND DOT

THEN SPACE

56

0248
02 4B
024C
024E
0250
0253
0254
0256
0259
025C
025E
0261
0263
0264
0266
0268
026A
026C
026E
0271
0272
0274
0276
0278
02 7A
02JC
0*.,£
0280

0282
0284
0286
0289
02 8B
02 8E
0291
0293
0294
0296
0299
029B
029D
029F

02AO
02A2
02A4
02A7
02M
02AC
02AE
02BO

20 AO
18
90 ED
A2 03
20 82
18
90 FO
20 8E
20 Bl
DO F8
20 Bl
FO FB
18
A5 E4
69 05
85 E4
AO 04
Bl E4
99 E8
88
10 F8
C6 E3
DO DE
A9 36
85 E4
A9 05
85 E3
DO D4

«*«**>**w***

86 DD
A5 E6
8D 07
A9 01
8D 01
EE 00
A6 E7
CA
DO FD
2C 07
10 F3
C6 DD
DO E5
60

86 DD
A5 E6
8D 07
2C 07
10 FB
C6 DD
DO F2
60

02 JSR SPACE
CLC
BCC BITS

DASH LDX #$03
02 JSR MARK

CLC
BCC SPAC

IE DEBO JSR INIT1
02 JSR DISP

BNE DEBO
02 WAIT JSR DISP

BEQ WAIT
CLC
LDA OOE4
ADC #$05
STA OOE4
LDY #$04

WIND LDA (OOE4),Y
00 STA OOE8,Y

DEY
BPL WIND
DEC OOE3
BNE DEBO
LDA #$36
STA OOE4
LDA #$05
STA OOE3
BNE DEBO

" MARK SUBROUTINE ::":::c
STX OODD

TIMM LDA OOE6
17 STA 1707

LDA #$01
17 STA 1701
17 TOGG INC 1700

LDX OOE7
FREQ DEX

BNE FREQ
17 BIT 1707

BPL TOGG
DEC OODD
BNE TIMM
RTS

""""" SPACE SUBROUTINE ''•"'"''
DISP STX OCDD
TIMS LDA OOE6

17 STA 1707
17 HOLD BIT 1707

BPL HOLD
DEC OODD
BNE TIMS
RTS

UNCOND. JUMP
(DASH LENGTH)
SEND A DASH

UNCOND. JUMP
..DEBOUNCE KEY..

WAIT FOR KEY RELEASE

WAIT FOR KEY DOWN

..UPDATE POINTER TO
POINT AT NEXT GROUP..

..LOAD WINDOWS OOE8-
OOEC WITH CONVERSIONS
FOR DISPLAY..

LAST GROUP?
NO, GET ANOTHER
REINITILIZE POINTER
TO RUN THRU GROUPS AGAIN

UNCOND. JUMP

TEMP. STORE
SPEED BYTE
START TIMER
PAD TO OUTPUT

TOGGLE PAO
DETERMINE FREQ.

TIME UP?
NO
DETERMINE MARK LENGTH

TEMP. STORE
SPEED BYTE
START TIMER
DONE?
NO
FULL TIME UP?
NO

57

02B1 A9 7F
02B3 8D 41 17
02B6 AO 00
02B8 A2 09
02BA B9 E8 00
02BD 84 FC
02BF 20 4E IP
02C2 C8
02C3 CO 06
02C5 90 F3
02C7 20 3D IF
02CA 60

02CB 38 D8
02CD A5 Dl
02CF 65 D4
02D1 65 D5
02D3 85 DO
02D5 A2 04
02D7 B5 DO
02D9 95 Dl
02DB CA
02DC 10 F9
02DE 60

***** Display Subroutine *******
change segments..
..to outputs
init. recall index
init. digit number
get character
save Y
display character
set up for next char
6 chars displayed?
no, do more
key down?

from Kirn User Notes
vol 1, #1
(J. Butterfield)

DISP LDA #$7F
STA PADD
LDY #0
LDX #9

SIX LDA OOE8,Y
STY YSAV
JSR DISPL
INY
CPY #6
BCC SIX
JSR KEYTS
RTS

***** Random Number Subroutine ******
RAND SEC CLD

LDA RND+1
ADC RND+3
ADC RND+4
STA RND
LDX #4

ROLL LDA RND,X
STA RND+1,X
DEX
BPL ROLL
RTS

***** initialization Values *******
02DF 00 05 36 03 33 6$ CO CO CO CO CO 00

***** Morse Code Characters *******
02EB 60 88 A8 90 40 28 DO 08 20 78 BO 48 EO AO FO 68
02FB D8 50 10 CO 30 18 70 98 B8 C8 FC 7C 3C 1C OC 04
030B 84 C4 E4 F4 56 CE 32 8C

***** Display Characters **********
0313 F7 FC B9 DE F9 Fl BD F6 84 9E FO B8 B7 D4 DC F3
0323 E7 DO ED F8 BE EA 9C 94 EE C9 BF 86 DB CF E6 ED
0333 FD 87 FF EF 90 84 D3 C8

*** Characters sent stored in 033B - 03FF ***
CHANGES: The program sends and displays 5 groups of
5 characters each. This may be changed, although
you may need to do some debugging along the way.
Important parameters are:
—0233 contains characters-to-be-sent, plus one;
—02EO contains groups-to-be-displayed-after-transmission;
—02E3 contains speed-of-transmission; hex 33 gives about
16 groups/min, hex 66 gives 8 words/min
—02E4 varies the tone
—02E1/02E2 points at the block of'characters to be sent;
—0222 controls the character set; 1A for letters only.
See Byte magazine, October 1976, page 36, for details of
morse character storage.

58

CRAPS BY JIM BUTTERFIELD

DESCRIPTION -
SET ADDRESS 0200, THEN HOLD "GO" DOWN .. YOU'LL SEE:

- 2 DICE "ROLLING" ON THE LEFT
- $10 BALANCE ON THE RIGHT

LET "GO" GO ... THE DICE WILL STOP ROLLING, AND YOU'LL GET:
- A WIN ON A TOTAL OF 7 OR 11; YOU'LL SEE YOUR DOLLAR
BALANCE RISE; OR

- A LOSS ON TOTALS OF 2,3, OR 12; YOUR DOLLAR BALANCE
WILL DROP; OR

- A "POINT" - THE CENTER SEGMENTS WILL LIGHT WITH THE
ROLL AND YOU MUST TRY TO ROLL THIS TOTAL AGAIN
BEFORE YOU ROLL 7 -

PUSH THE "GO" BUTTON ONLY ON THE FIRST ROLL. FOR SUBSEQUENT
ROLLS, PUSH ANOTHER BUTTON.

0200 D8 START
0201 20 40 IF
0204 20 6A IF
0207 C5 4o
0209 FO 79
020B 85 40
020D 49 15
020F 85 41
0211 C9 06
0213 DO 05
0215 A9 10
0217 20 A9 02
021A AD 04 17 NOGO
021D A2 CO
021F 86 4E
0221 A2 05
0223 C5 4E RNDLP
0225 90 02
0227 E5 4E
0229 46 4E RNDOV
022B CA
0220 10 F5
022E AA
022F E8
0230 BD E7 IF
0233 A4 41
0235 FO 06
0237 86 42
0239 85 43
023B DO 47
023D 85 47 PLAY
023F A5 43
0241 85 46
0243 A5 44

CJ-0)
J.I KEYIN
JSR GETKEY
CMP LAST
BEQ LIGHT same key as before?
STA LAST
EOR #$15 no-key test
STA FLAG into flag
CMP #6 GO key?
BNE NOGO nope . .
LDA #$10 yes, $10
JSR DOBUX put in window
LDA TIMER random value
LDX #$CO divide by 6
STX DIVR
LDX #5
CMP DIVR divide..
BCC RNDOV . .a. .
SBC DIVR . . digit
LSR DIVR
DEX
BPL RNDLP
TAX die 0-5
INX die 1-6
LDA TABLE, X segment
LDY FLAG which die?
BEQ PLAY second?
STX DIE first, save it..
STA WINDX ..& segment
BNE LIGHT unconditional
STA WINDOW+1 show die. .
LDA WINDX . . and other
STA WINDOW one
LDA BUX out of dough?

59

' 024-5 FO 3D
024-7 8A 18
024-9 65 4-2
024-B C5 4-5
024-D FO 28
024-F A6 4-5
0251 FO 12
0253 09 07
0255 DO 2D
0257 A5 44 LOSE
0259 FO 05
025B 18 F8
025D E9 00
025F D8
0260 20 A9 02
0263 DO IF
0265 A6 4-6 FIRST
0267 86 4-8
0269 A6 4-7
026B 86 4-9
026D 85 4-5
026F AA

» 0270 BD 06 02
0273 FO OF
0275 30 EO
0277 A5 4-4- WIN
0279 C9 99
027B FO 04-
027D F8
027E 69 01
0280 D8
0281 20 A9 02 WINX
0284- A5 4-1 LIGHT
0286 FO 04-
0288 E6 4-6
028A E6 4-7
028C A9 7F NOINC
028E 8D 4-1 17
0291 AO 13
0293 A2 05
0295 B5 4-6 LITE
0297 8D 4-0 17
029A 8C 4-2 17
029D E6 4-F PAWS
029F DO FC
02A1 88 88
02A3 CA
02A4- 10 EF
02A6 4-C 00 02

BEQ LIGHT . .no bread
TXA CLG
ADC DIE add other die
CMP POINT get the point?
BEQ WIN . . yup
LDX POINT point=zero. . .
BEQ FIRST ..first roll
CMP #7 seven you lose
BNE LIGHT . . nope
LDA BUX
BEQ LOSX nough dough?
CLC SED decimal add..
SBC #0 neg one
CLD
JSR DO BUX put in window
BNE LIGHT unconditional
LDX WINDOW copy point
STX WINDOW+2
LDX WINDOW+1
STX WINDOW+3
STA POINT
TAX \ point value
LDA ̂ B-2,X 'win1 table
BEQ LIGHT ..says point
BMI LOSE . . says craps
LDA BUX . . says win
CMP #$99 maximum bucks?
BEQ WINX yes, skip add
SED decimally add. .
ADC #1 . . one
CLD
JSR DO BUX make segments
LDA FLAG still rolling?
BEQ NOINC ..nope;
INC WINDOW . .yup, so..
INC WINDOW+1 ..roll em!
LDA #$7F
STA PADD
LDY #$13
LDX #5
LDA WINDOW, X
STA SAD
STY SBD
INC PAUSE
BNE PAWS
DEY DEY
DEX
BPL LITE
JMP START

02A9 85 44
02AB AO 00
02AD 84- 4-5
02AF 84- 4-8

DOBUX STA BUX
LDY #0
STY POINT clear point
STY WINDOW+2 ..and..

60

02B1 8̂ 4-9
02B3 A8 4-A
02B5 4-A 1*A
02B8 AA
02B9 BD E? IF
02BC 85 ̂ A
02BE 98
02BF 29 OF
02C1 AA
02C2 BD E? IF
02C5 85 4-B
02C7 60

STY WINDOW+3 display
TAY LSRA
LSRA LSRA LSRA
TAX
LDA TABLE,X
STA WINDOW+4
TYA
AND #$OF
TAX
LDA TABLE,X
STA WINDOW+5
RTS

02C8 FF FF 00 00 00 01 00 00 00 01 FF (TAB)

:ssjsc5? HEX DUMP - CRAPS >«««««

0200-
0210-
0220-
0230-
0240-
0250-
0260-
0270-
0280-
0290-
02AO-
02BO-
02CO-
02 DO-

08
41
4E
BD
43
45
*20
BD
08
17
FC
48
OF
00

20 40
C9 06
A2 05
E7 IF
85 46
FO 12
A9 02
C6 02
20 A9
AO 13
88 88
84 49
AA BD
01 FF

IF
DO
C5
A4
A5
C9
DO
FO
02
A2
CA
A8
E7

20
05
4E
41
44
07
IF
OF
A5
05
10
4A
IF

6A
A9
90
FO
FO
DO
A6
30
41
B5
EF
4A
85

T C5
ij 20
02 E5
06 86
3D 8A
2D A5
46 86
EO A5
FO 04
46 8D
4C 00
4A 4A
4B 60

40 FO
A9 02
4E 46
42 85
18 65
44 FO
48 A6
44 C9
E6 46
40 17
02 85
AA BD
FF FF

79
AD
4E
43
42
05
47
99
E6
8C
44
E7
00

85 40
04 17
CA 10
DO 47
C5 45
18 F8
86 49
FO 04
47 A9
42 17
AO 00
IF 85
00 00

49
A2
F5
85
FO
E9
85
F8
7F
E6
84
4A
01

15 85
CO 86
AA E8
47 A5
28 A6
00 D8
45 AA
69 01
80 41
4F DO
45 84
98 29
00 00

Coding notes: CRAPS is a highly top-down program.
The program always flows from START to LIGHT and
back again with few breaks in sequence. The dice
are randomized from TIMER (1704) and RNDLP contains
a small division routine, dividing by 6; the
remainder, randomly 0 to 5, gives the roll of
one die. On the first roll of a run, we use
the table at 02 C8 to analyze the total: in this
table, FF means you lose and 01 means you win.
FLAG is zero if you're not pushing any button.
Segments for the display are stored in table
WINDOW, 0046 to 004B.

61

DUEL BY STAN OCKERS

DESCRIPTION -
THIS IS A GAME FOR TWO PLAYERS. WHEN THE PROGRAM IS

STARTED AT 0200, EACH PLAYER IS GIVEN TEN POINTS AS INDICATED
ON OPPOSITE SIDES OF THE DISPLAY. THE CENTER DIGITS WILL
BE BLANK. AFTER A RANDOM DELAY, THE CENTER DIGITS WILL LIGHT.
THE FIRST PLAYER TO PRESS HIS KEY WILL INCREASE HIS SCORE
BY ONE AND DECREASE HIS OPPONENT'S BY ONE. THE CENTER DIGITS
WILL THEN BLANK FOR ANOTHER RANDOM DELAY. IF A PLAYER
PRESSES HIS KEY WHILE THE CENTER DIGITS ARE BLANK, HIS SCORE
WILL BE DECREASED BY ONE. WHEN ONE PLAYER REACHES ZERO THE
GAME IS OVER AND MUST BE RESTARTED AT 0200. THE PLAYER TO
THE LEFT USES KEY ZERO AND THE ONE ON THE RIGHT USES KEY
SEVEN.

0200
0202
0204
0206
0209
020B
020D
020F
0211
0213
0216
0219
02 IB
02 ID
0220
0222
0224
0226
0228
0229
022C
022F
0231
0233
0235
0237
0239
02 3B
02 3D
023F
0241
0243
0245
0247
0249

A9 10
85 F9
85 FB
AD 44 17
29 IF
09 01
85 EE
A9 00
85 FA
20 71 02
AD 07 17
FO OD
A9 FF
8D 07 17
C6 EE
10 04
A9 36
85 FA
D8
20 40 IF
20 6A IF
C9 15
10 EO
C9 07
FO OE
C9 00
FO 02
DO D6
A2 02
A5 EE
10 14
30 06
A2 00
A5 EE
10 OC

RAND

DISP

MORE

LEFT

RITE

LDA
STA

« STA
LDA
AND
ORA
STA
LDA
STA
JSR
LDA
BEQ
LDA
STA
DEC
BPL
LDA
STA
CLD
JSR
JSR
CMP
BPL
CMP
BEQ
CMP
BEQ
BNE
LDX
LDA
BPL
BMI
LDX
LDA
BPL

#$10
OOF9
00 FB
1744
#$1F
#$01
OOEE
#$00
OOFA
LITE
1707
MORE
#$FF
1707
OOEE
MORE
#$36
OOFA

KEY IN
GET KEY
#$15
DISP
#$07
RITE
#$00
LEFT
DISP
#$02
OOEE
LOS1
ADD1
#$00
OOEE
LOS1

INITIALIZE DIGITS

GET "RANDOM" #
NOT TOOJ3IG
NOT TOf JMALL
PUT IN DECREMENT LOC.
BLANK CENTER DIGITS

DISPLAY DIGITS
TIME UP?
NO

START TIMER
FULL TIME UP?
NO, SKIP
YES, CHANGE ..
CENTER DIGITS
CLEAR FOR KEYBOARD
INIT. KEYBOARD
KEY DEPRESSED?
VALID KEY?
NO
RIGHT KEY?
YES
LEFT KEY?
YES
NOT A 0 OR A 7
INDEX FOR LEFT
TIME UP?
NO DECREASE LEFT ONE
YES, INCREASE LEFT
INDEX FOR RIGHT
CHECK TIME
NOPE, NOT YET

62

024B
024C
024D
024F
0251
0253
0254
0256
0257
0258
0259
025B
025D
025F
0261
0264
0267
0269
026B
026E
026F

F8
18
B5 F9
69 01
95 F9
8A
49 02
AA
F8
38
B5 F9
E9 01
95 F9
FO OA
20 71
20 40
DO F8
FO 9B
20 71
B8
50 FA

ADD1 SED
CLC
LDA OOF9,X
ADC #$01
STA OOF9,X
TXA
EOR #$02
TAX

LOS 1 SED
SEC
LDA OOF9,X
SBC #$01
STA OOF9,X
BEQ FIN

02 WAIT JSR LITE
IF JSR KEYIN

BNE WAIT
BEQ RAND

02 FIN JSR LITE
CLV
BVC FIN

INCREASE SCORE ..
BY ONE

INDEX TO OTHER . .
SIDE

DECREASE SCORE ..
BY ONE

GO TO FIN IF ZERO
WAIT FOR SWITCH ..
TO BE RELEASED

THEN START NEW DELAY
FINISHED LOOP

UNCOND. JUMP
xxxxx DISPLAY SUBROUTINE """-"

0271
0273
0276
0278
02 7A
02 7D
02 7F
0282
0285
0287
02 8A

02 8B
028C
02 8D
02 8E
028F
0290
0292
0295
0296
0298
029B
029C
029E
02AO
02A3
02A4

A9 7F
8D 41
A2 09
A5 FB
20 8B
A5 FA
20 4E
20 4E
A5 F9
20 8B
60
xxxxx
A8
4A
4A
4A
4A
FO OA
20 48
98
29 OF
20 48
60
A9 80
84 FC
20 4E
B8
50 EF

LITE LDA #$7F
17 STA SADD

LDX #$09
LDA OOFB

02 JSR 2HEX
LDA OOFA

IF JSR CONVX
IF JSR CONVX

LDA OOF9
02 JSR 2HEX

RTS
HEX CHARACTER CONVERSION

2HEX TAY
LSR A
LSR A
LSR A
LSR A
BEQ ZBLK

IF JSR CONVD
2NDC TYA

AND #$OF
IF JSR CONVD

RTS
ZBLK LDA #$80

STY 00 FC
IF JSR CONVX

CLV
BVC 2NDC

•/^
INIT. DIGIT ft

GET CENTER DIGITS
CONVERT NONHEX CHAR.
TWO OF THEM

SUBROUTINE ""'""

SUBROUTINE TO CONVERT
ONE WORD TO 2 HEX
CHARACTERS

SECOND CHARACTER

BLANK LEADING ZEROS

CONVERT NONHEX CHAR.

UNCOND. JUMP

63

MOWN
by Jim Butterf ield

You are farmer Brown. You are growing a beautiful crop of corn
But the following animals try to come and steal your corn:

"CC_

Ant Bird

0
Cow Dog Elephant

CD
Fox

As soon as you see one of these animals coming for your corn,
you can scare it away by calling its name. Press the button
with the first letter of the animal's name. So you would
press A to shoo away an ant, B to shoo away a bird, and so on.

If you press the right button, the animal will go back. If you
press the wrong button, it will think you mean somebody else
and keep coming for your corn. And when all your corn is gone,
KIM will show 000 and the game is* over.

The animal won't "shoo" unless it has completely entered the
display. Speed of the animals can be adjusted by changing the
contents of location 026A. -"

0200 A2 OD START
0202 86 6E
020ij A9 00
0206 95 60 SLOOP
0208 CA
0209 10 FB
020B A 2 OB TEST
020D B5 60 TLOOP
020F DO 3B
0211 CA
0212 10 F9
021i| E6 6D
0216 A£ 6C
0218 FO 09
021A C6 6D
021C C6 6E
021E DO 03
0220 UC 25 19
0223 AD OU 1? MORE
0226 hA. IjA 1|A
0229 UA UA
022B C9 06
022 D 90 02
022F 29 03
0231 18 MAKE
0232 AA
0233 69 OA

LDX #$13
STX CORN
IDA #0
STA WINDOW,!
DEX
BPL SLOOP
LDX #11
IDA WINDOW,!
BNE CONTIN
DEX
BPL TLOOP
INC GOT
LDA FIAG
BEQ MORE
DEC GOT
DEC CORN
BNE MORE
JMP DONE
LDA TIMER

bushels of corn to start
clear the window

.

is window empty?

no, keep going

yes. make new animal

did last animal get in?

take away some corn
any left?
no, end of game
random value. .

LSRA LSRA LSRA ..to generate..
LSRA LSRA
CMP #6
BCC MAKE
AND #$03
CLC
TAX
ADC #$OA

..new random animal
6 types of animal

animal type to X
key type A to F

64

ALOOF

NOKEY

0235 B5 6F
0237 ED kh 02
023A 85 70
023C A9 02
023S 85 71
02UO AO 05
02U2 Bl 70
02hh 99 66 00
02U7 88
02U8 10 F8
02UA 81* 60
02UC A2 05
02̂ E B5 66
0250 DO 13
0252 CA
0253 10 F9
0255 20 hO IF
0258 20 6A IF
025B C5 6F
025D DO 06
025F A5 6C
0261 10 02
0263 E6 6C
0265 C6 72
0267 DO IE
0269 A9 20
026B 85 72
026D A5 6C
026F 30 OD
0271 A2 OA
0273 B5 5A
0275 95 5B
0277 CA
0278 DO F9
027A 86 5A
027C FO 09
027E A2 FO
0280 B5 6C
0282 95 6B
028U E8
0285 30 F9
0287 A9 7F
0289 8D Ul 17
028C AO 13
028E A2 05
0290 B5 60 LITE
0292 8D hO 17
0295 8C h2 17
0298 E6 73
029A DO FC
029C 88 88 CA
029F 10 EF
02A1 UC OB 02

animal 'picture1 address
to indirect pointer

STA KEY
LDA INDEX,X
STA POINL
LDA #2
STA POINH
LDY #5 six locations to move
LDA (POINL),Y from 'picture'
STA WINGS,Y
DEY
BPL ALOOP
STY FLAG

CONTIN LDX #5
CLOOP

..to 'wings'

animal coming

RLOOP

LDA WINGS ,X
BNE NOKEY
DEX
BPL CLOOP
JSR KEYIN
JSR GETKEY
CMP KEY
BNE NOKEY
LDA FLAG
BPL NOKEY*
INC FLAG
DEC DELAY
BNE NOMOVE
LDA #$20
STA DELAY
LDA FLAG
BMI COMING
LDX #10
LDA WINDOW-6.X
STA WINDOW-5.X
DEX
BNE RLOOP
STX WINDCW-6
BEQ NOMOVE

COMING LDX #$FO
CMLOOP LDA WINDOW+12,X

STA WINDOW+11,X
INX
.BMI CMLOOP

NOMOVE LDA #$7F
STA PADD
LDY #$13
LDX #5
LDA WINDCW,X
STA SAD
STY SBD
INC WAIT
BNE LITEX
DEY DEY DEX
BPL LITE

flag FF
test:
is animal out of 'wings
no, ignore keyboard

right anim al named?
no, ignore key

animal retreating?
make animal retreat
wait a while.•
before moving animal
speed control value

move animal - which way?
..left
..right

clear extreme left
unconditional branch
-16

light KIM display

six display digits

LITEX

JMP TEST
j index and animal 'pictures' in hexadecimal form

02AU AA BO B6 BC C2 C8 08 00 00 00 00 00 01 61 61 hO 00 00
02B6 61 51 hi 01 00 00 63 58 UE 00 00 00 71 ID 111 IF 01 00
02C8 63 58 UC UO 00 00 -

FARMER BROWN....

Exercises:

1. You can see that each animal occupies 6 memory locations,
starting at 02AA (the Ant) - and the last location must always
be zero. Can you make up your own animals? The letters may
not fit exactly, but you can always invent names or use
odd ones (you could make an Aardvark, a Burfle, a Cobra, and
so on).

2. The game might be more fun if the animals went faster after
a while, so that sooner or later they would just zip by.
The location that controls speed is at address 026A;
the lower the number, the faster the animals will go.
So if you could arrange to have the program decrease
this number automatically once in a while, you'd get
a nice speed-up feature.

3. You can't "shoo" the animal until it's completely entered
the display; but you can still catch it after it's partly
left. The game would be harder - and maybe more fun -
if you could only shoo it while it was completely in the
display. Hint - testing location 00$F (WINDOW-l) would
tell you if an animal was on its way out.

U. You'd have a "Target Practice" game if you made the animal
disappear (instead of backing up) when you pressed the
right button. With a little planning, you'll find that
this is quite easy to do.

XJOCKX HEX DUMP - FARMER BROWN :{!««~{

0200-
0210-
0220-
0230-
0240-
0250-
0260-
0270-
0280-
0290-
02A0-
02B0-
02C0-

A2
3B
4C
03
A0
D0
6C
0D
B5
B5
EF
01
00

0D 86
CA 10
25 19
18 AA
05 Bl
13 CA
10 02
A2 0A
6C 95
60 8D
4C 0B
61 61
00 71

6E A9
F9 E6
AD 04
69 0A
70 99
10 F9
E6 6C
B5 5A
6B E8
40 17
02 AA
40 00
ID 41

00
6D
17
85
66
20
C6
95
30
8C
B0
00
IF

95
A5
4A
6F
00
40
72
5B
F9
42
B6
61
01

60
6C
4A
BD
88
IF
D0
CA
A9
17
BC
51
00

CA
F0
4A
A4
10
20
IE
D0
7F
E6
C2
47
63

10
09
4A
02
F8
6A
A9
F9
8D
73
C8
01
58

FB
C6
4A
85
84
IF
20
86
41
D0
08
00
4C

A2
6D
C9
70
6C
C5
85
5A
17
FC
00
00
40

0B
C6
06
A9
A2
6F
72
F0
A0
88
00
63
00

B5
6E
90
02
05
D0
A5
09
13
88
00
58
00

60 D0
D0 03
02 29
85 71
B5 66
06 A5
6C 30
A2 F0
A2 05
CA 10
00 00
4E 00

66

HI 10 BY JIM BUTTERFIELD

DESCRIPTION -

AN EASY GAME FOR ONE OR MORE PLAYERS. KIM CHOOSES A M
SECRET NUMBER FROM 01 TO 98. AT THE START, THE FIRST FOUR
DIGITS SHOW THE HIGH AND LOW BOUNDS OF THE NUMBER - 99 HIGH
AND 00 LOW. AS GUESSES ARE ENTERED - ENTER THE GUESS AND
PRESS A FOR ATTEMPT - THE BOUNDS CHANGE AS YOU ARE NARROWING
DOWN THE POSSIBILITIES. FOR EXAMPLE, GUESS 32 AND THE DISPLAY
MIGHT CHANGE TO 32 00, MEANING THAT THE COMPUTER'S SECRET
NUMBER IS BETWEEN THESE VALUES. AFTER EACH LEGAL GUESS,
THE COMPUTER SHOWS THE NUMBER OF ATTEMPTS MADE SO FAR.

ONE PLAYER GAME: TRY TO GET THE MYSTERY NUMBER IN SIX ATTEMPTS.

MULTI PLAYER GAME: EACH PLAYER TRIES TO AVOID GUESSING THE
MYSTERY NUMBER - THE CORRECT GUESSER LOSES AND IS "OUT".

0200 F8
0201 A5
0203 38
0204 69
0206 A2
0208 C9
020A DO
020C 8A
020D 85
020F 20
0212 DO
0214 D8
0215 A9
0217 85
0219 A9
021B 85
02 ID A2
021F 86
0221 86
0223 20
0226 20
0229 C9
022B FO
022D C5
022F FO
0231 85

EO

00
01
99
01

EO
40 IF
ED

99
FB
00
FA
AO
F9
El
IF IF
6A IF
13
D3
E2
F2
E2

START SED
TOP LDA

SEC
ADC
LDX
CMP
BNE
TXA

OVRO STA
JSR
BNE
CLD
LDA
STA
LDA
STA

RSET LDX
NSET STX

STX
GUESS JSR

JSR
CMP
BEQ
CMP
BEQ
STA

RND generate random f
01 to 98

#0
fl overflow at 99
#$99
OVRO

RND
KEYIN
TOP

initialize:
#$99 hi
POINTH
#0
POINTL and lo
#$AO guess counter
INK
NGUESS
SCANDS light display
GETKEY test key
#$13 go key?
START
LAST
GUESS same key?
LAST

67

0233
0235
0237
0239
023A
023B
023C
023D
023F
0240
0242
0243
0245
0247
0249
024B
024D
024F
0251

0255
0257
0259
025B
025D
025F
0261
0263
0264
0266
0268

OA
FO 10
BO EA
OA
OA
OA
OA
A2 03
OA
26 F9
CA
10 FA
30 DC
A5 F9
C5 EO
90 06
C5 FB
BO D2
85 FB
A6 EO
E4 F9
90 08
A6 FA
E4 F9
BO C4
85 FA
A6 El
E8
EO AA
FO B5
DO B5

LOOP

EVAL

OVR1

OVR2

CMP
BEQ
BCS
ASL
ASL
ASL
ASL
LDX
ASL
ROL
DEX
BPL
BMI
LDA
CMP
BCC
CMP
BCS
STA
LDX
CPX
BCC
LDX
CPX
BCS
STA
LDX
INX
CPX
BEQ
BNE

#$OA
EVAL
GUESS
A
A
A
A
#3
A
INK

LOOP
GUESS
INK
RND
OVR1
POINTH
GUESS
POINTH
RND
INK
OVR2
POINTL
INK
GUESS
POINTL
NGUESS

#$AA
RSET
NSET

'A' key?
yes, evaluate guess
no key?
roll character
..into..
position..

. then

. into

.display

guess lower..
..than number?
yes, skip
no, check hi
out of range?

number lower..
..than guess?
yes, skip
no,check lo

out of range?

'guess' number
. .plus 1

past limit?
yes, reset

xxxxx HEX DUMP - HI LO ~J5:::::

0200 F8 A5 EO 38 69 00 A2 01 C9 99 DO 01 8A 85 EO 20
0210 40 IF DO ED D8 A9 99 85 FB A9 00 85 FA A2 AO 86
0220 F9 86 El 20 IF IF 20 6A IF C9 13 FO D3 C5 E2 FO
0230 F2 85 E2 C9 OA FO 10 BO EA OA OA OA OA A2 03 OA
0240 26 F9 CA 10 FA 30 DC A5 F9 C5 EO 90 06 C5 FB BO
0250 D2 85 FB A6 EO E4 F9 90 08 A6 FA E4 F9 BO C4 85
0260 FA A6 El E8 EO AA FO B5 DO B5

68

BY CHUCK EATON

DESCRIPTION -
THIS IS AN EIGHT LAP HORSE RACE AND YOU CAN BE THE

JOCKEY AND WHIP YOUR HORSE TO GO FASTER. WARNING ... WHIP
THE HORSE TOO MUCH AND HE PROBABLY POOPS OUT. THE PROGRAM
STARTS AT 0200.

HORSE TRACK WHIPPING BUTTON
PRINCE CHARMING TOP PC
COLORADO COWBOY MIDDLE C
IRISH RAIR BOTTOM 4

0200
0201
0203
0206
0208
0209
020B
020D
0210
0212
0214
0217
0219
021C
021D
021F
0221
0224
0226
0228
022A
022B
022D
022F
0231
0233
0235
0237
023A
023C
023E
023F
0241
0244
0246
0248
024A
024C
024E
0250
0252
0254

D8
A2
BD
95
CA
10
A9
8D
AO
A2
B9
84
20
C8
CO
90
20
A5
30
A2
CA
30
D6
DO
86
A4
B6
B9
35
95
E8
96
B9
49
15
95
EO
30
DO
A5
FO
DO

13
D9
7C

F8
7F
41
00
09
7C
FC
4E

06
F3
3D
8F
E3
03

DE
86
F9
99
99
83
ED
7C
7C

83
ED
FF
7C
7C
05
2B
06
8F
IB
23

02

17

00

IF

IF

02

02

CLD
LDX #$13

INIT LDA 02D9,X
STA 007C,X
DEX
BPL INIT

DISP LDA #$7F
STA 1741
LDY #$00
LDX #$09

LITE LDA 007C,Y
STY OOFC
JSR 1F4E
INY
CPY #$06
BCC LITE
JSR 1F3D
LDA LAP CNT.
BMI DISP
LDX #$03

NEXT DEX
BMI DISP
DEC 0086,X
BNE NEXT
STX 0099
LDY 0099
LDX 0083,Y
LDA 02ED,Y
AND 007C,X
STA 007C,X
INX
STX 0083,Y
LDA 02ED,Y
EOR #$FF
ORA 007C,X
STA 007C,X
CPX #$05
BMI POOP
BNE NLAP
LDA 008F
BEQ LAST
BNE POOP

...INITIALIZATION...

HORSES TO STARTING GATE

...LIGHT DISPLAY...

OUTPUT DIGIT

SIX DIGITS DISPLAYED?
NOT YET
TURN OFF DIGITS
FINISHED TOTAL LAPS?
YES, FREEZE DISPLAY

NEXT HORSE
FINISHED 3 HORSES
DEC. CNT., HORSE X
NOT ZERO, NEXT HORSE
SAVE HORE INDEX
AND PUT IN Y AS INDEX
DIGIT POS. OF HORSE IN X
MASK TO REMOVE HORSE
GET RID OF HORSE
RETURN REMAINING HORSES
GO TO NEXT DIGIT RIGHT
UPDATE HORSE DIGIT POS.
GET MASK
CHANGE TO AN INSERT MASK
PUT HORSE IN NEXT
DIGIT RIGHT
REACHED RIGHT SIDE?
NOT YET
OFF RIGHT SIDE, CHANGE LAP
CHECK LAP COUNTER
IF ZERO, LAST LAP

69

0256
0258
0259
025B
025D
025F
0260
0262
0264
0266
0268
026A
026C
026D
026F
0271
0273
0275
0277
0279
027C
027E
0281
0283
0285
0288
028B
028D
028F
0292
0294
0296
0298
029A
029C
029F
02A2
02A4
02A6
02A9
02AB
02 AC
02 AD
02AF
02B1
02B4
02B5
02B7
02B9
02BA
02BC
02BE
02CO
02C2

A2 02 NLAP
38 DOWN
B5 83
E9 06
95 83
CA
10 F6
A2 06
B5 7C STOR
95 76
A9 80
95 7C
CA
DO F5
C6 8F LAST
DO 06
A5 81
09 06 .
85 81
B9 89 00 POOP
FO OA
20 C5 02
29 3C
DO 1A
99 89 00
20 C5 02 NOPO
29 38
85 9A
B9 8C 00
30 OB
29 38
C5 9A
BO 05
A9 FF
99 89 00
20 3D IF FAST
AO FF
A6 99
3D FO 02
FO 01
88
98 SKIP
55 89
85 9A
20 C5 02
38
29 01
65 9A
18
A6 99
75 8C
95 8C
95 86
4C 2A 02

LDX #$02
SEC
LDA 0083,X
SBC #$06
STA 0083,X
DEX
BPL DOWN
LDX #$06
LDA 007C,X
STA 0076,X
LDA #$80
STA 007C,X
DEX
BNE STOR
DEC 00 8F
BNE POOP
LDA 0081
ORA #$06
STA 0081
LDA 0089,Y
BEQ NOPO
JSR RAND
AND #$3C
BNE FAST
STA 0089,Y
JSR RAND
AND #$38
STA 009A
LDA 008C,Y
BMI FAST
AND #$38
CMP 009A
BCS FAST
LDA #$FF
STA 0089, Y
JSR KEYIN
LDY #$FF
LDX 0099
AND 02FO,X
BEQ SKIP
DEY
TYA
EOR 0089,X
STA 009A
JSR RAND
SEC
AND #$01
ADC 009A
CLC
LDX 0099
ADC 008C,X
STA 008C,X
STA 0086,X
JMP NEXT

...CHANGE TO A NEW LAP
SHIFT ALL HORSE DIGIT
POSITIONS SIX PLACES
DOWN...

...ALSO SHIFT DIGIT
CONTENT\INTO STORAGE
AREA AND CLEAR DISPLAY
AREA...

DEC. LAP COUNTER
NOT LAST LAP, CONTINUE
LAST LAP, PUT FINISH
LINE IN LAST DIGIT

HORSE Y POOP FLAG
HORSE NOT POOPED
...POOPED, BUT MAY
BECOME UNPOOPED DEPENDING
ON RANDOM NUMBER

...NOT POOPED, BUT MAY
BECOME POOPED DEPENDING
ON RANDOM NUMBER...

IF POOPED, SET POOP
FLAG TO "FF"

GET KEY FROM KEYBOARD
INIT. Y TO MAX
HORSE INDEX IN X
MASK (IS HORSE WHIPPED?)
NO, NOT BEING WHIPPED
WHIPPED, Y MADE SMALLER
..CHANGE SIGN IF POOPED
EXC. OR WITH 00 OR FF
SAVE SPEED UPDATE
GET A RANDOM NUMBER

..LOWEST BIT OF #
COMBINE WHIP UPDATE,
RAND # CO OR 1) S CARRY
HORSE INDEX IN X
HORSES SPEED ADDED IN
SAVE NEW SPEED
ALSO IN WINDOW COUNTER
LOOP

70

02C5
02C6
02C8
02CA
02CC
02CE
Q2DO
02D2
02D4
02D5
02D7

«h*k«h«»

38
A5 92
65 95
65 96
85 91
A2 04
B5 91
95 92
CA
10 F9
60

RANDOM
RAND

MOVE

02D8-
02EO-
02FO-

NUMBER SUBROUTINE
SEC
LDA 0092 FROM J. BUTTERFIELD
ADC 0095 KIM USER NOTES - 1
ADC 0096 PAGE 4
STA 0091
LDX #$04
LDA 0091,X
STA 0092,X
DEX
BPL MOVE w
RTS "V m

xxxxx TABLES - HORSERACE """""

00/80/80/80/80/80/80/80
FF/FF/FF/80/80/80/00/00/00/80/80/80/08/FE/BF/F7
01/02/04

xxswcx HEX DUMP - HORSERACE xxxxx

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02AO
02BO
02CO
02DO
02EO
02FO

D8 A2
AO 00
F3 20
F9 86
83 B9
A5 8F
10 F6
8F DO
02 29
8C 00
3D IF
9A 20
95 86
B5 91
FF FF
01 02

13 BD
A2 09
3D IF
99 A4
ED 02
FO IB
A2 06
06 A5
3C DO
30 OB
AO FF
C5 02
4C 2A
95 92
FF 80
04

D9 02
B9 7C
A5 8F
99 B6
49 FF
DO 23
B5 7C
81 09
1A 99
29 38
A6 99
38 29
02 38
CA 10

7C CA
84 FC

95
00
30 E3 A2
83 B9 ED
15 7C 95
A2 02 38
95 76 A9
06 85 81
89 00 20
C5 9A BO
3D FO 02
01 65 9A
A5 92 65
F9 60 00

80 80 00 00 00

10 F8 A9
20 4E IF
03 CA 30
02 35 7C
7C EO 05
B5 83 E9
80 95 7C
B9 89 00
C5 02 29
05 A9 FF
FO 01 88
18 A6 99
95 65 96
80 80 80
80 80 80

7F 8D
C8 CO
DE D6
95 7C
30 2B
06 95
CA DO
FO OA
38 85
99 89
98 55
75 8C
85 91
80 80

41 17
06 90
86 DO
E8 96
DO 06
83 CA
F5 C6
20 C5
9A B9
00 20
89 85
95 8C
A2 04
80 80

08 FE BF F7

71

KtY TRAIN Butterfi«ld

Ever wish you could touch-type your KIM keypad like some people
can type? It's not hard; all you need is practice. And what
better teacher to drill you on key entry than the KIM system itself?

Load this fully relocatable program anywhere. Start it up, and
the display will show a random hexadecimal digit, ffcwn 0 to F.
Hit the corresponding key, and the display will blank, and then
present you with another random digit. Hit the Wrong key. and
nothing will happen.

The educational principle involved is called positive reinforcem̂ ht.
That is, you're rewarded for doing the right thing, and ignored if
you do it wrong. A few minutes of practice a day. and you'll become
a speed demon on the keyboard.1

0000 20 hO IF START
0003 DO FB
0005 AD Oh 17
0008 UA UA
OOOA UA UA
OOOC 85 FF
OOOE OA OA
0010 OA OA
0012 05 FF
OOlU 85 F9
0016 85 FA
0018 85 FB
001A 20 IF IF LIGHT
001D 20 6A IF
0020 C5 FF
0022 FO DC
002U DO FU

JSR KEYIN
BNE START
LDA TIMER
LSRA LSRA
LSRA LSRA
STA TEMP
ASLA ASLA
ASLA ASLA
ORA TEMP
STA INH
STA POINTL
STA POINTH
JSR SCANDS
JSR GETKEY
CMP TEMP
BEQ START
BNE LIGHT

key still depressed - blank
random value
wipe high order bits"

save the digit
move back left

repeat the digit
put..
..into..

..display
light display
test keys
right key?
yes, blank & rpeat

The random number used in this program is taken from the KIM timer.
This timer runs continuously and might be anywhere between 00 and FF
at the instant we push the button. We use the four left hand (high order']
bits of the timer to produce the next digit.

Be sure that KIM is not in decimal mode when you run this nrogram -
set address OOF1 to 00 before starting. If you forget, you might
find that the alphabetic keys (A to F) don't work right.

Exercises: can you make the program clear decimal mode automatically?
How about a counter to record the number of correct keystrokes you
have made? That way, you could time yourself to see how many keys
you can get right in 60 seconds. The count could be shown in the
two right hand digits of the display. Do you think it should be
in decimal or hexadecimal?

72

KIM NIM BY JIM BUTTERFIELD

Here's a jumbo NIM that's good for all skill levels.
Why? Because KIM matches wits with you - literally.
Play a duffer's game and KIM will make lots of errors,
too. Start winning a few - and KIM will move up to
the master player level.
Hit GO and several digits on the KIM display will light.
Each lit digit represents a pile of objects you can
pick from. Decide which pile you wantl*and enter
its identity: A for the left-hand pile through to
F for the right-hand pile. The pile fcrou have selected
will start to flash on and off. Now enter the number
of items you want to take from that pile.
KIM will take its turn the same way - you'll see
the pile selected begin to flash, and then some
items will be taken away. After the computer moves,
it's your turn again.
The winner is the player who takes the last object.
When this happens, KIM will identify the winner.
A new game can be started at any time by^hitting GO.

0200
0203
0206
0208
020A
020D
020F
0210
0212
0214
0215
0217
0219
021A
021D
021E
0220
0223
0225
0228
022A
022B
022D
022F
0230
0233
0234
0236
0238
023A

20 40
20 6A
C9 13
DO 3A
AD 04
A2 02
A8
29 0?
FO 03
18
69 02
95 04
98
4A 4A
CA
10 EF
20 40
DO FB
AD 04
A2 02
A8
29 07
95 07
98
4A 4A
CA
10 F4
85 01
85 02
A2 06

IF START
IF

directional regs

17

SPLIT

GO key?
nope, skip
get random nbr
split into 3
save A
extract 3 bits
unless zero..
..add two

ZINCH

4A

IF STALL

17

SPLAT

4A

JSR KEYIN
JSR GETKEY
CMP #$13
BNE NOGO
LDA TIMER
LDX #2
TAY
AND #7
BEQ ZINCH
CLC
ADC #2
STA VALUE,X store pile val
TYA bring back rand
LSRA LSRA LSRA
DEX
BPL SPLIT
JSR KEYIN wait for. .
BNE STALL ..key release
LDA TIMER new random nbr
LDX #2 split 3 ways
TAY again
AND #7 3 bits
STA VALUE+3.X
TYA
LSRA LSRA LSRA
DEX
BPL SPLAT
STA PILE pile zero
STA MOVE it's your move
LDX #6 for each pile..

73

023C
023E
0241
0242
0244
0246
0243
024A
024C
024E
0250
0252
0254
0255
0257
0259
025B
0250
025E
0260
0262
0264
0266
0268
026A
026C
026E
02?0
0272
0274
0277
0279
027C
027E
0231
0233

0235
0237
0239
023B
023D
023F
0292
0294
0296
0293
029B
029E
02AO
02A2
02A4
02A5
02A7
02A9

B5 03
20 2D
CA
DO F3
A6 02
DO 3D
C9 10
BO 39
C9 00
FO 35
C9 OA
90 12
33
E9 09
A6 01
DO 2A
AA
B5 OA
FO 25
36 01
35 OA
BO IF
A6 01
FO IB
85 03
B5 03
05 03
90 13
E5 03
20 2D
E6 02
20 16
DO 07
20 05
35 OB
46 00

A6 01
A5 OA
55 OA
95 OA
A9 7F
3D 41
AO 13
A2 05
B5 OB
3D 40
30 42
E6 11
DO FC
88 38
CA
10 EF
E6 12
DO E7

03
DRESS

NOGO

LDA VALUE-1,X ..change to
JSR SEG ..segments
DEX
BNE DRESS

whose move?
computer's, skip
hex digit keyed?
no, skip
zero key?
yes, skip
alphabetic?
no, numeric
change A-F...
..to 1-6
pile already..
..selected?

LDX MOVE
BNE NOKEY
CMP #$10
BOS NOKEY
CMP #0
BEQ NOKEY
CMP #$OA
BCC NUM
SEC
SBC #9
LDX PILE
BNE NOKEY
TAX
LDA FLASHR,X ^
BEQ NOKEY nothing in pile?
STX PILE OK, mark pile
STA FLASHR store flash code
BCS NOKEY unconditional

NUM LDX PILE
BEQ NOKEY no pile selected
STA TEMP save number
LDA VALUE-1,X pile value
CMP TEMP pile big enough?
BCC NOKEY nope
SBC TEMP yes, take out

03 JSR SEG compute segments
INC MOVE computer's move

03 JSR SURVEY end of game?
BNE NOKEY no, keep going

03 JSR MESSAG yes, show messg
STA WINDOW ''I LOSE1'
LSR IQ get smart!

; all routines join here - display
NOKEY LDX PILE

LDA FLASHR flash pile
EOR FLASHR,X
STA FLASHR,X
LDA #$7F

17 STA PADD
LIGHT LDY #13

LDX #5
LITE LDA WINDOW,X

17 STA SAD
17 STY SBD

LITEX INC CUE
BNE LITEX
DEY DEY
DEX
BPL LITE
INC WAIT
BNE LIGHT

74

02AB A9 F8
02AD 85 12
02AF A6 02
02B1 FO 4E
02E3 CA
02B4- DO 2B
02B6 A9 00
02B3 A2 05
02BA 55 0̂ 4-
02BC CA
02BD 10 FB
02BF 85 OA
02C1 A2 06
02C3 B5 03
0205 4-5 OA
02C7 D5 03
02C9 90 05
02CB CA
02CC DO F5
02CE FO OB
02DO A** 00
02D2 CC 04
02D5 BO 04-
02D? 85 03
02D9 86 01
02DB A6 01
02DD B5 OA
02DF 85 OA
02E1 E6 02
02E3 A5 02
02E5 C9 10
02E? 90 13
02E9 A6 01
02EB A5 03
02ED 20 2D
02FO 20 16
02F3 DO 06
02F5 20 05
02F8 38
02F9 26 00
02FB A9 00
02FD 85 02
02FF 85 01
0301 D8
0302 4c oo
0305 A9 00
0307 85 02
0309 85 01
030B A2 06
030D BD 3B
0310 95 OA
0312 CA
0313 10 F8
0315 60

LDA #$F8
STA WAIT
LDX MOVE whose move?
BEQ EXIT not computer's
DEX first step?
BNE TRY no, skip stratgy
LDA #0
LDX #5 merge all piles..

MERGE EOR VALUE, X ..by EOR-ing them
DEX
BPL MERGE
STA FLASHR save EOR product
LDX #6 re-examine piles

LOOP LDA VALUE-1, X
EOR FLASHR }
CMP VALUE-1, X ^ «
BCC FOUND W

DEX
BNE LOOP
BEQ MOVE

FOUND LDY IQ IQ high enuff?
17 CPY TIMER ..randomly..

BCS MOVE no, move dumb
STA TEMP amount
STX PILE pile number

MOVE LDX PILE
LDA FLASHR, X flash mask
STA FLASHR Flash.. .

TRY INC MOVE but don*t make
LDA MOVE ..the move till..
CMP #$10 ..time has passed
BCC EXIT
LDX PILE time to move.'
LDA TEMP

03 JSR SEG make move
03 JSR SURVEY end of game?

BNE KEEP nope, keep go in
03 JSR MESSAG «U LOSE1

SEC dummy up. .
ROL IQ ..the computer

KEEP LDA #0
STA MOVE it's your move
STA PILE un-flash
CLD

02 JMP START
MESSAG LDA #0

STA MOVE end of play
STA PILE no flashing
LDX #6 move 7 digits

03 MLOOP LDA DATA,X pick em up..
STA FLASHR, X ..put em down
DEX
BPL MLOOP
RTS

75

0316
0313
031A
031C
031E
0320
0322
0324
0326
032?
0329
032B
032C

A9 00
85 OA
A2 06
05 03
BO 06
B5 03
85 03
86 01
CA
DO F3
C6 03
A3
60

SURVEY LDA #0

REVUE

SMALL

STA FLASHR un-flash ,,
LDX #6 for all piles..
CMP VALUE-1,X
BCS SMALL
LDA VALUE-1,X
STA TEMP
STX PILE
DEX
BNE REVUE
DEC TEMP
TAY test A
RTS

032D 95 03
032F FO 04
0331 A3
0332 B9 E? IF
0335 95 OA
0337 A9 oo
0339 60

SEG

NIL

STA VALUE-1,X
BEQ NIL
TAY
LDA TABLE,Y
STA FLASHR,X
LDA #0
RTS

store value
blank digit

segments to wndw

033A FF 06 BE 00 B8 BF ED F9 (DATA)

Jc:::s;;- HEX DUMP - KIM NIM """""

0342

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02AO
02BO
02CO
02DO
02EO
02FO
0300
0310
0320
0330
0340

20 40 IF
29 07 FO
20 40 IF
4A 4A 4A
03 CA DO
C9 OA 90
86 01 85
90 13 E5
03 85 OB
41 17 AO
DO FC 88
02 FO 4E
OA A2 06
A4 00 CC
OA E6 02
20 16 03
01 D8 4C
95 OA CA
B5 03 85
04 A8 B9
ED F9

20 6A IF
03 18 69
DO FB AD
CA 10 F4
F8 A6 02
12 38 E9
OA BO IF
03 20 2D
46 00 A6
13 A2 05
88 CA 10
CA DO 2B
B5 03 45
04 17 BO
A5 02 C9
DO 06 20
00 02 A9
10 F8 60
03 86 01
E7 IF 95

C9 13
02 95
04 17
85 01
DO 3D
09 A6
A6 01
03 E6
01 A5
B5 OB
EF E6
A9 00
OA D5
04 85
10 90
05 03
00 85
A9 00
CA DO
OA A9

DO 3A AD
04 98 4A
A2 02 A8
85 02 A2
C9 10 BO
01 DO 2A
FO IB 85
02 20 16
OA 55 OA
8D 40 17
12 DO E7
A2 05 55
03 90 05
03 86 01
18 A6 01
38 26 00
02 85 01
85 OA A2
F3 C6 03
00 60 FF

04 17 A2
4A 4A CA
29 07 95
06 B5 03
39 C9 00
AA B5 OA
03 B5 03
03 DO 07
95 OA A9
8C 42 17
A9 F8 85
04 CA 10
CA DO F5
A6 01 B5
A5 03 20
A9 00 85
A2 06 BD
06 D5 03
A8 60 95
06 BE 00

02 A8
10 EF
07 98
20 2D
FO 35
FO 25
C5 03
20 05
7F 8D
E6 11
12 A6
FB 85
FO OB
OA 85
2D 03
02 85
3B 03
BO 06
03 FO
B8 BF

76

KfM- TAC-TOi
BY LEW EDWARDS

DIRECTIONS -
PLAY BEGINS WITH KIM MAKING THE FIRST PLAY WHEN

"GO" IS PRESSED. THE SECOND THROUGH FOURTH DIGITS OF *
THE DISPLAY HOLD THE PATTERN WITH SQUARES NUMBERED AS:
YOUR ENTRY WILL BE IMMEDIATE BUT 7 8 9
KIM'S ACTION WILL BE DELAYED. YOUR 4 5 6
PLAYS LIGHT STEADILY WHILE KIM'S 1 2 3
FLICKER. A WINNING ROW BLINKS AND A DRAW BLINKS
EVERYTHING. ON COMPLETION OF A GAME, THE "GO" KEY WILL
START A NEW GAME. IF YOU PREFER TO PLAY FIRST, PRESS THE
"+" KEY INSTEAD. THE KIM HAS AN I.Q. LEVEL THAT CAN BE
CHANGED BY PRESSING "PC" AT GAMES END. YOU WILL SEE,
"ODDS" AND KIM'S I.Q. DISPLAYED. THE I.Q. IS INITIALLY
SET TO 75%, COO. CHANGE IT TO WHAT YOU WISH AND THEN
PRESS "DA" TO RETURN TO THE DONE LOOP AND yART A tftw
GAME IN THE NORMAL MANNER. THE I.Q. L£ ADJUSTED UPWARD
EACH TIME THE PLAYER WINS AND DOWNWARD EACH TIME KIM WINS.
THE PROGRAM STARTS AT 0100.

0100
0103

0106
0108
010A
010C
010D

010F

0118
0120
0128

4C 10 03
EA EA EA

JMP STIQ
NOP'S

JUMP TO START LOCATION

SUBROUTINE "LOAD BLINK" ":!"
A9 20
15 BF
95 BF
60
EA EA

BLINK FLAG
ADD IT TO THE..
INDEXED BYTE

LDA "$20
ORA SQST,X
STA SQST,X
RTS
NOP'S

""""" TABLE - SEGMENTS ZZ""::
08/08/08/40/40/40/01/01/01

:c::x:c:: TABLE - ROWS --""»
01/04/07/01/02/03/01/03
02/05/08/04/05/06/05/05
03/06/09/07/08/09/09/07

""" SUBROUTINE "GET PLAY" «««
GPLA STA TEMP SAVE THE ACCUMULATOR

LDX "$09 FOR TESTING
GPLP LDA TEMP GET IT BACK

AND PS,X MASK THE STATUS BYTE
BIT TEMP CHECK FOR BIT ON
BNE OUT GOT IT - DONE
DEX
BNE GPLP NOPE - KEEP TRYING

OUT RTS SQUARE VALUE IN X
0 = NO MATCH
"-""» SUBROUTINE "TEST AND INCREMENT" s««««s

0140 B5 BF LDA SS,X
0142 DO 02 BNE OUT COUNT OPEN SQUARES
0144 F6 DB INC PS,X ONLY
0146 60 OUT RTS

0130
0132
0134
0136
0138
013A
013C
013D
013F

85 D9
A2 09
A5 D9
35 DB
24 D9
DO 03
CA
DO F5
60

77

0147
0149
014B
014D
0150
0153
0156
0159
015C
015F
0162
0163
0165
0200
0202
0204
0206
0207
0209
020B
020D
020F
0212
0214
0216
0218
0219
02 IB
02 IE
021F
0221
0223
0225
0228
022A
022C
022E
022F
0231
0234
0235
0237
0239
02 3B
023E
0240
0241
0243
0245
0248
024B
024E

»
95
AO
A9
99
BE
20
BE
20
BE
20
88
DO
60
A9
A2
95
CA
DO
A9
85
AO
20
A2
D5
FO
CA
DO
99
88
DO
E6
AO
20
A2
D5
FO
CA
DO
99
88
DO
A9
AO
D9
FO
88
DO
FO
BE

BF
08
00
C8 00
17 01
8A 03
IF 01
8A 03
27 01
8A 03

E6

00
ID
B4

FB
05
BB
04
F2 03
04
BB
F7

F9
BB 00

EE
B6
04
F2 03
05
B6
F7

F9
B6 00

EE
03
08
C8 00
05

F8
15
17 01

•.*».# *M*«*
'W* «W*tf*

UPDA

UPLP

NEW

INLP

ELP1

ELP2

OLP1

OLP2

PVAL
TEST
WNLP

WIN
20 06 01
BE IF 01
20 06 01

SUBROUTINE "UPDATE" 5«J!««{
STA SS,X
LDY "$08
LDA -$00
STA RS,Y
LDX SQ1,Y
JSR RSADD
LDX SQ2,Y
JSR RSADD
LDX SQ3,Y
JSR RSADD
DEY
BNE UPLP
RTS

LDA #$00
LDX #$1D
STA OOB4,X
DEX
BNE INLP
LDA #$05
STA OOBB
LDY #$04
JSR RPLA
LDX #$04
CMP REVN,X
BEQ ELP1
DEX
BNE ELP2
STA REVN,Y
DEY
BNE ELP1
INC ODEV
LDY #$04
JSR RPLA
LDX #$05
CMP RODD,X
BEQ OLP1
DEX
BNE OLP2
STA RODD,Y
DEY
BNE OLP1
LDA #$03
LDY #$08
CMP ROWS,Y
BEQ WIN
DEY
BNE WNLP
BEQ DRAW

LDX SQ1,Y
JSR BLNK
LDX SQ2,Y
JSR BLNK

FLAG THE SQUARE

CLEAR THE REGISTER

THEN LOAD
CURRENT STATUS
VALUES

LOOP TILL DONE

CLEAR REGISTERS

INITALIZE ORDER OF..
NCf^CALCULATED PLAYS
CENTER - FIXED ORDER

SIDES IN RANDOM ORDER

CORNERS- IN RANDOM ORDER

TEST FOR 3 IN A ROW
03=PLAYER WIN/OC=KIM WIN
GAME WON-BLINK THE ROW

NOT YET-CK NEXT ROW
NO WINNER-CK FOR DRAW

BLINK #1

BLINK #2

78

0251
0254
0257
025A
025C
025E
0260
0262
0263
0265
0267
026A
026B
026D
0270
0272
0274
0276
0279
027B
027D
027F
0280
0282
0284
0286
0289
028B
028D
0290
0292
0294
0296
0299
029B
029E
02AO
02A3
02A5
02A8
02AA
02 AD
02AF
02B1
02B4
02B6
02B8
02BB
02BD
02CO
02C2
02C4
02C6

BE 27 01
20 06 01
4C FE 02
A2 09 DRAW
A9 CO OPEN
35 BF
FO OE
CA
DO F7
A2 09
20 06 01 NXBL
CA
DO FA
4C 15 03
E6 B5 TURN
A5 DB
DO 17
20 A6 03 KEY
FO FB
C9 OA
BO F7
AA
B4 BF
DO F2
A9 40
20 47 01
E6 DB
DO AA
20 4C 03 WAIT
E6 Dl
DO F9
A9 08
20 C8 03
A9 02
20 C8 03
A9 04
20 C8 03
A9 01
20 C8 03
A9 CO
20 30 01
DO 43
A9 30
20 30 01
DO 3C
A9 08
20 30 01
DO 35
20 B3 03 IPLA
29 OF
C5 D2
BO IF
A4 B5

LDX SQ3,Y
JSR BLNK
JMP MTST
LDX -$09
LDA #$CO
AND DSPL,X
BEQ TURN
DEX
BNE OPEN
LDX #$09
JSR BLNK
DEX
BNE NXBL
JMP DONE
INC PLA4
LDA MODE
BNE WAIT
JSR KEYS
BEQ KEY
CMP #$OA
BCS KEY
TAX
LDY DSPL,X
BNE KEY
LDA #$40
JSR UPDATE
INC MODE
BNE PVAL
JSR DISPLAY
INC LPCNT
BNE WAIT
LDA #$08
JSR PSLD
LDA #$02
JSR PSLD
LDA #$04
JSR PSLD
LDA #$01
JSR PSLD
LDA #$CO
JSR GETPLA
BNE PLAY
LDA #$30
JSR GETPLA
BNE PLAY
LDA #$08
JSR GETPLA
BNE PLAY
JSR RAND
AND #$OF
CMP IQ
BCS DUMB
LDY PLAC

BLINK #3
CHECK THE WINNER

OPEN SQUARE? ^

YES - CONTINUE GAME
NO - CK NEXT SQUARE
ALL DONE?

NO OPEN SQUARES
IT'S A DRAW
BLINK 'EM ALL
GAME'S OVER
COUNT THE PLAYS
WHO'S TURN?
WM'S *
PLAYER'S
GET A KEY
OVER 9?
GET ANOTHER

»WSE IT AS AN INDEX
SEE IF SQUARE'S OPEN
NO, TRY AGAIN
YES, MARK IT FOR..
PLAYER
KIM'S NEXT
BUT FIRST CK FOR WIN
HOLD KIM BACK
A LITTLE
UPDATE AND..
THEN CHECK THE..
BOARD

WINNING PLAY FOR KIM

YES - MAKE IT
2 IN A ROW FOR..
PLAYER
YES - BLOCK IT
POSSIBLE SQUEEZE
PLAY FOR KIM
YES - DO IT
HOW MUCH SMARTS?
NEEDED?
KIM'S I.Q.
TOO LOW - BAD MOVES
SMART

79

02C8
02CA
02CC
02CE
02 DO
02D2
02D4
02D6
02D8
02DA
02DC
02DF
02E1
02E3
02E5
02E7
02E9
02EB
02ED
02EE
02FO
02F2
02F4
02F7
02F9
02FB
02FE
0300
0302
0304
0306
0308
030 A
030C
030E
0310
0312
0314
0315
0318
Q31A
031C
031E
031F
0321
0323
0325
0327
0329
032B
032D
032F
0331
0333
0336
0339

CO 01
DO 04
29 01
DO 17
CO 04
DO 06
24 C4
30 OD
70 07
A9 02
20 30 01
DO 11
AO 05
DO 02
AO 09
B6 B6
B5 BF
FO 05
88
DO F7
FO F3
A9 80
20 47 01
C6 DB
A9 OC
4C 39 02
A5 DB
DO 04
C6 D2
10 OF
E6 D2
A9 10
C5 D2
90 F4
BO 05
A9 OC
85 D2
D8
20 A6 03
AO 01
C9 13
FO 28
88
C9 12
FO 23
C9 14
DO EE
A9 OD
85 FB
A9 D5
85 FA
A5 D2
85 F9
20 IF IF
20 40 IF
20 6A IF

FOUR

SPLA

PLAC

DUMB
TPLA

PLAY

MTST

IQDN

IQUP

BCS DONE
STIQ
IQST

DONE

CHIQ

CPY #$01
BNE FOUR
AND #$01
BNE TPLA
CPY #$04
BNE SPLA
BIT SQST+5
BMI DUMB
BVS PLAC
LDA #$02
JSR GETPLA
BNE PLAY
LDY "$05
BNE TPLA
LDY #$09
LDX RPLA,Y
LDA DISP,X
BEQ PLAY
DEY
BNE RPLA
BEQ DUMB
LDA #$80
JSR UPDATE
DEC MODE
LDA #$OC
JMP TEST
LDA MODE
BNE IQUP
DEC IQ
BPL DONE
INC IQ
LDA #$10
CMP IQ
BCC IQDN

LDA #$OC
STA IQ
CLD
JSR KEYS
LDY :c$01
CMP #$13
BEQ SEMO
DEY
CMP #$12
BEQ SEMO
CMP #$14
BNE DONE
LDA #$OD
STA POINTH
LDA #$D5
STA POINTL
LDA IQ
STA INH
JSR SCANDS
JSR KEYPR
JSR GETKEY

1ST PLAY?
NO
YES
1/2 TIME PLAY A CORNER
4TH PLAY?
NO, SKIP
YES, CK WHO HAS CENTER
KIM - PLAY A SIDE
PLAYER-PLAY A CORNER
CAN PLAYER MAKE A..
SQUEEZE PLAY?
YES - BLOCK IT

START WITH THE CENTER
START WITH THE SIDES
USE THE RANDOM PLAY
TABLE - OPEN* SQUARE?
FOUND ONE - PLAY IT
NO, TRY NEXT ONE
NOT YET
START OVER
MARK THE..

SQUARE FOR KIM
PLAYBfc'S TURN NEXT
FIRST™ DID KIM WIN?

WHO WON?
PLAYER, UP KIM'S I.Q.
KIM'S TOO SMART
LOWER THE I.Q.
NOT BELOW ZERO
NOT OVER 10 HEX

START WITH 75%
I.Q.

DISPLAY RESULTS-GET KEY
START WITH KIM
IF "GO" KEY PRESSED

START WITH PLAYER. .
IF "+" KEY PRESSED

"PC" PRESSED - SKIP
NO KEY - LOOP

SHOW "ODDS"

AND I.Q.

ON DISPLAY

80

033C
033E
0340
0342
0344
0346
0348
034B

034C
034E
0351
0353
0355
0357
035A
035C
035E
0360
0362
0364
0366
0368
036A
036C
036E
0370
0372
0374
0376
0379
037B
037E
037F
0381
0383
0385
0387
0389

038A
038C
038E
0390
0392
0394
0396
0398
039A
039C
039E
039F
03A2
03A5

C9 *L1
FO D5
BO E5
85 D2
90 El
84 DB
4C 00 02
EA

A9 7F
8D 41 17
E6 DA
AO 00
A2 OB
B9 CO 00
85 FC
FO 14
29 20
FO 04
24 DA
70 OC
A5 FC
29 40
DO OA
A5 DA
29 08
FO 04

A9 00
FO 03
B9 OF 01
84 FC
20 4E IF
C8
CO 09
FO 06
EO 11
FO CE
DO CE
60

B5 BF
85 D9
24 D9
30 06
70 08
A9 00
FO 06
A9 04
DO 02
A9 01
18
79 C8 00
99 C8 00
60

SEMO

CMP #$11
BEQ DONE
BCS CHIQ
STA IQ
BCC CHIQ
STY MODE
JMP NEW

"DA" KEY PRESSED
RETURN TO "DONE" LOOP
KEEP TRYING IF OVER "AD"
UNER ll(HEX), CHANGE
IQ TO KEY #, NO KEY AGAIN
SET STARTING PLAY
ANOTHER GAME1*

NOP

DISPLAY

DIGX
SEGY

FLIC

OFF

ON
DIGT

bUBKUUHINt "UlbHLAY" ••"•""•
LDA #$7F
STA PADD
INC RATE
LDY #$00
LDX #$OB
LDA SQST,Y
STA SAVE
BEQ OFF
AND #$20
BEQ FLIC
BIT RATE
BVS OFF
LDA SAVE
AND #$40
BNE ON
LDA RATE
AND #$08
BEQ ON
LDA #$00
BEQ DIGT
LDA SEGS,Y
STY SAVE
JSR CONVD+6
I NY
CPY #$09
BEQ LAST
CPX #$11
BNE DIGX
BNE SEGY

OPEN DISPLAY CHANELS
*

INDEX DIGIT
GET CONTROL BYTE
SAVE IT
OPEN SQUARE
BLINK FLAG
NOT ON - SKIP*BLINK

ALTERNATE ON-OFF

STE/DY FLAG
ON - SKIP FLICKER

FLICÎ R RATE
ON
OFF

SAVE FROM LOSS IN SUBR.
DISPLAY A SEGMENT

LAST SQUARE
YES - DONE
NO, LAST DIGIT?
YES - REPEAT DIGITS
NO - NEXT DIGIT

LAST RTS
;" SUBROUTINE "RS ADD" •"'•'"''

RSA LDA SQST,X

OPEN

KIM

PLYR
ADD

STA TEMP
BIT TEMP
BMI KIM
BVS PLYR
LDA #$00
BEQ ADD
LDA #$04
BNE ADD
LDA #$01
CLC
ADC RS,Y
STA RS,Y
RTS

WHO'S SQUARE?
KIM'S
PLAYER'S
OPEN SQUARE VALUE

KIM VALUE

PLAYER VALUE

ADD TO ROW STATUS
BYTE

81

03A6
03A9
03 AC
03AE
03B1
03B2

03B3
03B4
03B5
03B7
03B9
03BB
03BD
03BF
03C1
03C3
03C4
03C6
03C7

20 4C
20 40
FO F8
20 6A
M
60

D8
38
A9 04
65 D7
65 D8
85 D3
A2 04
B5 D3
95 04
CA
10 F9
60
EA

""""" SUBROUTINE "KEYS" ""——
03 BACK JSR DISPLAY 01
IF JSR ANYK UN

BEQ BACK A
IF JSR KEYS TH

TAX RE
RTS

""""- SUBROUTINE "RANDOM" "--"-
CLD
SEC GE
LDA R+l RA
ADC R+4 (T
ADC R+5
STA R
LDX "$04

ROLL LDA R,X
STA R+1,X
DEX
BPL ROLL
RTS
NOP

DISPLAY LOOP
UNLESS
A KEY IS PRESSED
THEN GET A NUMBER
RECOVER THE FLAGS

GENERATES A..
RANDOM NUMBER
(THANKS TO d. BUTTERFIELD)

SUBROUTINE "PS LOAD"
03C8
03CA
03CC
03CE
0300
0301
0303
0305
03D7
03DA
03DC
03DF
03E2
03E5
03E8
03EB
03EE
03EF
03F1

03F2
03F5
03F7
03F9
03FB
03FD
03FF

85
A2
16
16
CA
DO
AO
A5
D9
DO
BE
20
BE
20
BE
20
88
DO
60

20
29
05
FO
C9
BO
60

09
09
OB
DB

F9
08
D9
C8
12
17
40
IF
40
27
40

E4

B3
OE
B6
F7
OA
F3

00

01
01
01
01
01
01

03

PSL

XLP

YLP

NOCT

STA TEMP
LDX "$09
ASL PS,X
ASL PS,X
DEX
BNE XLP
LDY -$08
LDA TEMP
CMP RS,Y
BNE NOCT
LDX SQ1,Y

JSR T+l
LDX SQ2,Y
JSR T+l
LDX SQ3,Y
JSR T+l
DEY
BNE YLP
RTS

SUBROUTINE "RANDOM PLAYS"

SHIFT PREVIOUS DATA
OUT OF THE WAY

COUNT THE TIMES AN OPEN.
SQUARE FITS THE..
TEST PARAMETER

RPLA JSR RAND
AND "$OE
ORA ODEV
BEQ RPLA
CMP -$OA
BCS RPLA
RTS

GET RANDOM NUMBER
0 - E (EVEN)
MAKE IT ODD IF 01
NO ZEROS

LOOP TILL DONE

82

HEX DUMP - KIM TAG TOE ;«

is-

0100 4C 10 03 EA EA EA A9 20 15 BF 95 BF 60 EA EA 08
0110 08 08 40 40 40 01 01 01 01 04 07 01 02 03 01 03
0120 02 05 08 04 05 06 05 05 03 06 09 07 08 09 09 07
0130 85 D9 A2 09 A5 D9 35 DB 24 D9 DO 03 CA DO
0140 B5 BF DO 02 F6 DB 60 95 BF AO 08 A9 00 99
0150 BE 17 01 20 8A 03 BE IF 01 20 8A 03 BE 27 01 20
0160 8A 03 88 DO E6 60
0200 A9 00 A2 ID 95 B4 CA DO FB A9 05 85 BB AO 04 20
0210 F2 03 A2 04 D5 BB FO F7 CA DO F9 99 BB 00 88 DO
0220 EE E6 B6 AO 04 20 F2 03 A2 05 D5 B6 FO F7 CA DO'
0230 F9 99 B6 00 88 DO EE A9 03 AO 08 D9 C8 00 FO 05
0240 88 DO F8 FO 15 BE 17 01 20 06 01 BE IF 01 20 06
0250 01 BE 27 01 20 06 01 4C FE 02 A2 09 A9 CO 35 BF
0260 FO OE CA DO F7 A2 09 20 06 01 CA DO FA 4C 15 03
0270 E6 B5 A5 DB DO 17 20 A6 03 FO FB C9 OA BO F7 AA
0280 B4 BF DO F2 A9 40 20 47 01 E6 DB DO AA 20 4C 03
0290 E6 Dl DO F9 A9 08 20 C8 03 A9 02 20 C8 03 A9 04
02AO 20 C8 03 A9 01 20 C8 03 A9 CO 20 30 01 DO 43 A9
02BO 30 20 30 01 DO 3C A9 08 20 30 01 DO 35 20 B3 03
02CO 29 OF C5 D2 BO IF A4 B5 CO 01 DO 04 29 01 D&̂ 7
02DO CO 04 DO 06 24 C4 30 OD 70 07 A9 02 20 30 01 DO
02EO 11 AO 05 DO 02 AO 09 B6 B6 B5 BF FO 05 88 DO F7
02FO FO F3 A9 80 20 47 01 C6 DB A9 OC 4C 39 02 A5 DB
0300 DO 04 C6 D2 10 OF E6 D2 A9 10 C5 D2 90 F4 BO 05
0310 A9 OC 85 D2 D8 20 A6 03 AO 01 C9 13 FO 28 88 C9
0320 12 FO 23 C9 14 DO EE A9 OD 85 FB A9 D5 85 FA A5
0330 D2 85 F9 20 IF IF 20 40 IF 20 6A IF C9 11 FO D5
0340 BO E5 85 D2 90 El 84 DB 4C 00 02 EA A9 7F 8D 41
0350 17 E6 DA AO 00 A2 OB B9 CO 00 85 FC FO 14 29 20
0360 FO 04 24 DA 70 OC A5 FC 29 40 DO OA A5 DA 29 08
0370 FO 04 A9 00 FO 03 B9 OF 01 84 FC 20 4E IF C8 CO
0380 09 FO 06 EO 11 FO CE DO CE 60 B5 BF 85 D9 24 D9
0390 30 06 70 08 A9 00 FO 06 A9 04 DO 02 A9 01 18 79
03AO C8 00 99 C8 00 60 20 4C 03 20 40 IF FO F8 20 6A
03BO IF AA 60 D8 38 A9 D4 65 D7 65 D8 85 D3 A2 04 B5
03CO D3 95 D4 CA 10 F9 60 EA 85 D9 A2 09 16 DB 16 DB
03DO CA DO F9 AO 08 A5 D9 D9 C8 00 DO 12 BE 17 01 20
03EO 40 01 BE IF 01 20 40 01 BE 27 01 20 40 01 88 DO
03FO E4 60 20 B3 03 29 OE 05 B6 FO F7 C9 OA BO F3 60

XSSSBHS ZERO PAGE USAGE """""
OOB6 ODD/EVEN MODIFIER
OOCO-C8 PRESTORED RANDOM PLAYS
OOC9-DO ROWS STATUS
OOD1 DELAY TIMER
OOD2 I.Q.
OOD3-D8 RANDOM NUMBER REGISTERS
OOD9 TEMPORARY STORAGE
OODA FLICKER / BLINK RATE
OODB PLAY MODE
OODC-E4 PLAY STATUS
OOFC SAVE

83

LUNAR LANDS*
Description -

The program starts at 0200. When started, you will find
yourself at 4500 feet and falling. The thrust on your machine
is set to low; so you'll pick up speed due to the force of
gravity.

You can look at your fuel at any time by pressing the
"F" button. Your fuel (initially 800 pounds) will be shown
in the first four digits of the KIM display. ^

The last two digits of the KIM display always show
your rate of descent or ascent. "A" restores altitude.

Set your thrust by pressing buttons 1 through 9.
Warning: button 0 turns your motor off, and it will not
re ignite! A thrust of 1, minimum, burns very little fuel;
but gravity will be pulling your craft down faster ^nd
faster. A thrust of 9, maximum, overcomes gravity and
reduces your rate of descent very sharply. A thrust of 5
exactly counterbalances gravity; you will continue to descend
(or ascend) at a constant rate. If you run out of fuel,
your thrust controls will become inoperative. *"

A safe landing is considered to be one where you land
at a descent rate of 5 or less. After you land, your thrust
controls will be inoperative, since the motor is automatically
turned off; but you can still press "F" to look at your fuel..
Pressing "GO" starts a new flight.

Jim
Butterfield

I

Suggestions for a safe flight:
You(1) Conserve fuel at the beginning by pressing 1.

will begin to pick up speed downwards.
(2) When your rate of descent gets up to the 90's, you're

falling fast enough. Press 5 to steady the rate.
(3) When your altitude reaches about 1500 feet, you'll

need to slow down. Press 9 and slow down fast.
(4) When your rate of descent has dropped to 15 to 20,

steady the craft by pressing 5 or 6. Now you're on
your own.

0200 A2 OD
I
GO

0202 BD CC 02 LP1
0205 95 D5
020? CA
0208 10 F3

020A A2 05
020C AO 01
020E F3
020F 13

main routine - initialization
LDX #13 fourteen bytes
LDA INIT.X
STA ALT.X
DEX
BPL LP1

; update height & velocity
CALC LDX #5
REGAL LDY #1

SED
CLC

84

0210 B5 D5
0212 75 D7
0214 95 D5
0216 CA
0217 33
0213 10 F6
021A B5 D3
021C 10 02
021E A9 99
0220 75 D5
0222 95 D5
0224 CA
0225 10 E5
0227 A5 D5
0229 10 OD
022B A9 00
022D 35 E2
022F A2 02
0231 95 D5
0233 95 DB
0235 CA
0236 10 F9
0233 33
0239 A5 EO
023B E5 DD
023D 35 EO
023F A2 01
0241 B5 DE
0243 E9 00
0245 95 DE
0247 CA
0243 10 F7
024A BO OC
024C A9 00
024E A2 03
0250 95 DD
0252 CA
0253 10 FB

0255 20 BD 02
0253 A5 DE
025A A6 DF
025C 09 FO
025E A4 El
0260 FO 20
0262 FO 9C
0264 FO A4
0266 A2 FE
0263 AO 5A
026A 13
026B A5 D9
026D 69 05
026F A 5 D3
0271 69 00

DIGIT LDA ALT.X
ADC ALT+2.X add each digit
STA ALT.X
DEX
DEY
BFL DIGIT next digit
LDA ALT+3.X hi-order .. zero..
BFL INCR . . or . .
LDA #$99 ,

INCR ADC ALT.X %

STA ALT.X
DEX
BPL REGAL do next addition
LDA ALT
BPL UP still flying?
LDA #0 nope, turn off
STA DOWN *
LDX #2

DD STA ALT,X
STA TH2,X
DEX
BPL DD V

UP SEC update fuel
LDA FUEL+2
SBC THRUST
STA FUEL+2
LDX #1 two more digits to go

LP2 LDA FUEL.X
SBC #%
STA FUEL.X
DEX
BPL LP2
BCS TANK still got fuel?
LDA #0 nope, kill motor
LDX #3

LF3 STA THRUST, X
DEX
BPL LP3

; show alt, fuel, or messages
JSR THRSET

TANK LDA FUEL fuel into regstrs
LDX FUEL+1
ORA #$FO plus F flag
LDY MODE
BEQ ST

GOLINK BEQ GO
CLINK BEQ CALC

LDX #$FE
LDY #$5A
CLC
LDA VEL+1
ADC #5
LDA VEL
ADC #0

0273
02?5
0277
0279
027A
027C
027E
0230
0232

0236
0233

023C
023D
023F
0291
0293
0295
0297
0293
029B
029E
02AO
02A2
02A4
02A7
02A9
02AB

02AD
02AF
02B1
02B3
02B5
02B6
02B7
02B9
02BB
02BD
02BD
02BF
02CO
02C1
02C3
02C5
02C7
02C9
02CB

BO
A2 AD
AO DE
93
A4 E2
FO 04
A5 05
A6 D6
35 ?B
36 FA

A5 D9
A6 D3
10 05
33
A9 00
E5 D9 -
35 F9
A9 02
35 E3
D3
20 IF IF
20 6A IF
C9 13
FO CO
BO 03
20tAD 02
C6 E3
DO ED
FO B7

C9 OA
90 05
49 OF
35 El
60
AA
A5 DD
FO FA
36 DD

A5 DD
33
F3
E9 05
35 DC
A9 00
E9 00
35 DB
60

BCS GOOD
LDX #$AD
LDY #$DE

GOOD TYA
LDY DOWN
BEQ ST
LDA ALT
LDX ALT+1

ST STA FOINTH
STX POINTL

; show rate of ascent/descnt as absolute
LDA VEL+1
LDX VEL up or down?
BPL FLY ..up, we're OK
SEC
LDA #0 ,
SBC VEL+1

FLY STA INH
LDA #2
STA DECK

FLITE CLD display &*ey test
JSR SCANDS light 'em up

loop twice thru display

02CC 45 01 00
02CF 99 31 00

JSR GETKEY
CMP #$13
BEQ GOLINK
BCS NOKEY
JSR DOKEY

NOKEY DEC DECK
BNE FLITE
BEQ CLINK

; subroutine to test keys
DOKEY CMP #$OA test numeric

BCCJKUMBER
EOR F$OF
STA MODE

RETRN RTS
NUMBER TAX

LDA THRUST
BEQ RETRN
STX THRUST

{Calculate accel as thrust minus 5
THRSET LDA THRUST

SEC
SED
SBC #5
STA TH2+1
LDA #0
SBC #0
STA TH2
RTS

; initial values
INIT .BYTE $45,1,0 altitude

.BYTE $99,$31,0 rate of ascent

check keys
GO key?

. .yes
..if no key

to CALC

Fuel F gives 0 flag

test; is motor off?
yes, ignore key
no, set thrust

86

02D2 99 97
02D4 02
02D5 03 00 00
02D8 01
02D9 01

.BYTE $99,$9?

.BYTE 2

.BYTE 8,0,0

.BYTE 1

.BYTE 1
end

acceleration
thrust
fuel
display mode
in flight/landed

OOD5
OOD8
OODB
OODD
OODE
OOE1
OOE2
OOE3

ALT
VEL
TH2
THRUST
FUEL
MODE
DOWN
DECK

=+3

=+2
=+!
=+3
=+!
=+!
=+!

; linkages to KIM monitor
SGANDS =S1F1F
GETPCEY =$1F6A
POINTH =$FB %

POINTL = $FA «
INK =$F9 V

***** Hex Dump - Lunar Lander *****

0200 A2
0210 B5
0220 75
0230 02
0240 01
0250 95
0260 FO
0270 D8
0280 A6
0290 D9
02AO FO
02BO 05
02CO F8
02DO 81

OD BD CC
D5 75 D7
D5 95 D5
95 D5 95
B5 DE E9
DD CA 10
20 FO 5C
69 00 BD
D6 85 FB
85 F9 A9
CO BO 03
49 OF 85
E9 05 85
00 99 97

02 95
95 D5
CA 10
DB CA
00 95
FB 20
FO A4
04 A2
86 FA
02 85
20 AD
El 60
DC A9
02 08

D5 CA 10
CA 88 10
E5 A5 D5
10 F9 38
DE CA 10
BD 02 A5
A2 FE AO
AD AO DE
A5 D9 A6
E3 D8 20
02 C6 E3
AA A5 DD
00 E9 00
00 00 01

F8 A2 05
F6 B5 D8
10 OD A9
A5 EO E5
F7 BO OC
DE A6 DF
5A 18 A5
98 A4 E2
D8 10 05
IF IF 20
DO ED FO
FO FA 86
85 DB 60
01

AO 01
10 02
00 85
DD 85
A9 00
09 FO
D9 69
FO 04
38 A9
6A IF
B7 C9
DD A5
45 01

F8 18
A9 99
E2 A2
EO A2
A2 03
A4 El
05 A5
A5 D5
00 E5
C9 13
OA 90
DD 38
00 99

ACKNOWLEDGEMENTS: Ted Beach suggested the addition of
the F flag when displaying fuel. Chuck Eaton spotted
the cause of an erratic bug in the original keyboard
input subroutine. Thanks to both.

87

MULTI-MAZE BY JIM BUTTERFIELD

Description: Find your way out of the maze. You are the
flashing light in the centre of the display. As you move
up (key 9) , down (1), left (4) or right (6), KIM will keep
you in the central display; you'll see the walls of the maze
moving by as you travel. Like walking through a real maze,
you'll only see a small part of the maze as you pass through.
If you can get out, you'll find yourself in a large open
area; that means you've won. Press GO at any time for
a new maze. Program starts at address 0200.

Listing:

0200
0202
0205
0207
0209
020B
020D
0210
0213
0216
0219
021A
024B
021E
0221
0224
0225
0227
0229
022A
022C
022F
0231
0232

E6
20
DO
A2
26
90
BC
BD
59
99
C8
C8
BD
59
99
CA
10
A2
D8
30
BD
95
CA
10

DO
40
F9
07
DO
17
08
10
DE
DE

18
DE
DE

E2
02

D4
DB
D2

F8

IF

03
03
02
02

03
02
02

02
V

START

LP1

NXUP

SLINK
SETUP

0234 AO OB
0236 Bl D2
0238 99 D8 00
023B 88
023C 10 F8

023E A2 OA
0240 A4 D4
0242 A9 FF
0244 38
0245 36 D9
0247 36 D8
0249 2A
024A 88
024B DO F7

INC RND
JSR KEYIN
BNE START
LDX #7
ROL RND
BCC NXUP
LDY PLACE,X
LDA POINT1,X
EOR MAZE,Y
STA MAZE,Y

random seed

patch the maze
in 8 places

; pick
MAP
GETMOR

; shift

NXDIG

RE ROL

INY
LDA POINT2,X
EOR MAZE,Y
STA MAZE,Y
DEX
BPL LP1
LDX #2
CLD
BMI START
LDA INIT,X
STA MZPT,X
DEX
BPL SETUP
out specific

LDY #11
LDA (MZPT) ,Y
STA WORK,Y
DEY
BPL GETMOR

for vertical
LDX #10
LDY POSIT
LDA #$FF
SEC
ROL WORK+1,X
ROL WORK,X
ROL A
DEY
BNE REROL

3 values from INIT

part of maze

6 rows x 2

position
for each of 6 rows
..shift Y positions
filling with 'walls'
...on both sides

roll 'em

•-**

' -1
-35

88

024D 29 07
024F A8
0250 B9 C6 02
0253 95 D8
0255 CA
0256 CA
0257 10 E7

0259 C6 D5
025B 10 OA
025D A9 05
025F 85 D5
0261 A5 DE
0263 49 40
0265 85 DE

0267 A9
0269 8D
026C AO
026E A2
0270 B5
0272 8D
0275 8C
0278 C6
027A DO
027C C8
027D1C8
027E CA
027F CA
0280 10

7F
41 17
09
OA
D8
40 17
42 17
D6
FC

EE

0282 20 40 IF
0285 20 6A IF
0288 C5 D7
028A FO CD
028C 85 D7

02A8 CA
02A9 10 04
02AB C6 D4
02AD DO 85

; calculate segments
AND #7
TAY
LDA TAB1,Y
STA WORK,X
DEX
DEX
BPL NXDIG

; test flasher
LIGHT DEC PLUG

BPL MUG
LDA #5
STA PLUG
LDA WORK+6
EOR #$40
STA WORK+6

; light display

3 bits to segment
..stored

time out?
. .no
..yes, reset

..and..
..flip..
..flasher

open the gateMUG LDA #$7F
STA SADD
LDY #$09
LDX #10

SHOW LDA WORK,X
STA SAD
.STY" S$D

STl DEC STALL
BNE STl
IN¥
INT
DEX
DEX
BPL SHOW

; test new key depression

tiptoe thru..
..the segments

..pausing

set dir reg

same as last?

028E
0290
0293
0295
0296
0298
029A
029B
029D
02AO
02A3
02A6

A2
DD
FO
CA
10
30
CA
30
BC
B9
3D
DO

04
CE
05

F8
BC

8D
D3
D8
D7
Bl

»

02

02
00
02

, ueo

SCAN

FOUND

JSR KEYIN
JSR GETKEY
CMP SOK
BEQ LIGHT
STA SOK

test which key
LDX #4 5 items in table
CMP TAB2,X
BEQ FOUND
DEX
BPL SCAN
BMI LIGHT
DEX
BMI SLINK
LDY TAB3,X
LDA WORK,Y
AND TAB4,X
BNE LIGHT

go key?

move

MLINK

DEX
BPL NOTUP
DEC POSIT
BNE MAP

89

upward move
l.o.n.g branch

02AF
02B1
02B3
02B5
02B6
02B8
02BA
02BC
02BE
02CO
02C2
02C4

02C6
02CE
02D3
02D7
02DB
02DE

D0*04
E6 D4
DO F8
CA
DO 06
C6 D2
C6 D2
DO EF
E6 D2
E6 D2
DO E9
FO F2

TAB1
TAB 2
TABS
TAB 4
INIT
MAZE

0308 PLACE
0310 POINT1
0318 POINT2

NOTUP BNE SIDEWY
INC POSIT downward move
BNE MLINK

SIDEWY DEX
BNE LEFT

RIGHT DEC MZPT right move
DEC MZPT
BNE MLINK

LEFT INC MZPT left move
INC MZPT
BNE MLINK
BEQ RIGHT

; tables follow in Hex format
00 08 40 48 01 09 41 49
13 09 01 06 04
06 06 04 08
01 08 40 40
DA 02 08
FF FF 04 00 F5 7F 15 00 41 FE 5F 04 51 7D 5D 04
51 B6 54 14 F7 D5 04 54 7F 5E 01 00 FD FF 00 00
00 00 00 00 00 00 00 00,00 00
05 OB la 10 14 18 17 10
01 04 80 10 80 02 40 40
02 02 40 01 10 04 80 10

; end of program

***** Hex D^hnp - Multimaze *****

0200
0210
0220
0230
0240
0250
0260
0270
0280
"0290
02AO
02BO
02CO
02DO
02EO
02FO

0 \
E6 DO
BD 10
02 99
D2 CA
A4 D4
B9 C6
D5 A5
B5 D8
0 EE
CE

B9 D8
04 E6
E6 D2
01 06.
04 00
54 14

.20. 40 IF
03 59 DE
DE 02 CA
10 F8 AO
A9 FF 38
02 95 D8
DE 49 40
8D 40 17
20 40 IF
02 FT
00 3J
D4 DO F8
DO E9 FO
04 06 06
F5 7F 15
F7 D5 04

05
D7

DO F9
02 99
10 E2
OB Bl
36 D9
CA CA
85 DE
8C 42
20 6A
CA 1.0
02 DO
CA DO
F2 00
04 08
00 41
54 7F

~> 9
A2 07
DE 02
A2 02
D2 99
36 D8
10 E7
A9 7F
17 C6
IF C5
F8 30
Bl CA
06 C6
08 40
01 08
FE 5F
5E 01

ft tf>
26 DO
C8 C8
D8 30
D8 00
2A 88
C6 D5
8D 41
D6 DO
D7 FO
BC CA
TIT 04
D2 C6
48 01
40 40
04 51
00 FD

, c
90 17
BD 18
D4 BD
88 10
DO F7
10 OA
17 AO
FC C8
CD 85
30 8D
C6 D4
D2 DO
09 41
DA 02
7D 5D
FF 00

BC 08J3
03 59 DE
DB 02 95
F8 A2 OA
29 07 A8
A9 05 85
09 A2 OA
C8 CA CA
D7 A2 04
BC D3 02
DO 85 DO
EF E6 D2
49 13. 09
08 FF FF
04 51 B6
00 00 00

0300 00 00 00 00 00 00 00 Ob 05 OB 10 10 14 18 17 10
0310 01 04 80 10 80 02 40 40 02 02 40 01 10 04 80 10

90

MUSIC BOX JIM BUTTERFIELD

DESCRIPTION

THIS PROGRAM PLAYS ONE OR SEVERAL TUNES VIA THE "AUDIO OUT"
INTERFACE OF KIM-1. USE THE SAME CONNECTION AS THAT FOR
RECORDING ON CASSETTE TAPE. IF YOUR TAPE RECORDER HAS
A "MONITOR" FEATURE, YOU CAN LISTEN TO THE TUNE AS WELL
AS RECORD IT. ALTERNATIVELY, AN AMPLIFIER WILL PLAY THE
SIGNAL THROUGH A SPEAKER.

HOW TO RUN

LOAD THE PROGRAM. LOAD THE TUNECS) EITHER FROM CASSETTE
TAPE, PAPER TAPE, OR KEYBOARD ENTRY. BE SURE TO STORE
THE VALUE FA AT THE END OF EACH TUNE, AND BEHIND THE LAST
TUNE, STORE: FF oo.
STARTING ADDRESS FOR THE PROGRAM IS 200. ENTER AD 0 2 0 0 GO

HOW TO WRJTE. YOUR OWN TUNE(S)
"̂ -i

EACH NOTE GOES INTO A BYTE OF STORAGE, STARTING AT LOCATION
0000 OF MEMORY. EACH TUNE SHOULD END WITH THE VALUE FA
WHICH STOPS THE PROGRAM UNTIL GO IS PRESSED.

SPECfKL CODES ARE INCORPORATED IN*THE PROGRAM TO ALLOW
CERTAIN EFFECTS - ADJUSTMENT OF SPEED, TONE, ETC.
THE CODES ARE FOLLOWED BY A VALUE WHICH SETS THE
PARTICULAR EFFECT. CODES ARE LISTED BELOW.

CODE EFFECT **
FB SETS SPEED OF TUNE
FC SETS LENGTH OF

"LONG" NOTES
>FD SETS OCTAVE (PITCH)
FE SETS INSTRUMENT
FF SETS ADDRESS FOR

TUNE

INITIALLY EXAMPLES
$30 18 IS QUICK; 60 IS SLOW
02 2 MEANS, "LONG NOTE LASTS

TWICE AS LONG AS SHORT"
01 2 IS BASS; 4 IS DEEP BASS.

$FF FF IS PIANO; 00 IS CLARINET.
00 00 WILL TAKE YOU BACK TO

FIRST TUNE; LIKE A "JUMP".

FOR EXAMPLE, AT ANY TIME DURING A TUNE, YOU MAY INSERT
THE SEQUENCE FB 18 AND THE TUNE WILL THEN BEGIN TO PLAY
AT FAST SPEED. INSERTING FF 45 WILL CAUSE A SWITCH TO
THE TUNE AT ADDRESS 45. THE INITIAL VALUES SHOWN CAN
BE RESET AT W? TIME BY STARTING AT ADDRESS 200.

NO TUNE SHOULD EXTEND BEYOND ADDRESS DF, SINCE PROGRAM
VALUES ARE STORED AT EO AND UP.

THE PROGRAM CAN BE EASILY CONVERTED TO A SUBROUTINE
(BY REPLACING THE BRK INSTRUCTION WITH A RTS). THIS ALLOWS
THE PROGRAMMER TO PLAY VARIOUS "PHRASES" OF MUSIC TO
PRODUCE QUITE COMPLEX TUNES.

91

THE LOWEST NOTE YOU CAN PLAY IS A BELOW MIDDLE C. FOR EACH NOTE,
YOU CAN SELECT WHETHER IT IS PLAYED AS A LONG NOTE OR A SHORT NOTE
(NORMALLY, A LONG NOTE WILL LAST TWICE AS LONG AS A SHORT NOTE).

SOME OF THE NOTES ARE AS FOLLOWS:

NOTE SHORT LONG

A..................75
A# 6E
B..................68

MIDDLE C 62
Cfl.................5C
D 56
D#.................52
E 4D
F..................48
F# 44
G..................40
G# 3C
A..................39
A# 35
B..................32

HIGH C 2F
C#.................2C
D 29
.................24

, 2 2
G..................1E

PAUSE 00

F5
EE
E8
E2
DC
D6
D2
CD
C8
C4
CO
BC
B9
,B5
B2
AF
AC
A9
A4
A2
9E
80

.1

INITIALIZE - RESET WORK PARAMETERS

0200
0202
0205
0207
0208

A2 05
BD 86 02
95 EO
CA
10 F8

START
LP1 LDA INIT,X

STA WORK,X
DEX
BPL LP1

ROUTINE HERE - WORK NOT RESET

020A
020C
020F
0211
0213
0215
0217
0219
021A
021B
02 ID
021F
0221

A9 BF
8D 43
AO 00
Bl E4
E6 E4
C9 FA
DO 04
00
EA
FO ED
90 OB
E9 FB
AA

17
GO

NEXT

3
LDA #$BF
STA PBDD
LDY #$00
LDA CWORK+4),Y GET NEXT NOTE
INC WORK+4
CMP #$FA
BNE NEXT
BRK
NOP
BEQ GO
BCC NOTE
SBC #$FB

OPEN OUTPUT CHANNEL

TEST FOR HALT

COR RTS IF USED AS SUBR.)

TAX

RESUME WHEN GO PRESSED
IS IT A NOTE?
IF NOT, DECODE INSTR.
AND PUT INTO X

•::|

'4
92

0222 Bl E4
0224 E6 E4
0226 95 EO
0228 BO EO

LDA (WORK+4),Y get parameter
INC WORK+4
STA WORK,X store in work table
BCS GO unconditional branch

set up for timing note
timing

long note factor
test accumulator
long note?
nopei set short note
store length factor
remove short/long flag

is it a pause?
no, set pitch
get timing and..
bypass if muted

else fade the
note

bit 7 on
delay half cycle

bit 7 off
delay the other half
end of note?
no, more cycles

octave flag

bit timing
end of timing?
no, continue
restore timing
in case of..
..another octave
else exit

022A A6 EO
022C 86 E7
022E A6 El
0230 A8
0231 30 02
0233 A2 01
0235 86 E6
0237 29 7F
0239 85 E9
023B FO 02
023D 85 EA
023F A5 E9
0241 25 E3
024-3 FO 04
0245 E6 EA
0247 06 E9
0249 A6 E9
024B̂ 9 A7
024D 20 5D 02
0250 30 B8
0252 A6 EA
0254 A9 27
0256 20 5D 02
0259 30 AF
025B 10 E2

025D A4 E2
025F 84 EB
0261 86 EC
0263 EO 00
0265 DO 08
0267 A^ EC
0269 C6 EB
026B DO F6
026D FO 16
026F 8D 42 17
0272 CA
0273 C6 E8
0275 DO EC
0277 C6 E7
0279 DO E8
027B A4 EO
027D 84 E7
027F C6 E6

NOTE LDX WORK
STX LIMIT+1
LDX WORK+1
TAY
BMI OVER
LDX #1

OVER STX LIMIT
AND #$7F
STA VAL2
BEQ HUSH
STA VAL1

HUSH LDA VAL2
AND WORK+3
BEQ ON
INC VAL1
DEC VAL2

ON LDX VAL2
LDA #$A7
JSR SOUND
BMI GO
LDX VAL1
LDA #$27
JSR SOUND
BMI GO
*£PL HUSH

; subroutine to se:
SOUND LDY WORK+2

STY TIMER
STX XSAV

SLOOP CPX #0
BNE CONT
LDX XSAV
DEC TIMER
BNE SLOOP
BEQ SEX

CONT STA SBD
DEX
DEC LIMIT+2
BNE SLOOP
DEC LIMIT+1
BNE SLOOP
LDY WORK
STY LIMIT+1
DEC LIMIT

93

0281 D O f O
0283 A9 FF
0285 60

0286 30 02 01
FF 00 00

BNE SLOOP
LDA #$FF

SEX RTS
; INITIAL CONSTANTS
INIT .BYTE $30,2 /1,$FF /0,0

SAMPLE MUSIC FOR MUSIC BOX PROGRAM

0000 FB 18 FE FF 44 51 E6 E6 66 5A 51 4C C4 C4 C4 Dl
0010 BD BD BD 00 44 BD 00 44 3D 36 33 2D A8 80 80 33
0020 44 B3 80 80 44 51 C4 80 80 5A 51 E6 80 80 FA

0020 FE
0030 00 FB 28 5A 5A 51 48 5A 48 Dl 5A 5A 51 48 DA EO
0040 5A 5A 51 48 44 48 51 5A 60 79 6C 60 DA DA FA

0040 FE
0050 FF 5A 5A 5A 5A 5A 5A 66 72 79 E6 E6 80 00 56 56
0060 56 56 56 56 5A 66 F2 80 80 4C 4B 4C 4C 4C 4C 56
0070 5A 56 4C 00 C4 44 4C 56 5A 5A 56 5A 66 56 5A 66
0080 F2 80 FE 00 00 72 5A CC 72 5A CC 72 5A CC 80 B8
0090 80 4C 56 5A 56 5A E6 F2 80 FA FF 00

I
NOTE THAT TUNES 1 AND 2 SET BOTHTHE SPEED AND THE INSTRUMENT.
TUNE 3 CONTINUES AT THE SAME SPEED AS THE PREVIOUS ONE; BUT THE
INSTRUMENT IS CHANGED DURING THE TUNE.

THE PROGRAM CAN BE CHANGED TO USE THE SPEAKER SHOWN IN
FIGURE 5.1 OF THE KIM MANUAL AS FOLLOWS:

BYTE INITIALLY CHANGE TO
020D 43 01
024C A7 FF
0255 27 00
0270 42 00

***** Extra Datafile for Music Box *****

0000-
0010-
0020-
0030-
0040-
0050-
0060-
0070-

FE
2F
56
44
4D
A4
2F
FF

00
29
52
39
AF
32
29
00

56
26
4D
2F
4D
A9
A4

52
24
AF
A4
FC
AF
2F

4D
£F
4D
29
06
80
29

AF
29
AF
2F
AF
80
2F

4D
A4
4D
39
FC
2F
24

AF
32
FC
A9
02
29
2F

4D
A9
06
80
FE
24
29

FC
FC
AF
80
FF
2F
A4

06
06
FC
FE
2F
29
32

AF
AF
02
00
29
A4
A9

FC
FC
FE
56
26
2F
AF

02
02
FF
52
24
29
80

FE FF
FE 00
39 40
4D AF
2F 29
2F 24
80 FA

Note: be sure to set the break vector 17FE,FF (00,1C)

94

PING PONG JIM BUTTERFIELD

Play against the computer, or
change the program for a two-player
game. On each shot, you choose
between four plays: Spin, Lob,
Block, or Slam. If you're playing
the left side of the court, use the
left-hand buttons (0, 4, 8 and C).
See the diagram at right.

C slam F

8 block B

4 lob 7

0 spin 3

Each shot has its own strengths and weaknesses: for
example, a Slam is a powerful shot, but it's also likely
to be "fluffed". Strategy is not trivial - your chances
of success on any play depend not only on your choice of
shot, but on what shots have gone before. You'll have to
learn the combinations the hard way.

see the net in the middle of the court. Don't try
to play the ball until it is on your side of the net, or
you'll lose the point. Each type of shot has a
distinctive appearance, which you'll learn to recognize.
TF^py are similar to the key positions: a Spin lights the
bottom segment, a Lob lights the middle segment, a Block
lights the upper segment, and the mighty Slam shot lights
all three segments and travels faster.

The original version of the game was published for the
HP-67 calculator
not given.

in "65 Notes", V4N2P5. Authorship was

At first, the shots will come too fast for you to cope
with. There are two ways to solve this. The easy way is
the "freeze" the ball by holding down any unused key,
like AD or 7: play will be suspended until you figure
out what you want to do next. The harder way, but not
too hard, is just to slow down the ball by changing the
program: locations 0331 to 0334 contain the speeds for
each type of shot. Increase these values and the ball
will slow down, e.g., 40 40 40 28 will halve the speed.

For a two-player game, where KIM does not play the right
side, change location 032C to 01. To have KIM play the
left side, change location 032B to 00.
KIM plays a strong game, but CAN BE BEATEN!

95

0200 20 40
0203 20 6A
0206 C9 13
0208 DO OA

020A A2 08
020C BD 24
020F 95 80
0211 CA
0212 10 F8

0214
0216
0218
0219
021B
021D
021F
0221
0223
0224
0226
0228
0229
022B
022D
022F
0230
0232

C9 10
BO 22
AA
29 03
FO 04
C9 03
DO 19
45 85
A8
29 04
DO 12
8A
45 84
29 02
FO OB
98
29 02
DO 69

0234 8A
0235 4A 4A
0237 20 Bl

023A
023D
023F
0241
0243
0245
0247
0248
024A
024C
024E
0250

20 40
DO 27
C6 83
10 23
A5 80
85 83
18
A5 85
65 84
85 85
29 04
FO 14

IF START JSR KEYIN directional registrs
IF JSR GETKEY input key

CMP |$13 GO key?
BNE NOGO nope, skip

; GO key - set up game here
LDX #8 get 9 ..

03 SETUP LDA INIT,X
STA SPEED,X
DEX
BPL SETUP

; test legal keys (0,3,4,7,8,B,C,F)

..inital valus
to zero page

NOGO CMP #$10
BCS NOKEY
TAX
AND #3

» BEQ KEY
CMP #3
BNE NOKEY

KEY EOR PLACE
TAY
AND #4
BNE NOKEY
TXA
EOR DIRECT
AND #2
BEQ NOKEY
TYA
AND #2
BNE POINT

; legal play found here
TXA restore key
LSRA LSRA type (0=Spin

02 JSR SHOT make shot
; key rtns complete - play ball

key 0 to F?
no, skip
save key in X
test column
col 0 (0,4,8,C)?
col 3 (3,7,B,F)?
neither - skip
check vs ball postn

ball off screen?

restore key
ball going away?

yes, ignore key
ball position
wrong side of net?
yes, lose!

etc)

IF NOKEY if key still prest..
freeze ball

wait til timeout

move.
..ball

0252 A5 85
0254 30 04
0256 A5 88
0258 10 02
025A A5 87
025C DO 3F

JSR KEYIN
BNE FREEZE
DEC PAUSE
BPL FREEZE
LDA SPEED
STA PAUSE
CLC
LDA PLACE
ADC DIRECT
STA PLACE
AND #4
BEQ FREEZE

ball outside - KIM to play?
LDA PLACE
BMI TESTL
LDA PRITE
BPL SKPT
LDA PLEFT
BNE POINT

TESTL
SKPT

ball still..
in court?

ball on left
KIM plays right?
unconditional
KIM plays left?
no, lose point

96

025E A6 82
0260 BD 39
0263 20 Bl
0266 A9 7F
0268 8D 41

KIM plays either side here

026B
026D
026F
0271
0273
0275
0277
0279
027B
027D
027E
0281
Q281
0286
0288
028A
028C
028F
0291
0293
0295
0298
0299
029B

AO 13
A2 01
86 89
A5 86
4A 4A
4A 4A
85 8A
A5 86
29 OF
AA
BD E7
20 A4
A6 8A
C6 89
10 F4
A2 03
BD 2D
E4 85
DO 02
05 81
20 A4
CA
10 Fl
30 03

log determines..
..KIM's play
make the shot

open registers

count score digts

shift & store..
. .left player score

..right player score

029D 20 E9
02AO D8
02A1 4C 00

02A4
02A7
02AA
02 AC
02AE
02BO
02B1
02B2
02B4
02B6
02B8
02BA
02BC
02BE
02BF
02C1
02C3

8D 40
8C 42
C6 8B
DO FC
88 88
60
A8
A6 82
06 82
06 82
05 82
29 OF
85 82
38
A5 80
E5 83
85 83

LDX LOG
03 LDA PLAY,X
02 JSR SHOT

FREEZE LDA #$7F
17 STA PADD

; light display here
LDY #$13
LDX #1
STX DIGIT
LDA SCORE
LSRA LSRA
LSRA LSRA
STA ARC
LDA SCORE
AND #$OF
TAX

IF HOO^ LDA TABLE,X
02 JSR SHOW

LDA ARC
DEC DIGIT
BPL HOOP
LDX #3

03 VUE LDA PIX,X
CPX PLACE
BNE NOPIX
' ORA SPOT

02 NOPIX JSR SHOW
DEX
BPL VUE
BMI SLINK

; lose! score &.reverse board
02 POINT JSR SKORE

SLINK CLD
02 JMP START return to main loop

; display subroutine
17 SHOW STA SAD
17 STY SBD

STALL DEC MOD
BNE STALL
DEY DEY
RTS

SHOT TAY
LDX LOG
ASL LOG
ASL LOG
ORA LOG
AND #$F
STA LOG
SEC
LDA SPEED
SBC PAUSE

show the ball

save shot in Y
old log in X

update log book
..last two shots

STA PAUSE
invert timing

97

02C5 B9
02C8 85
02CA B9
02CD 85

02CF BD
02D2 88
02D3 30
02D5 4A
02D7 10
02D9 29
02DB OA
02DC 85
02DE AD
02E1 29
02E3 C5
02E5 FO
02E7 90
y

02E9 A2
02EB A5
02ED OA
02EF OA
02F1 10
02F3 A2
02F5 A9
02F7 86
02F9 18
02FA 65
02FC 85
02FE AO
0300 AA
0301 29
0303 C9
0305 DO
0307 84
0309 8A
030A 4A
030C 4A
030E DO

0310 A2
0312 BD
0315 95
0317 CA
0318 10

031A A5
031C 18
031D 49
031F 69

31
80
35
81

49

04
4A
F9
03

8C
04
07
8C
33
31

04
84
OA
OA
04
FF
01
85

86
86
00

OF
OB
02
84

4A
4A
FO

03
24
80

F8

84

FF
01

03

03

; test
03

GIT

GET

17

; lose
SKORE

\

OVER

TLP

SKI

; set

03 SRV

; reve
REVRS

odds from log bk

unconditional
odds 0 to 3..
now 0 to 6

random number
now 0 to 7

position ball L

0321 85 84
0323 60

set speed & display segment(s)
LDA SPD,Y
STA SPEED
LDA SEG,Y
STA SPOT

test play success - random
LDA CHANCE,X
DEY
BMI GET
LSRA LSRA
BPL GIT
AND #3
ASL A
STA TEMP
LDA TIMER
AND #7
CMP TEMP
BEQ REVRS success?
BCC REVRS success?
a point & position
LDX #4 position ball R
LDA DIRECT
ASLA ASLA
ASLA ASLA
BPL OVER
LDX #$FF
LDA #1
STX PLACE
CLC
ADC SCORE
STA SCORE
LDY #0
TAX
AND #$F
CMP #$11
BNE SKI
STY DIRECT
TXA
LSRA LSRA
LSRA LSRA
BNE TLP
serve - speed, spot, log, pause
LDX #3
LDA INIT,X
STA SPEED,X
DEX
BPL SERVE

reverse ball direction
LDA DIRECT
CLC
EOR #$FF
ADC #1
STA DIRECT
RTS

end game, kill ball

get one score
11 points?

kill ball

98

0324 INIT
032D FIX
0331 SPD
0335 SEG
0339 PLAY
0349 CHANCE
0359 end

Zero Page:

; tables - in Hexadecimal format
30 08 00 80 01 FF 00 01 00
00 06 30 00
20 20 20 14
08 40 01 49
02 02 01 02 01 03 01 02 03 03 00 02 00 00 02 02
78 B5 9E 76 6E Al AE 75 AA EB 8F 75 5B 56 7A 35

80:
81;
82;
83;
84;
85;
86:

SPEED
SPOT -
LOG -
PAUSE
DIRECT
PLACE
SCORE

87: .PLEFT
88: SPRITE

- speed ball travels
segment(s) ball lights

record of recent plays
- delay before ball moves
- direction of ball
- position of ball

- 0 for KIM to play left
- 0 for KIM to play right

***** Hex Dump - Ping Pong *****

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02AO
02BO
02CO
02DO
02EO
02FO

20 40 IF
80 CA 10
19 45 85
29 02 DO
83 10 23
FO 14 A5
BD 39 03
89 A5 86
IF 20 A4
85 DO 02
D8 4C 00
60 A8 A6
80 E5 83
49 03 88
17 29 07
OA 10 04

20 6A
F8 C9
A8 29
69 8A
A5 80
85 30
20 Bl
4A 4A
02 A6
05 81
02 8D
82 06
85 83
30 04
C5 8C
A2 FF

IF C9 13
10 BO 22
04 DO 12
4A 4A 20
85 83 18
04 A5 88
02 A9 7F
4A 4A 85
8A C6 89
20 A4 02
40 17 8C
82 06 82
B9 31 03
4A 4A 10
FO 33 90
A9 01 86

DO OA A2
AA 29 03
8A 45 84
Bl 02 20
A5 85 65
10 02 A5
8D 41 17
8A A5 86
10 F4 A2
CA 10 Fl
42 17 C6
05 82 29
85 80 B9
F9 29 03
31 A2 04
85 18 65

08 BD 24
FO 04 C9
29 02 FO
40 IF DO
84 85 85
87 DO 3F
AO 13 A2
29 OF AA
03 BD 2D
30 03 20
8B DO FC
OF 85 82
35 03 85
OA 85 8C
A5 84 OA
86 85 86

03 95
03 DO
OB 98
27 C6
29 04
A6 82
01 86
BD E7
03 E4
E9 02
88 88
38 A5
81 BD
AD 04
OA OA
AO 00

0300 AA 29 OF C9 OB DO 02 84 84 8A 4A 4A 4A 4A D O ' F O
0310 A2 03 BD 24 03 95 80 CA 10 F8 A5 84 18 49 FF 69
0320 01 85 84 60 30 CO 00 80 01 FF 00 01 00 00 06 30
0330 00 20 20 20 14 08 40 01 49 02 02 01 02 01 03 01
0340 02 03 03 00 02 00 00 02 02 78 B5 9E 76 6E Al AE
0350 75 AA EB 8F 75 5B 56 7A 35

99

QUICK By Peter Jennings
Modified by Jim Rutterfield

m

ft*
Description -

Here's a program to test your speed of reaction. Press
"GO" and the display will blank for a random period of time.
When it lights, hit any numbered button. The number on the
display will tell you how quick you were; the smaller the
number, the faster your reaction time. You may play repeatedly,
just press "GO" each time you want a new test.

sucr »'
for «*
two 1*

The <

0300
0302
0303
0305
0307
0309
030C
030E
0310
0312
031̂
0316
0318
031 A
031B
*031C
031E
0320
0322
0323
0325
0326
0329
032B
032E
0331
0333
0335

0300-
0310-
0320-
0330-

A5 F9
2A
65 F9
29 7F
85 FB
20 40 IF
DO FB
E6 FA
DO F7
E6 FB
DO F3
85 F9
A2 FD
F8
38
B5 FC
69 00
95 FC
E8
DO F7
D8
20 IF IF
FO ED
20 IF IF
20 6A IF
C9 13
DO F6
FO C9

t) i :
A5 F9 2
D0 F7 E
95 FC E
IF C9 1

START

ZIP

RUN

DIGIT

STAND

LDA INH
ROL A
ADC INH
AND #$7F

RANDOMIZE DELAY
..BY MULTIPLYING

BY 3 AND
MASKING

COUNT DOWN FOR
RANDOM DELAY

SET TO ZERO
NEGATIVE THREE
COUNT IN DECIMAL
ADD VALUE 1

STA POINTH WORK rW DISPLAY AREA
JSR KEYIN IF YOU CHEAT BY KEYING...
BNE ZIP PROGRAM WAITS YOU OUT
INC POINTL
BNE ZIP
INC POINTH
BNE ZIP
STA INH
LDX
SED
SEC
LDA POINTH+1,X
ADC #$00 ADD IT IN
STA POINTH+1,X
INX MOVE ON TO NEXT DIGITS
BNE DIGIT
CLD
JSR SCANDS LIGHT UP COUNT
BEQ RUN AND KEEP COUNTING
JSR SCANDS
JSR GETKEY
CMP #$13 GO KEY DEPRESSED?
BNE STAND NOPE, HOLD IT
BEQ START YUP, START OVER

***** Hex Dump - Quick *****

A5 F9 2A 65 F9 29 7F 85 FE 20 40 IF D0 Ft E6 FA
D0 F7 E6 FE D0 F3 85 F9 A2 FD F8 38 B5 FC 69 00
95 FC E8 D0 F7 D8 20 IF 1F F0 EL 20 IF IF 20 6A

100

By JIB Butterfield

Start at 0200 - the display will show a combination of 6 letters
such as CDBAEF. Hit a number from 2 to six to 'flip' letters.
For example, if you hit 2 with the previous example, the first
two letters will flip over to give DCBAEF. Now if you hit 4,
you'll get the winning combination - ABCDEF - and the display
will signal your win with a line of dashes.

The computer won't limit your number of flips - but try to
get a win in 6 moves or less. By the way, the computer forbids
doing the same flip twice in succession - so you can't back up a move.

randomize
**Gane by Bob Albrecht -

People's Computer Co **

set window to zeros

hash in new random number

0200 E6 16 START
0202 20 40 IF
0205 DO F9
020? D8
0208 A2 05
020A A9 00
020C 86 10
020E 95 18 ZLOOP
0210 CA
0211 10 FB
0213 38 RAND
0214 A5 13
0216 65 16
0218 65 17
023A 85 12
021C A2 04
021E B5 12 RLP
0220 95 13

"* 0222 CA
0223 10 F9
0225 AO CO
0227 84 11
0229 AO 06
022B C5 11 SET
022D 90 02
022F E5 11
0231 46 11 PASS
0233 88
0234 DO F5
0236 AA
0237 A4 10
0239 B9 Fl IF
023C CA TOP
023D 10 02
023F A 2 05
0241 B4 18 TRY
0243 DO F7
0245 95 18
0247 C6 10
0249 10 C 8

INC RND+4 r
JSR KEYIN
BNE START
CLD
LDX £5
LDA *0
STX POINTR
STA WINDOW, X
DEX
BPL ZLOCP
SEC
LDA RND+1 h
ADC RND+4
ADC RND+5
STA RND
LDX 44
LDA RND.X ra
STA RND+l.X
DEX
BPL RLP
LDY *$CO

STY MOD
LDY #6
CMP MOD
BCC PASS
SBC MOD
LSR MOD
DEY
BNE SET
TAX
LEY POINTR
LDA TABLE+10.Y
DEX
BPL TRY
LDX 45
LDY WINDOW,*
BNE TOP
STA WINDOW, X
DEC POINTR
BPL RAND

move random string down one

divide random 4 by 6

digits A to F

find an empty window

and put the digit in

101

02UB FO B3 SLINK
024D A 2 05 WTEST
02*JF B5 18 TEST2
0251 DD A6 02
0254 DO OC
0256 CA
0257 10 F 6
0259 A 2 05
025B A9 40
025D 95 18 SET
025F CA
0260 10 FB
0262 A 9 7F PLAY
0264. 8D to 1?
0267 AO 09
0269 A 2 FA
026 B B5 IE SHOW
026D 8D 40 1?
0270 8C 42 17
0273 C6 11 ST1
0275 DO FC
0277 C8
0278 C8
0279 E8
027A 30 EF
027C 20 40 1?
027F 20 6A IF
0282 C9 13
0284 FO C5
0286 C9 07
0288 BO C3
028A AA
028B FO D5
028P CA
028E FO D2 ̂
0290 E4 10
0292 FO CE
0294 86 10
0296 B5 18 TOPI
0298 48
0299 CA
029A 10 FA
029C A 6 10
029E 68 TOP2
029F 95 18
02A1 CA
02A2 10 FA
02A4 30 BC
02A6 F7 FC B9 WINNER
02A9 DE F9 Fl

; end

BEQ START
LDX #5
LDA WINDOW ,X
CMP WINNER, X
BNE PLAY
DEX
BPL TEST2
LDX #5
IDA #$40
STA WINDOW .X

BPL SET
LDA #$7F
STA SADD
LDY 4$09
LDX #3FA
LDA WINDOW.X
STA SAD
STY SH)
DEC MD
BNE ST1
I NY
INY
INX
BPL SHOW
JSR KEYIN
JSR GETKEY
CFJ5 £$13
BHJ SLINK
CMP -*7
BCS WTEST
TAX
BEQ PLAY *
DEX
BEQ PLAY
CPX POINTR
95Q PLAY
STX POINTR
LDA WINDOW.X
PHA
DEX
BPL TOPI
LDX POINTR
PLA
STA WINDOW.X
DEX
BPL TOP2
BMI PLAY
.BYTE $F7,$FC

link to start
test

win
condition

,

set
to

It N

directional
registers

negative 5
light

display

W

00 key?
yes, restart

Keys 0 to 6?
no, test win

Keys 1 to 6?
no, exit

Keys 2 to 6 (=1 to 5)?
no, exit

Sane key as before?
yes, ignore
no, we've got a live one

roll fem out...

roll 'era back in

,$B9,$DE,$F9,$F1

102

TEASER By Lew Edwards

Description -
This program is an adaptation of the "Shooting Stars"

game utilizing the keyboard and display of the KIM-1.
Originally published in the Sept. '74 issue of_PCC_, a
version also appeared in the May '76 issue of Byte magazine.

The starfield is displayed on the horizontal segments
of the second through fourth digits of the display. The
segments represent stars when lit and are numbered as follows:
Shooting a star creates a hole where the star 7 8 9
was. The resulting "explosion" changes the 4 5 6
condition of certain adjacent stars or holes, 1 2 3
(stars to holes, or holes to stars) according to the following:

< 4 » • Sides (2,8) • » or (4,6)Center (5)

Comers (1)

The game starts with a star in position 5; the rest
are holes. The object of the game is to reverse the initial
condition, making 5 a hole and all the rest stars. Eleven
moves are the minimum number.

Should you attempt to "shoot" a hole, the first digit
displays a "H" until a star key is pressed. This digit
also displays a valid number selection. A count of valid
moves is given at the right of the display. A win gives
a "F" in the first digit. All holes is a losing situation,
("L" in the first digit). You may start over at any time
by pressing the "Go" button. The program starts at 0200.

f}200
0202
0204
0206
0207
0209
020B
020D
020F
0211
0212
0214
0217
0219
021B
021E
0220
0223
Q225
0228
022A
022C
022E
0230

A9 00
A2 10
95 CF
CA
DO FB
A9 40
85 D4
A9 10
85 DE
4A
85 DF
20 DD 02
A6 D3
DO 50
20 40 IF
FO F4
20 40 IF
FO EF
20 6A IF
C9 13
FO D4
C9 OA
10 E4
A8

BEGN

CLOP

LDA Jt$00
LDX #$10
STA OOCF,X
DEX
BNE CLOP

ZERO REGISTERS DO-DA

MLOP

STA OODR
LDA #$10
STA OODE
LSR
STA 00 DF
JSR DISP
LDX 00 D3
BNE DELA
JSR 1F40
BEQ MLOP
JSR 1F40
BEQ MLOP
JSR GETKEY
CMP #$13
BEQ BEGN
CMP #$OA
BPL MLOP
TAY

103

...INITIALIZE DISPLAY...

INIT. STARFIELD
REGISTERS

...DISPLAY...
MODE?
MODE=1, DELAY AND UPDATE
MODE=0, GET KEY
NO KEY, RETURN
KEY STILL PRESSED?
NO, RETURN
YES, GET KEY
"GO" KEY?
YES, START AGAIN
OVER 9?
YES, TRY AGAIN
USE AS INDEX

r

0231
0233
0235
0238
023A
023D
023F
0241
0243
0245

0247
0249
024B
024D
024F
0251
0252
0253
0255
0257
0259
025A
025D
025F
0261
0264
0266
0268
026B
026D
0270
0271
0273
0275
0278
0279
027B
027D
027F
0281
0282
0284
0285
0287
0289
028A
028B
028D
028F
0290
0292

FO
85
20
85
B9
CO
30
24
DO
FO

24
DO
A9
85
DO
F8
38
A9
65
85
D8
20
85
A5
20
85
E6
4C
AO
20
88
DO
A6
BD
A8
EO
30
45
85
98
AO
OA
45
85
98
4A
45
85
OA
A5
A2

El
Dl
F4 02
DO
CA 02
06
06
DF
OC
04

DE
06
76
DO
C3 /

00
D5
D5

F4 02
DA
D5
FO 02
D8
D3
14 02
00
DD 02

FA
Dl
D3 02

06
08
DF
DF

00

DE
DE

DF
DF

DE
06

SKIP

HOLE

STAR

DELA

LOWF

BEQ MLOP
STA OQD1
JSR SEG
STA OODO
LDA 02CA,Y
CMP §$06
BMI SKIP
BIT OODF
BNE STAR
BEQ HOLE

BIT OODE
BNE STAR
LDA #$76
STA OODO
BNE MLOP
SED
SEC
LDA #$00
ADC OOD5
STA 00D5
CLD
JSR SEG
STA 00DA
LDA 00D5
JSR LEFT
STA 00D8
INC OOD3
JMP MLOP
LDY #$00
JSR DISP
DEY
BNE DELA
LDX OOD1
LDA 02D3,X
TAY
CPX #$06
BMI LOWF
EOR OODF
STA OODF
TYA
LDY #$00
ASL A
EOR OODE
STA OODE
TYA
LSR A
EOR OODF
STA OODF
ASL A
LDA OODE
LDX #$06

0? - NOT VALID
1-9 STORE IT
CONVERT TO SEGMENTS
DISPLAY - LEFT DIGIT
GET STAR TEST BIT
TEST KEY #
1-5, SKIP
6-9, TEST HI FIELD
IT'S A STAR
IT'S A HOLE

1 TO 5, TEST LO FIELD
IT'S A STAR
IT'S A HOLE LOAD "H"
DISPLAY-LEFT DIGIT
UNCOND. JUMP
UPDATE COUNT

BY ADDING ONE
STORE IT

UNPACK, CONVERT i
TO SEGMENTS AND *
DISPLAY IN DIGITS
5 AND 6...

SET MODE TO 1
MAIN LOOP AGAIN
MODE = 1
DELAY ABOUT .8 SEC
WHILE DISPLAYING

KEY # AS INDEX
GET SHOT PATTERN
SAVE IN Y REGISTER
KEY # OVER 5?
NO, GÔ TO LOW FIELD
UPDATE HI FIELD, 6-9

RECALL PATTERN, 6-9
NO SHOT 3RD TIME
ALIGN WITH LO FIELD
UPDATE LO FIELD

RECALL PATTERN, 1-5
ALIGN WITH HI FIELD
UPDATE HI FIELD, 1-5
(BLANK SHOT IF 6-9)
SHIFT 9 TO CARRY
GET REST OF FIELD
...STAR DISPLAY...

104

0294
0295
0296
0298
02 9A
029B
029C
029D
029F
02AO
02A2
02A4
02A6
02A8
02AA
02 AC
02AE
02BO
02B2
02B4
02B6
02B8
02BB
02BE
02C1
02C4
02C6
02C8
02CB
02DB

2A
48
29
95
68
CA
CA
DO
2A
BO
FO
C9
DO
A9
DO
A9
DO
C6
A9
85
DO
4C
20
20
20
C9
DO
4C
01
EO

49
DO

F5

OE
08
FF
08
71
08
38
04
D3
00
DO
03
14
DD
40
6A
13
F3
00
02
D8

DLOP ROL
PHA
AND
STA
PLA
DEX
DEX
BNE
ROL

} BCS
« BEQ

/ CMP
/ BNE

LDA
BNE

LOSE LDA
BNE

MODE DEC
LDA

FRST STA
BNE

02 JMP
02 DONE JSR
IF JSR
IF JSR

CMP
* BNE

02 JMP
04 08 10 10 20 40

#$49
OODO,X

DLOP

MODE
LOSE
#$FF
MODE
#$71
FRST
#$38
FRST
OOD3
#$00
00 DO
NONE
MLOP
DISP
1F40
GETKEY
#$13
DONE
BEGN
80 IB 07

ALIGN WITH DISPLAY
SAVE IT FOR NEXT TIME
MASK TO HORIZ. SEGS
INTO DISPLAY WINDOW
RECALL FIELD
SHIFT TO NEXT
DISPLAY DIGIT
REPEAT TILL DONE
BIT FOR 5 TO CARRY
5 IS STAR, CONTINUE
5 IS HOLE, ALL HOLES
ALL THE REST STARS?
NO
YES, LOAD "F"
AND SKIP
LOAD "L", CLOSE)
AND SKIP
SET MODE TO 0
BLANK FIRST DIGIT
FILL FIRST DIGIT
END OF GAME
MAIN LOOP AGAIN 4
DISPLAY UNTIL
"GO" KEY IS
PUSHED

START A NEW GAME

36 49 BA 92 6C

:c;cx DISPLAY SUBROUTINE "-"-
02DD
02DF
02E2
02E4
02E6
02E8
02EB
02ED
02EF

A9
8D
A2
B5
84
20
EO
DO
60

7F
41
09
C7
FC
4E
15
F5

DISP LDA
17 STA

LDX
MORE LDA

STY
IF JSR

CPX
BNE
RTS

#$7F
1741
#$09
OOC7,X
OOFC
1F4E
#$15
MORE

:s::: HEX CONVERSION SUBROUTINE
02FO
02F1
02F2
02F3
02F4
02F6
02F7
02FA

4A
4A
4A
4A
29
A8
B9
60

OF

E7

LEFT LSR
LSR
LSR
LSR

SEG AND
TAY

IF LDA
RTS

A
A
A
A
#$OF

1FE7,Y

TURN ON DISPLAY

PUT IN4SEGMENTS
SAVE Y
DISPLAY THEM
DONE? 6 TIMES
NO, LOOP
YES, RETURN

JOSH

MASK TO 4 BITS
USE AS INDEX
CONVERT TO SEGMENTS
RETURN

105

By Joel Swank

Description -
TIMER turns KIM into a digital stopwatch showing up to

99 minutes and 59.99 seconds. It is designed to be accurate
to 50 microseconds per second. The interval timer is used
to count 9984 cycles and the instructions between the time
out and the reset of the timer make up the other 16 cycles
in .01 seconds. The keyboard is used to control the routine
as follows: Stop (0), Go (1), Return to KIM (4), Reset (2).

0200
0202
0204
0206
0208
020B
020E
0210
0212
0215
0217
0219
02 IB
021D
02 IF
0222
0225
0228
022A
022D
022F
0232
0233
0234
0236
0238
02 3A
023C
023E
0240
0242
0244
0246
0248
024A
024B
024D
024F
0250
0253
0255
0257

A9 .flfl. BEGN
85 F9
85 FA
85 FB
20 IF IF HOLD
20 6A IF
C9 04
DO 03
4C 64 1C
C9 02 CONT
FO E7
C9 01
DO EB
A9 9C
8D 06 17
20 IF IF DISP
AD 07 17 CLCK
FO FB
8D 00 1C *
A9 9C
8D 06 17
18
F8
A5 F9
69 01
85 F9
A5 FA
69 00
85 FA
C9 60
DO OB
A9 00
85 FA
A5 FB
18
69 01
85 FB
D8 CKEY
20 6A IF
C9 00
DO CB
FO AF

LDA #$00
STA INH
STA POINTL
STA POINTH
JSR SCANDS
JSR GETKEY
CMP #$04
BNE CONT
JMP 1C64
CMP #$02
BEQ BEGN
CMP #$01
BNE HOLD
LDA #$9C
STA 1706 ,
JSR SCANDS
LDA 1707
BEQ CLCK
STA ROM
LDA #$9C
STA 1706
CLC
SED
LDA INH
ADC #$01
STA INH
LDA POJNTL
ADC #$00
STA POINTL
CMP #$60
BNE CKEY
LDA #$00
STA POINTL
LDA POINTH
CLC
ADC #$01
STA POINTH
CLD
JSR GETKEY
CMP #$00
BNE DISP
BEQ HOLD
106

ZERO DISPLAY

LIGHT DISPLAY

KEY 4?

RETURN TO KIM
KEY 2?
BACK TO ZERO
KEY 1? \

SET TIMER
DISPLAY VALUE
CHECK TIMER

DELAY 4 MICROSEC
SET TIMER

SET FLAGS

INC. 100THS

INC. SECONDS

STOP AT 60

ZERO SECONDS

INC. MINUTES

READ KEYBOARD
KEY 0?

STOP

WUMPUS By Stan Ockers

Description -
Wumpus lives in a cave of 16 rooms (labeled 0-F). Each room

has four tunnels leading to other rooms (see the figure). When the
program is started at 0305, you and Wumpus are placed at random in
the rooms. Also placed at random are two bottomless pits (they don't
bother Wumpus, he has sucker-type feet) and two rooms with Super-
bats (also no trouble to Wumpus, he's too heavy). If you enter a bat's
room you are picked up and flown at random to another room. You
will be warned when bats, pits or Wumpus are nearby. If you enter the
room with Wumpus, he wakes and either moves to an adjacent room or
just eats you up (you lose). In order to capture Wumpus, you have
three cans of "mood change" gas. When thrown into a room containing
Wumpus, the gas causes him to turn from a vicious snarling beast
into a meek and loveable creature. He will even come out and give you
a hug. Beware though, once you toss a can of gas in the room, it is
contaminated and you cannot enter or the gas will turn you into a
beast (you lose). L

If you lose and want everything to stay the same for another try,
start at 0316. The byte at 0229 controls the speed of the display. Once
you get used to the characters, you can speed things up by putting in a
lower number. The message normally given tells, you what room you
are in and what the choices are for the next room. In order to fire
the mood gas, press PC (pitch can?), when the rooms to be selected
are displayed. Then indicate the room into which you want to pitch
the can. It takes a fresh can to get Wumpus (he may move into a room
already gassed) and he will hear you and change rooms whenever a
can is tossed (unless you get him). If Wumpus moves into a room with
a pit or Superbats, he'll be hidden - you won't be told WUMPUS CLOSE.
Either guess, or pitch a can to make him move. Good hunting.

The program is adapted from a game by Gregory Yob which
appears in The Best of Creative Computing.

/7\\
B —— 8

107

I

0305
0307
0309
030B
030C
030E
0310
0312
0314
0316
0318
031A
031D
031F
0321
0323
0324
0326
0329
032A
032C
032F
0331
0333
0336
0339
033A
033C
033E
0340
0342
0344
0346
0348
034A
034C
034E
0350
0353
0355
0357
0359
035B
035E
0260
0362
0364
0367
0369
036 A
036C
036E
036F

A9
A2
95
CA
10
A9
85
AO
10
AO
A2
20
29
D5
FO
CA
10
99
88
10
20
AO
84
B9
20
8A
30
EO
30
A9
10
EO
30
A9
10
A9
AO
20
C6
A4
10
A4
B9
85
A2
B4
B9
95
CA
10
AO
98
20

FF
OE
Cl

FB
03
EO
05
02
00
05
72 02
OF
CA
F5

F9
CA 00

EC
B2 02
03
El
C6 00
8F 02

17
03
04
19
OA
01
04
OE
02
00
01
00 02
El
El
DA
CA
E7 IF
OC
03
C6
E7 IF
20

F6
00

00 02

INIT

GETN

CKNO

ADJR

NXTR

SKP1

SKP2
MESS

NOMA

XRO

ROOM

LDA
LDX
STA
DEX
BPL
LDA
STA
LDY
BPL
LDY
LDX
JSR
AND
CMP
BEQ
DEX
BPL
STA
DEY
BPL
JSR
LDY
STY
LDA
JSR
TXA
BMI
CPX
BMI
LDA
BPL
CPX
BMI
LDA
BPL
LDA
LDY
JSR
DEC
LDY
BPL
LDY
LDA
STA
LDX
LDY
LDA
STA
DEX
BPL
LDY
TYA
JSR

#$FF
#$OE
OOC1,X

INIT
#$03
OOEO
#$05
GETN
#$00
#$05
RAND
#$OF
OOCA,X
GETN

CKNO
OOCA,Y

GETN
NXTR
#$03
OQE1
OOC6,Y
COMP

NOMA
#$03
SKP1
#$19
MESS
#$01
SKP2
#$OE
MESS
#$00
#$01
SCAN
OOE1
OOE1
NXTR
OOCA
1FE7,Y
OOOC
#$03
OOC6,X
1FE7,Y
0020, X

XRO
#$00

SCAN

...INITIALIZATION...

..CLEAN OUT ROOMS..
INIT. TO FF
FINISHED?
NO
GIVE THREE CANS OF GAS

...RANDOMIZE...
YOU,WUMPUS,PITS AND BATS
(ONLY YOU ENTRY)

..MAKING SURE ALL
ARE DIFFERENT..

STORE IN OOCA-OOCF

SET UP ADJACENT ROOM LIST
HAZARDS IN ADJ. ROOMS?

COMPARE EACH TO HAZARDS
(X CONTAINS MATCH INFO.)
NO MATCH, NO HAZARDS
BATS?
NO «
(BATS NEARBY MESSAGE)

PIT?
NO *
(PIT CLOSE MESSAGE)

MUST BE WUMPUS
(PAGE ONE)
DISPLAY HAZARD MESSAGE
TRY NEXT ADJ. ROOM
FINISHED?
NO
..LOAD AND DISPLAY -
"YOU ARE IN ... TUNNELS
LEAD TO" MESSAGE..
(FOUR NEXT ROOMS)

CONVERSION
PUT IN MESSAGE '
FINISHED?
NO
LOCATION AND..
PAGE OF MESSAGE
DISPLAY MESSAGE

108

0372
0375
0377
0379
037C
037E
037F
0381
0383
0385
0387
0389
038A
038C
038F
0390
0392
0394
0396
0398
039A
039C
039E
03A1
03A4
03A6
03A8
03AA
03 AD
03AF
03B1
03B4
03B7
03B9
03BC
03BE
03C1
03C3
03C5
03C8
03CB
03CE
03DO
03D1
03D3
03D5
03D7
03D9
03DB
03DD
03DF
03E1
03E3
03E6

20
C9
FO
20
85
8A
30
A5
A2
D5
FO
CA
10
20
8A
30
EO
10
EO
10
AO
A9
20
20
C5
DO
A9
4C
AO
A9
20
4C
A9
4C
A9
4C
AO
A9
20
20
20
85
8A
30
A5
A6
95
C5
FO
C6
FO
A6
20
20

58
14
48
C5
CA

EB
CA
04
Cl
33

F9
8F

9A
03
17
01
ID
00
26
00
99
CA
84
26
CF
01
3D
00
16
4F
CF
65
CF
00
B7
00
58
C5
Dl

EE
Dl
EO
CO
CB
15
EO
1A
CB
B4
A5

02

02

02

02
02

02

02
03

02

02

02
02
02

02
02

NXTG

BATM

PITM

GASM

ROOM

JSR DEBO
CMP #$14
BEQ ROOM
JSR VALID
STA OOCA
TXA
BMI ROOMS
LDA OOCA
LDX #$04
CMP OOC1,X
BEQ GASM
DEX
BPL NXTG
JSR COMP
TXA
BMI ADJR
CPX #$03
BPL BATM
CPX #$01
BPL PITM
LDY #$00
LDA #$26
JSR SCAN
JSR MOVE
CMP OOCA
BNE ADJR
LDA #$26
JMP LOSE
LDY #$01
LDA #$3D
JSR SCAN
JMP CHNG
LDA #$4F
JSR LOSE
LDA #$65
JMP LOSE
LDY #$00
LDA #$B7
JSR SCAN
JSR DEBO
JSR VALID
STA OOD1
TXA
BMI ROOM
LDA OOD1
LDX OOEO
STA OOCO,X
CMP OOCB
BEQ WIN
DEC OOEO
BEQ OUT
LDX OOCB
JSR NEXT
JSR MOVE

DEBOUNCE KEY
PC PUSHED?
YES
AN ADJACENT ROOM?
UPDATE YOUR ROOM

IF X=FF, NOT VALID ROOM
CHECK FOR GAS IN ROOM
5 POSSIBLE (EXPANSION)

GASSED!!
ALL CHECKED?
NO
CHECK YOUR NEW
ROOM FOR HAZARDS..
NO MATCH, NO HAZARDS

BATS

PIT!!!

MUST HAVE BUMPED WUMPUS
DISPLAY MESSAGE
..SEE IF HE MOVES..
STILL IN YOUR ROOM?
NO, YOU'RE O.K.
HE GOT YOU!

BAT MESSAGE

CHANGE YOUR ROOM
FELT- IN PIT!

GAS IN ROOM!

PITCH CAN AND SEE.
IF YOU GET HIM
ROOM?

VALID ROOM?

IF X=FF, NOT VALID

CANS OF GAS LEFT
..IS WUMPUS IN
ROOM GASSED?
YES, YOU GOT HIM
DECREASE CAN COUNT
GAS IS GONE
..MOVE WUMPUS TO AN
ADJACENT ROOM (FOR HIM)

109

03E9
03EB
03ED
03F2
03F4
03F6
03F9
03FB
03FD

0200
0202
0204
0206
0208
020A
020C
020E
0210
0212
0213
0215
0216
0217
0219
02 1A
021B
021C
021E
0220
0223
0225

0228
022A
022C
022E
0231
0234
0237
0239
023B
023D

C5
FO
4C
AO
A9
20
FO
A9
4C

84
85
A9
85
AO
A2
Bl
C9
DO
60
95
88
CA
10
D8
18
98
65
85
20
A4
4C

A2
86
A9
8D
20
2C
10
C6
DO
60

CA
BB
DE 02
01
80
00 02
F7
73
CF 02

DE
DD
07
DF
05
05
DD
00
01

E8

F3

DF
DC
28 02
DC
OA 02

OA
DB
52
07 17
3E 02
07 17
F8
DB
EF

CMP
BEQ
JMP
LDY
LDA
JSR
BEQ

OUT LDA
JMP

STY
STA
LDA
STA
LDY

CONT LDX
CHAR LDA

CMP
BNE
RTS
STA

MORE DEY
DEX
BPL
CLD
CLC
TYA
ADC
STA
JSR
LDY
JMP

DELAY DISPLAY
LDX
STX

TIME LDA
STA
JSR
BIT
BPL
DEC
BNE
RTS

00 CA
03A8
02DE
#$01
#$80
SCAN
WIN
#$73
LOSE

OODE
OODD
#$07
OODF
#$05
#$05
(OODD),Y
#$00
MORE

OOE8,X

CHAR

OODF
OODC
0228
OODC
CONT
SUBROUTINE
#$OA
00 DB
#$52
1707
DISP
1707
LITE
OODB
TIME

DID HE MOVE INTO YOUR ROOM?
YES
DISPLAY CANS LEFT MESSAGE
GREATS ETC. MESSAGE

REPEAT
OUT OF GAS!

TRANSFER POINTER HIGH
TRANSFER POINTER LOW
INIT. SCAN FORWARD

INIT Y
INIT X
GET CHARACTER
LAST CHARACTER?
IF NOT, CONTINUE

STORE IT
SET UP NEXT CHARACTER
SET UP NEXT STORE LOG.
LOOP IF NOT 6TH CHAR.
BINARY MODE
PREPARE TO ADD
GET CHAR. POINTER
UPDATE FOR 6 NEW CHAR.
SAVE NEW POINTER *
DELAY-DISPLAY ^
RESTORE POINTER
CONTINUE REST OF MESSAGE

SET RATE
PUT IN DECR. LOC.
LOAD TIMER
START TIMER
JUMP TO DISPLAY SUBR.
TIMER DONE?
IF NOT, LOOP
DECREMENT TIMER
NOT FINISHED
GET 6 NEW CHAR.

swsscs BASIC DISPLAY SUBROUTINE ""::x
023E
0240
0243
0245
0247
024A
024C

A9
8D
AO
A2
B9
84
20

7F
41 17
00
09
E8 00
FC
4E IF

LDA
STA
LDY
LDX

SIX LDA
STY
JSR

#$7F
PADD
#$00
#$09
OOE8,Y
OOFC
1F4E

CHANGE SEGMENTS..
TO OUTPUT
INIT.' RECALL INDEX
INIT. DIGIT NUMBER
GET CHARACTER
SAVE Y
DISPLAY CHARACTER

110

024F C8
0250 CO 06
0252 90 F3
0254 20 3D
0257 60

INY
CPY #$06
BCC SIX

IF JSR 1F3D
RTS

SET UP FOR NEXT CHAR.
6 CHAR. DISPLAYED?
NO
KEY DOWN?
EXIT

:s:::x DEBOUNCE SUBROUTINE """"
0258 20 8C
025B 20 3E
025E DO F8
0260 20 3E
0263 FO FB
0265 20 3E
0268 FO F6
026A 20 6A
026D C9 15
026F 10 E7
0271 60

'
0272 8A
0273 48
0274 D8
0275 38
0276 A5 41
0278 65 44
027A 65 45
027C 85 40
02 7E A2 04
0280 B5 40
0282 95 41
0284 CA
0285 10 F9
0287 85 CO
0289 68
02 8A AA
028B A5 CO
028D 60

028F A2 04
0291 D5 CB
0293 FO 03
0295 CA
0296 10 F9
0298 60

IE DEBO JSR INIT1
02 JSR DISP

BNE DEBO
02 SHOW JSR DISP

BEQ SHOW
02 JSR DISP

BEQ SHOW
IF JSR GETKEY

CMP #$15
BPL DEBO
RTS

s:;:::: RANDOM NUMBER SUBROUTINE
RAND TXA

PHA
CLD
SEC
LDA 0041
ADC 0044
ADC 0045
STA 0040
LDX #$04

NXTN LDA 0040, X
STA 0041,X
DEX
BPL NXTN
STA OOCO
PLA
TAX
LDA OOCO
RTS

"«"" COMPARE SUBROUTINE ::-:"
COMP LDX J$Q4
HAZD CMP OOCB,X

BEQ OUT
DEX
BPL HAZD

OUT RTS

.
WAIT FOR PREVIOUS KEY
TO BE RELEASED
WAIT FOR NEW KEY TO
BE DEPRESSED
CHECK AGAIN AFTER
SLIGHT DELAY
GET A KEY
A VALID KEY?
NO

SAVE X REGISTER

RANDOM # ROUTINE FROM
J. BUTTERFIELD, KIM ^
USER NOTES #1 PAGE 4

4

RETURN X REGISTER'

*

COMPARE ROOM IN ACC.
WITH EACH HAZARD.

X ON EXIT SHOWS MATCH

se:aa: MOVE WUMPUS SUBROUTINE "x::"
0299 20 72
029C 29 OF
029E C9 04
02AO 30 OD
02A2 20 B2
02A5 AD 06
02A8 29 03
02AA AA
02AB B5 C6
02AD 85 CB

02 MOVE JSR RAND
AND #$OF
CMP #$04
BMI NOCH

02 JSR NEXT
17 LDA 1706

AND J$03
TAX
LDA OOC6,X
STA OOCB

GET A RANDOM #
STRIP TO HEX DIGIT
CHANGE ROOMS 75%
OF THE TIME
GET ADJ. ROOMS CTO WUMPUS)
GET RANDOM #, 0-3

USE AS INDEX
GET AN ADJ. ROOM
PUT WUMPUS IN IT

111

1

1 02C5
02C7
02C9
02CB
02CC
02CE

02CF
02D1
02D4
02D6
02D8
02DB

02DE
02EO
02E3
02E5
02E7
02E9
02EC

A5 CB
60 '

A6 CA
B5 50
85 C6
B5 60
85 C7
B5 70
85 C8
B5 80
85 C9
60

A2 03
D5 C6
FO 03
CA
10 F9
60

AO 01
20 00»
AO 00
A9 AC
20 00
4C D4

A4 EO
B9 E7
85 9F
AO 00
A9 90
20 00
4C 2C

NOCH

LOAD NEXT

"--"• CH!
VALID

YVAL
•****-**** 1 Ô 1LXOl

LOSE
02

02
02
•"""• GAS 1

IF

02 f*
03

LDA OOCB
RTS

DMS SUBROUTINl
LDX OOCA
LDA 0050,X
STA OOC6
LDA 0060,X
STA OOC7
LDA 0070,X
STA OOC8
LDA 0080,X
STA OOC9
RTS

CHECK VALID SUBROUTINE
LDX #$03
CMP OOC6,X
BEQ YVAL
DEX
BPL NXTV
RTS

LOSE SUBROUTINE ":-::
LDY x$01
JSR SCAN
LDY #$00
LDA #$AC
JSR SCAN
JMP REPT

T MESSAGE """:
LDY OOEO
LDA 1FE7,Y
STA 09F
LDY #$00
LDA #$90
JSR SCAN
JMP ADJR

WUMPUS ROOM IN ACC.

YOUR ROOM AS INDEX
... NEXT ROOMS ARE LOADED
INTO OOC6-OOC9 FROM
TABLES ...

... CHECK IF ACC.
MATCHS OOC6-OOC9
YES, VALID ROOM

...DISPLAY REASON LOST,
THEN "YOU LOSE" ...

GET CANS LEFT
GET CONVERSION
STORE IN MESSAGE
(PAGE ZERO)
DISPLAY CANS OF GAS
LEFT MESSAGE

***** Messages *****

0000 80 EE DC BE 80 F7 DO F9 80 84 D4 80 EF 80 CO 80
0010 F8 BE D4 D4 F9 B8 ED 80 B8 F9 F7 DE 80 F8 DC 80
0020 FD FF F7 B9 80 00 80 DC DC F3 ED 80 CO 80 FC BE
0030 B7 F3 F9 DE 80 F7 80 9C BE B7 F3 BE ED 80 80 00

***** Next R0om List *****

0050 02 02 00 01 01 00 03 OH 00 06 07 00 09 OA 01 04
0060 05 03 01 02 03 02 05 06 05 08 09 08 OB OC OB 07
0070 08 04 03 04 07 06 07 OA 09 OA OF OC OD OE OC OA
0080 OB OE 05 06 OF 08 09 OF OB OC OD OE OE OF OD OD

112

***** Messages *****

0090 80 B7 84 ED ED F9 DE 80 CO 80 DC D4 B8 EE 80 DB'
OOAO 80 B9 F7 D4 ED 80 B8 F9 Fl F8 80 00 80 EE DC BE
OOBO 80 B8 DC ED F9 80 00 80 DO DC DC B7 D3 80 00 03

•..s

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01AO

80 9C
84 F8
B8 DC
F3 BE
F3 F9
EE EE
F3 84
B7 80
80 80
BD F9
BE B7

BE B7
80 B9
ED F9
ED 80
DO FC
84 84
F8 80
00 80
80 80
F8 80
F3 BE

F3 BE ED
B8 DC ED
80 00 80
BD DC F8
F7 F8 80
F9 F9 F9
00 80 BD
DC BE F8
80 BD DO
F7 80 F6
ED 80 00

80 B9 B8
F9 00 80
F6 F7 80
80 EE DC
ED D4 F7
80 Fl F9
F7 ED 80
80 DC Fl
F9 F7 F8
BE BD 80

DC ED
FC F7
F6 F7
BE 80
F8 B9
B8 B8
84 D4
80 BD
CO 80
Fl DO

F9 00
F8 ED
80 9C
00 80
F6 80
80 84
80 DO
F7 ED
EE DC
DC B7

80 F3
80 B9
BE B7
ED BE
00 80
D4 80
DC DC
80 00
BE 80
80 9C

***** Hex Dump - Main Program *****
Wumpus

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02AO
02BO
02CO
02DO
02EO
02FO
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03AO
03BO
03CO
03DO
03EO
03FO

84 DE
DO 01
20 28
17 20
8D 41
CO 06
20 3E
E7 60
B5 40
04 D5
30 OD
CB 60
B5 80
01 20
B9 E7
BE BD
EA EA
85 EO
CA FO
03 84
A9 19
20 00
A2 03
00 02
EB A5
30 9A
02 20
3D 20
02 AO
8A 30
1A A6
EA EA

85 DD
60 95
02 A4
3E 02
17 AO
90 F3
02 FO
8A 48
95 41
CB FO
20 B2
A6 CA
85 C9
00 02
IF 85
80 Fl
EA EA
AO 05
F5 CA
El B9
10 OA
02 C6
B4 C6
20 58
CA A2
EO 03
99 02
00 02
00 A9
EE A5
CB 20
AO 01

A9 07
E8 £8
DC 4C
2C 07
00 A2
20 3D
FB 20
D8 38
CA 10
03 CA
02 AD
B5 50
60 A2
AO 00
V A0

DO DC
EA A9
10 02
10 F9
C6 00
EO 01
El A4
B9 E7
02 C9
04 D5
10 17
C5 CA
4C 16
B7 20
Dl A6
B4 02
A9 80

85 DF AO
CA 10 F3
OA 02 A2
17 10 F8
09 B9 E8
IF 60 20
3E 02 FO
A5 41 65
F9 85 CO
10 F9 60
06 17 29
85 C6 B5
03 D5 C6
A9 AC 20
00 A9 90
B7 80 9C
FF A2 OE
AO 00 A2
99 CA 00
20 8F 02
30 04 A9
El 10 DA
IF 95 20
14 FO 48
Cl FO 33
EO 01 10
DO 84 A9
03 A9 4F
00 02 20
EO 95 CO
20 A5 02
20 00 02

05 A2 05
D8 18 98
03 86 DB
C6 DB DO
00 84 FC
8C IE 20
F6 20 6A
44 65 45
68 AA A5
20 72 02
03 AA B5
60 85 C7
FO 03 CA
00 02 4C
20 00 02
BE B7 F3
95 Cl CA
05 20 72
88 10 EC
8A 30 17
OE 10 02
A4 CA B9
CA 10 F6
20 C5 02
CA 10 F9
ID AO 00
26 4C CF
4C CF 02
58 02 20
C5 CB FO
C5 CA FO
FO F7 A9

Bl DD
65 DF
A9 52
EF 60
20 4E
3E 02
IF C9
85 40
CO 60
29 OF
C6 85
B5 70
10 F9
D4 02
4C 2C
BE ED
10 FB
02 29
20 B2
EO 03
A9 00
E7 IF
AO 00
85 CA
20 8F
A9 26
02 AO
A9 65
C5 02
15 C6
BB 4C
73 20

C9 00
85 DC
8D 07
A9 7F
IF C8
DO F8
15 10
A2 04
60 A2
C9 04
CB A5
85 C8
60 AO
A4 EO
03 F6
80 00
A9 03
OF D5
02 AO
30 04
AO 01
85 OC
98 20
8A 30
02 8A
20 00
01 A9
4C CF
85 Dl
EO FO
DE 02
CF 02

113

DIAGNOSTIC A\n
UTILITY I»KO«KAA\S

i

BKANCH BY JIM BUTTERFIELD

Load this fully relocatable program anywhere.
Once it starts, key in the last two digits of
a. branch instruction address; then the last two
digits of the address to which you are branching;
and read off the relative branch address.
For example, to calculate the branch to ADDR near the
end of this programs hit 26 (from 0026); 20 (to 0020)
and read F8 on the two right hand digits of the display.
The program must be stopped with the RS key.

0000 D8
0001 18
0002 A5 FA
0004 E5 FB
0006 85 F9
0008 06 F9
OOOA 20 IF
GOOD 20 6A
0010 C5 F3
0012 FO EG
0014 85 F3
0016 09 10
0018 BO E6
001A OA
001B OA
0010 OA
001D OA
001E A2 04
0020 OA
0021 26 FA
0023 26 FB
0025 CA
0026 DO F8
0028 FO D6

START OLD
CLC
LDA POINTL
SBC POINTH
STA INK
DEC INK

IF JSR SCANDS
IF JSR GETKEY

CMP EAST
BEQ START
STA LAST
CMP #$10
BCS START
ASL A
ASL A
ASL A
ASL A
LDX #4

ADDR ASL A
ROL POINTL

> ROL POINTH
DEX
BNE ADDR
BEQ START

Keep in mind that the maximum "reach" of a branch instruction
is 127 locations forward (7F) or 128 locations backward (80).
If you want a forward branch, oheck that the calculated branch
is in the range 01 to 7F. Similarly, be sure that a backward
branch produces a value from 80 to FE. In either case, a value
outside these limits means that your desired branch is out of
reach.

115

BROWSE Jim Butterfield

Load BROWSE anywhere in memory - it's fully relocatable -
start it ut>, and presto.' It doesn't seem to do anything.

BROWSE is a mini-Monitor that performs most of the functions
of the regular KIM monitor; but you'll find it handy for entering
and proof-reading programs. Most of the keys work the same as
usual; but PC, +. and DA are slightly different.

When you hit + you go to the next address as usual .. but then
you keep on going.' Graat for proofreading a program you've
Just entered. It lets you browse through memory.

Hit PC and the program steps backwards, so you can look at
a value you've just passed. All other keys instantly freeze
the browsing process; you can hit AD or DA to stop on a given
address, or just enter a new address if you wish.

Key DA operates a little differently from the regular KIM
function. To enter data, first set up the address before
the one you want to change. As you enter the data, BROWSE
will automatically step forward to the next address - and
then the next one, and so on. You never need to hit the +
key during entry; and the display will show the last value
you have entered. %

clear decimal mode
GO key image

value zero..
..to address pointer

main program loop
pause 1 second
up or down?
neither

down, decrement
next page?

light display
check keys
same key as last time?

note new key input
no key?
yes, skip

clear up/down flag

0110 D8 START
0111 A9 13
0113 85 FE
0115 A9 00
0117 85 FA
0119 85 FB
011B C6 F3 LOOP
011D DO OE >
011F A5 FD
0121 FO OA
0123 10 69
0125 A5 FA
012? DO 02
0129 C6 FB
012B C6 FA , DOWN
012D 20 19 3F LP1
0130 20 6A IF
0133 05 FE
0135 FO Eli
0137 85 FE
0139 C9 15
013B FO DE
013D A2 00
013F 86 FD

OLD
LDA #$13
STA CHAR
Lm #o
STA POINTL
STA POINTH
DEC WAIT
BNE LP1
LDA TMPX
BEQ LP1
BPL UP
LDA POINTL
BNE DOWN
DEC POINTH
DEC POINTL
JSR SCAND
JSR GETKEY
CMP CHAR
BEQ LOOP
STA CHAR
CMP #&15
BEQ LOOP
LDX #0
STX TMPX

116

OlUl C9 10
011*3 90 1C
01U5 86 FU
01U7 C9 11
Olli9 FO 01
OlUB E8
OlUC 86 FF
OlUE C9 12
0150 DO 02
015? E6 FD
015U C9 1U
0156 DO 02
0158 C6 FD
015A C9 13
015C DO CF
015E UC C8

0161 OA OA
0163 OA OA
0165 85 FC
0167 A 2 Oh
0169 All FF
016B DO 17
016D C6 FU
016F 10 07
0171 20 63
017U E6 FU
0176 E6 FU
0178 Bl FA
017A 06 FC
017C 2A
017D 91 FA
017F CA
0180 DO F8
0182 FO-^9
018U OA
0185 26 FA
0187 26 FB
0189 CA
018A DO F8
018C FO 9F

018E 20 63
0191 AA
0192 10 99
019U

CMP #$10 numeric?
BCC HUM yes, branch
STX DIGIT
CMP nil DA?
BEQ OVER yes. leave X-0
INX no. set X-l

OVER STX MODE 0 or 1 into MODE
CMP #$12 +?
BNE PASS no, skip
INC TMPX yes. set browse

PASS CMP #$1U PC?
BNE PASS2 no, skip
DEC TMPX yes, down-browse

PASS 2 CMP #$13 GO?
BNE LP1 no, loop

ID JMP GOEXEC start program
; numeric (hex) entry comes here
NUM ASIA AS LA position digit

ASLA ASIA to left
STA TEMP
LDX #U h bits to move
LDY MODE AD or DA?
BNE ADDR branch if AD mode
DEC DIGIT time to step?
BPL SAME no, skip

IF JSR INCPT yes, step
INC DIGIT ^.and restore
INC DIGIT ..digit count

SAME LDA (POINTL),Y get data
DADA ASL TEMP move a bit..

ROL A ' . .into data
STA (POINTL),Y
DEX
BNE DADA last bit?
BEQ LP1 yes, exit

ADDR ASL A move bits
ROL POINTL into address
ROL POINTH
DEX
BNE ADDR
BEQ LP1

j increment address for browsing
IF UP JSR INCPT

TAX
BPL LP1

end

OH.50 —

117

DIRECTORY Jim Butierfield

enough for most program

Ever thought about the best way to organize your programs on tape?
I used to call the first program on each tape number 01, the next 02, etc.
Mostly I was afraid of forgetting the ID number and having trouble reading
it in. Program DIRECTORY (below) fixes up that part of the problem and
liberates you to choose a better numbering scheme.

You've got 25̂ program IDs to choose from
libraries with some to spare.

So every program and data file would carry a unique number ... and if
you've forgotten what's on a given tape, just run DIRECTORY and get all the
IDs.

Another thing that's handy to know is the starting address (SA) of a
program, expecially if you want to copy it to another tape,. (Ending add-
resses are easy ... just load the program, then look at the contents of
17ED and 17EE). Well, DIRECTORY shows starting addresses, too.

The program is fully relocatable, so put it anywhere convenient.
Start at the first instruction (0000 in the listing). Incidentally, 0001
to 001D of this program are functionally identical to the KIM monitor l88C
to 18C1.

After you start the program, start your audio tape input. When DI-
RECTORY finds a program, it will display the Start Address (first four
digits) and the Program ID. Hit any key and it will scan for the next
program.

0000
0001
0003
0006
0009
OOOB
GOOD
OOOF
0011
0013
0016
0018
001A
001C
001E
0020
0023
0025
0026
0028
002B
002D

D8
A9
"̂ D
20
k6
05
85
C9
DO
20
C6
10
C9
DO
A2
20
95
E8
30
20
DO
FO

07
k2
kl
F9
F9
F9
16
F3
2k
F9
F5
2A
Fl
FD
F3
FC

F8
IF
D3
F9

17
1A

1A

19

IF

GO CLD
LDA #$07
STA SBD

SYN JSR RDBIT
LSR INK
ORA INK
STA INH

TST CMP #Sl6
BNE SYN
JSR RDCHT
DEC INH
BPL TST
CMP #S2A
BNE TST
LDX #3FD

RD JSR RDBYT
STA POINTH+1
INX
BMI RD

SHOW JSR SCANDS
BNE GO
BEQ SHOW

Directional reg

Scan thru bits...
..shifting new bit
..into left of
..byte INH
SYNC character? -
no, back to bits
get a character
count 22 SYNC's

then test astk
..or SYNC
if asterisk,
stack 3 bytes

,X into display
area ^

..«and shine
until keyed
at's all folks

118

by Jim Butterfield

How long does it take you to load a full IK of KIM-1
memory? Over two minutes? And if you're going for
memory expansion, how long will it take you to load
your 8K? Twenty minutes ?

Hold onto your hats . Program HYPERTAPE ! will write
fully compatible tapes in a fraction of the time.
You can load a full IK in 21 seconds.

Fully compatible means this: once you've written
a tape using HYPERTAPE! you can read it back in using
the normal KIM-1 program (starting at 1873 as usual).
And the utilities and daagnostic programs work on this
super-compressed data (e.g., DIRECTORY and VUTAPE).

*

You'll need some memory space for the program, of course.
If you have memory expansion, there'll be no problem
finding space, of course. But if you're on the basic
KIM-1, as I am, you'll have to "squeeze in" HYPERTAPE!
along with the programs you're dumping to tape. I try
to leave page 1 alone usually (the stack can overwrite
your program due to bugs); so I stage HYPERTAPE! in
that area. For the convenience of relocation, the
listing underlines those addresses that will need
changing. There are also four values needed in page zero
which you may change to any convenient location.

For those interested in the theory of the thing, I
should^piention: HYPERTAPE! is not the limit. If you
wished to abandon KIM-1 monitor compatibility, you
could continue to speed up tape by a factor of 4 or 5
times more. Can you imagine reading IK in four seconds?
For the moment, however, HYPERTAPE! is plenty fast for me,

;this program also included in Super-dupe
0100 A9 AD DUMP LDA #$AD
0102 8D EC 17 STA VEB
0105 20 32 19 JSR INTVEB set up sub
0108 A9 27 LDA #$27
010A 85 F5 STA GANG flag for SBD
010C A9 BF LDA #$BF
01OE 8D 43 17 STA PBDD ,
0111 A2 64 LDX #$64
0113 A9 16 LDA #$16
0115 20 J61 01 JSR HIC
0118 A9 2A LDA #$2A
011A 20 88 01 JSR OUTCHT
011D AD F9 17 LDA ID
0120 20 JTJLjQl JSR OUTBT
0123 AD F5 17 LDA SAL

119

0126 20 6D 01
0129 AD F6 17
012C 20 fLILJll
012F 20 EC 17
0132 20 6D 01
0135 20 EA 19
0138 AD ED 17
013B CD F7 17
013E AD EE 17
0141 ED F8 17
0144 90 E9
0146 A9 2F
0148 20 88 01
014B AD E7 17
014E 20 7JLJU
0151 AD E8 17
0154 20 70 01
0157 A2 02
0159 A9 04
015B 20 61 01
015E 4C 5C 18

0161 86 Fl
0163 48
0164 20 88 01
0167 68
0168 C6 Fl
016A DO F7
016C 60
016D 20 4C 19
0170 48 >
0171 4A
0172 4A
0173 4 A
0174 4A
0175 20 1D__OJL
0178 68
0179 20 7D 01
017C 60

017D 29 OF
017F C9 OA
0181 18
0182 30 02
0184 69 07
0186 69 30
0188 AO 07
018A 84 F2
018C AO 02
018E 84 F3
0190 BE BE 01
0193 48 "

JSR OUTBTC
LDA SAH
JSR OUTBTC

DUMPT4 JSR VEB
JSR OUTBTC
JSR INCVEB
LDA VEB+1
CMP EAL
LDA VEB +2
SBC EAR
BCC DUMPT4
LDA #$2F
JSR OUTCHT
LDA CHKL
JSR OUTBT
LDA CHKH

EXIT JSR OUTBT
LDX #$02
LDA #$04
JSR HIC
JMP DISPZ

Subroutines
HIC STX TIC
HIC1 PHA

JSR OUTCHT
PLA
DEC TIC
BNE HIC1
RTS

OUTBTC JSR CHKT
OUTBT PHA

LSR A
LSR A
LSR A
LSR A
JSR HEXOUT
PLA
JSR HEXOUT
RTS

*

HEXOUT AND #$OF
CMP #$OA
CLC
BMI HEX1
ADC #$07

HEX! ADC #$30
OUTCHT LDY #$07

STY COUNT
TRY LDY #$02

STY TRIE
ZON LDX NPUL,Y

PHA

120

0194
0197
0199
019C
019F
01A1
01A3
01A6
01A8
01A9
01AB
01 AC
01AE
01BO
01B2
01B3
01B5
01B7
01B9
01BB
01BD

2C 47 17
10 FB
B9 ££_J)1
8D 44 17
A5 F5
49 80
8D 42 17
85 F5
CA
DO E9
68
C6 F3
FO 05
30 07
4A
90 DB
AO 00
FO D7
C6 F2
10 CF
60

01BE 02
01BF C3 03 7E

ZON1 BIT CLKRDI
BPL ZON1
LDA TIMG,Y
STA CLK1T
LDA GANG
EOR t$80
STA SBD
STA GANG
DEX
BNE ZON1
PLA
DEC TRIE
BEQ SETZ
BMI ROUT
LSR A
BCC ZON

SETZ LDY #0 «
BEQ ZON

ROUT DEC COUNT
BPL TRY
RTS

;frequency/density controls
NPUL .BYTE $02
TIMG .BYTE $C3,$03,$7E

***** Hex Dump - Hypertape *****

0100-
0110-
0120-
0130-
0140-
0150-
0160-
0170-
0180-
0190-
01A0-
01B0-
01C0-

A9
17
20
EC
17
01
18
48
0A
BE
F5
30
03

AD
A2
70
17
ED
AD
86
4A
18
BE
49
07
7E

8D
64
01
20
F8
E8
Fl
4A
30
01
80
4A

EC
A9
AD
6D
17
17
48
4A
02
48
8D
90

17
16
F5
01
90
20
20
4A
69
2C
42
DB

20
20
17
20
E9
70
88
20
07
47
17
A0

32
61
20
EA
A9
01
01
7D
69
17
85
00

19
01
6D
19
2F
A2
68
01
30
10
F5
F0

A9
A9
01
AD
20
02
C6
68
A0
FB
CA
D7

27
2A
AD
ED
88
A9
Fl
20
07
B9
D0
C6

85
20
F6
17
01
04
D0
7D
84
EF
E9
F2

F5
88
17
CD
AD
20
F7
01
F2
01
68
10

A9
01
20
F7
E7
61
60
60
A0
8D
C6
CF

EF
AD
6D
17
17
01
20
29
02
44
F3
60

8D
F9
01
AD
20
4C
4C
0F
84
17
F0
02

43
17
20
EE
70
5C
19
C9
F3
A5
05
C3

Thanks go to Julien Dube for his help in staging early
versions of HYPERTAPE!

121

MEMORY TEST Jim
Butt«rfi«ld

Testing RAM isn't just a question of storing a value and
then checking it. It's important to test for interference
between locations. Such tests often involve writing to one
location and then checking all other locations to see they
haven't been disturbed; this can be time consuming.

This nropram checks memory thoroughly and runs exceptionally
fast. It is adapted from an algorithm by Knai?uk and Hartmann
published in 'IEEE Transactions on Computers', Anril 1977.

The program first puts value FF in every location under test.
Then it puts 00 in every third location, after which it tests
all locations for correctness. The test is repeated twice more
with the positions of the 00's changed each time. Finally,
the whole thing is repeated with the FF and 00 values interchanged.

To run; Set the addresses of the first and last memory pages
you wish to test into locations 0000 and 0001 respectively.
Start the program at address 0002j it will halt with a memory
address on the display. If no faults were found, the address
will be one location past the last address tested. If a fault
is found, its address will be displayed. ^

Example: To test 0100 to 02FF (pages 01 and 02) in KIM:
Set 0000 to 01, 0001 to 02, start program at 0002. If memory
is good, see 0300 (-02FF + 1). Now if you try testing
0100 to 16FF (0000-01,0001-16) the piflgram will halt at
the first bad location - this will be OhOO if you haven't
added memory.

0000 xx
0001 xx
0002 A9 00
OOOU A8
0005 85 FA
0007 85 70
0009 A2 02
OOOB 86 72
GOOD A5 00
OOOF 85 FB
0011 A6 01
0013 A5 70
0015 U9 FF
0017 85 71
0019 91 FA
001B C8
001C DO FB
001E E6 FB
0020 EU FB
0022 BO F5

BEGIN
END
START

BIGLP

PASS

CLEAR

xx star tii
xx ending
LDA #0 zei
TAY fo:
STA POINTL ad«
STA FLAG -(
LDX #2
STX MOD ŝ
LDA BEGIN se"
STA POINTH ..!
LDX END
LDA FLAG
EOR #$FF re-
STA FLIP
STA (POINTL). Y
INI
BNE CLEAR
INC POINTH
CPX POINTH
BCS CLEAR

zero pointers
for low-order
addresses;
-00 first pass, -FF second pass

3 tests each pass
set pointer to..

rt of test area

reverse FLAG
FF first pass. -00 second pass

write above FLIP value..
..into all locations

122

0021* A6 72
0026 A5 00
0028 85 FB
002A A5 70
002C CA
002D 10 Ok
002F A2 02
0031 91 FA
0033 C8
003lj DO F6
0036 E6 FB
0038 A5 01
003A C5 FB
003C BO EC

003E A5 00
OOkO 85 FB
0014? A6 72
0014*4 A5 71
00146 CA
0014? 10 014
00li9 A2 02
0014B A5 70
0014D Dl FA
OOUF DO 15
0051 C8
0052 DO FO
00514 E6 FB
0056 A5 01
0058 C5 FB
005A BO E8

FILL
TOP

SKIP

j mer

POP

SLIP

, FLIP value in all locations - now change 1 in 3
LDX MOD
LDA BEGIN set pointer..

..back to startSTA POINTH
LDA FIAG
DEX
BPL SKIP
LDX #2
STA (POINTL),Y
INY
BNE TOP
IMG POINTH
LDA END
CMP POINTH
BCS FILL

change value

skip 2 out of 3
restore 3-counter

change 1 out of

new page
have we passed..
..end of test area?
nope, keep going

memory set up - now test it
set pointer..
..back to start
set ur> 3-counter
test for FLIP value..

..2 out of 3 times..
- or -

1 out of 3..
test for FLAG value;

Here's the test...
branch if failed

LDA BEGIN
STA POINTH
LDX MOD
LDA FLIP
DEX
BPL SLIPLDX n
LDA FLAG
CMP (POINTL),Y
BNE OTTT
INT.
BNE POP
INC POINTH
LDA END
CMP POINTH

005C C6 72
005E 10 AD
0060 A5 70
0062 h9 FF
00614 30 A1
0066 8h FA
0068 kc UF ic

BCS POP
above test OK - cHffnge & repeat

DEC MOD
BPL PASS
LDA FLAG
EOR

OUT
BUT BIGLP
STY POINTL
JMP START

change 1/3 position
..& do next third

invert..
..flag for pass two

put low order adds to display
...and exit to KIM

006B

***** Hex Dump - Memory Test *****

0000 00 00 A9 00 A8 85 FA 85 70 A2 02 86 72 A5 00 85
0010 FB A6 01 A5 70 49 FF 85 71 91 FA C8 DO FB E6 FB
0020 E4 FB BO F5 A6 72 A5 00 85 FB A5 70 CA 10 04 A2
0030 02 91 FA C8 DO F6 E6 FB A5 01 C5 FB BO EC A5 00
0040 85 FB A6 72 A5 71 CA 10 04 A2 02 A5 70 Dl FA DO
0050 15 C8 DO FO E6 FB A5 01 C5 FB BO E8 C6 72 10 AD
0060 A5 70 49 FF 30 Al 84 FA 4C 4F 1C

123

MINI DIS By Dan Lewart

One day I was single-stepping through a program and not
being too alert, I kept going after the program ended.
Then I noticed I was going through instructions not in any
OP-code table. What was being executed? With a little
luck I found that many nonexistent codes would duplicate
others with only one bit changed. I haven't looked into
it very deeply, but here are two examples: 17 is the same
as 16 (ASL-Z, PAGE) and FF is the same as FE (INC ABS,X).

By single-stepping I could determine the number of bytes
in all instructionsft ThiSiworked for all instructions except
for ̂ 2,12,22732,42,^2,62,7*2,92,62^2 and F2 , which
blank the display. After filling in the Bytes per Instruction
table many patterns became obvious. For example, the
op-code ending with digits 8 and A could be summarized as
having a bit pattern of xxxxlOxO, where "x" means don't
care. This covers all possibilities and when a number of
this form is ANDed with 00001101 (mask all the x bits) the
result will be 00001000. By doing this for all 0 (illegal),
1 and 3 byte instructions and having the 2 byte instructions
"whatever's left over" I had the basis of my semi-disassembler.
The only odd byte length is that of 20 (JSR) which "should"
be only 1 byte long.

Though this is not a full disassembler, it has helped me to
write several programs, including itself. To relocate the
program change locations 374-6, 379-B and 38E-390 to jump
to the appropriate locations. If you have a program in page
1 or don't want to write on the stack, change 397 and 39A
to EA (NOP).

To run the program, store 00 in 17FA and 03 in 17FB. Go
to the beginning of your program and press "ST" . You will
then see the first instruction displayed. If it is illegal, the
location and opcode will flash on and off. In that case, press
"RS" . To display the next instruction press 'JJ^FTo display
the current address and opcode press "@&', at anytime. To
backstep press '$& $ When you have backstepped to the
beginning of your program, or changed locations 397 and 39A,
pressing "B" acts like "PC".

0300
0301
0303
0304
0306
0308
030A
030B
030D

D8
A2 FF
9A
AO 00
A2 09
94 E5
CA
DO FB
E8

START

INIT

INIT1

SED
LDX tt$FF
TXS
LDY #$00
LDX #$09
STY OOE5,X
DEX
BNE INIT1
I NX

INITIALIZE STACK
POINTER
(E&-EE)=0

124

030E Bl FA
0310 C9 20
0312 FO 3B
0314 29 9F
0316 FO 35
0318 C9 92
031A FO 1A
031C A8
031D 29 ID
031F C9 19
0321 FO 2C
0323 29 OD
0325 C9 08
0327 FO 24
0329 29 OC
032B C9 OC
032D FO 20
032F 98
0330 29 8F
0332 C9 02
0334 DO 18
0336 E6 EC
0338 A9 FF
033A 8D 07 17
033D A5 EC
033F 29 01
0341 FO 03
0343 20 19 IF
0346 2C 07 17
0349 30 EB
034B 10 FO
034D E8
034E E8
03 4F 8A
0350 49 07
0352 85 ED
0354 A4 EE
0356 Bl FA
0358 48
0359 4A 4A
035B 4A 4A
035D A8
035E B9 E7 IF
0361 95 E5
0363 E8
0364 68
0365 29 OF
0367 A8
0368 B9 E7 IF
036B 95 E5
036D E8
036E E6 EE
0370 E4 ED
0372 90 EO
0374 20 AF 03
0377 DO FB
0379 20 AF 03

LENGTH LDA (POINTL),Y
CMP#$20
BEQ 3BYTE '
AND #$9F
BEQ 1BYTE
CMP #$92
BEQ FLASH
TAY
AND #$1D
CMP #$19
BEQ 3BYTE
AND 34 OD
CMP #$08
BEQ 1BYTE
AND #$OC
CMP #$OC
BEQ 3BYTE
TYA
AND #$8F
CMP #$02
BNE 2 BYTE

FLASH INC OOEC
LDA #$FF
STA 1707

FLASH 1 LDA OOEC
AND #$01
BEQ FLASH2
JSR SCAND

FLASH2 BIT 1707
BMI FLASH
BPL FLASH 1

1BYTE INX
2 BYTE INX

GET OPCODE, FIND LENGTH
ANALYZE BIT PATTERNS
%00 100000 ; 3 BYTES
"X" MEANS DON'T CARE
%OXXOOOOO ; 1 BYTE (20)

%1XX10010 ; ILLEGAL (B2,D2)
STORE TEMPORARILY

%XXX110X1 ; 3 BYTES (59, B9)

%XXXXXOXO ; 1 BYTE (D8,4A)

%XXXX11XX ; 3 BYTES (4C,EE)
RESTORE

%OXXX0010 ; ILLEGAL (22,52)
ALL LEFTOVERS ; 2 BYTES
FLIP BIT 0
LOOP FOR 1/4 SEC.

BLINK ON OR OFF

BIT 0=0 ; BLINK OFF
BIT 0=1 ; BLINK ON

3 BYTE TXA CENTER CODE
EOR #$07
STA O.OED

CONVRT LDY # $EE LOOP FOR EACH BYTE
LDA (POINTL) ,Y CONVERT AND STORE
PHA IN E6 - EB
LSR's
LSR's
TAY
LDA TABLE, Y
STA OOE5,X
INX
PLA
AND #$OF
TAY
LDA TABLE, Y
STA O O E 5 , X
INX
INC OOEE
CPX OOED
BCC CONVRT

K DOWN JSR DISP
BNE K DOWN

K UP JSR DISP

DISPLAY UNTIL ALL KEYS
ARE UP

DISPLAY AND GET KEY
125

037C
037F
0381
0383
0384
0386
0388
0389
038B
038C
038E
0391
0393
0395
0397
0398
039 A
039B
039E
03AO
03A2
03A4
03A6
03A8
03AB
03AD
03AF
03B1
03B4
03B6
03B8
03BA
03BD
03CO
03C1
03C3
03C5

20
C9
DO
BA
EO
FO
68
85
68
85
4C
C9
DO
A5
48
A5
48
20
C6
FO
DO
C9
DO
20
FO
DO
A9
8D
A2
AO
84
B9
20
C8
CO
90
4C

6A
OP
OE

FF
20

FB

FA
04

<#=
OF
FA

FB

63
EE
EC
F7
I*
Dl
19
CC
F9
7F
41
08
00
FC
E6
4E

06
F3
3D

IF

03

IF

IF

17

00
IF

IF

STEP 1

PC?

WINDOW

DISP

DISP 1

IS "- PRESSED?
NO, BRANCH
PUSH FA AND FB

JSR GETKEY ——
B? C M P # $ O B IS "B" PRESSED?

BNE PLUS? NO, BRANCH
BCKSTP TSX

CPX#$FF IS STACK EMPTY?
BEO WINDOW YES, ACT LIKE "PC"
PLA PULL FB AND FA
STA OOFB DISPLAY WORD
PLA
STA OOFA ^

NEWORD JMP INIT
PLUS? CMP #$<Bf1

BNE PC?
STEP LDA OOFA

PHA
LDA OOFB
PHA
JSR INCPT
DEC OOEE
BEQ NEWORD
BNE STEP 1
CMP #$14
BNE K UP
JSR SCAND
BEQ K UP
BNE WINDOW
LDA #$7F
STA PADD
LDX #$08
LDY #$00
STY OOFC
LDA OOE6,Y
JSR 1F4E
I NY
CPY #$06
BCC DISP1
JMP 1F3D

FIND NEW LOCATION
DISPLAY WORD

IS *\£ PRESSED?
NO, GET KEY
DISPLAY LOCATION
UNTIL KEY RELEASED
THEN GET KEY
SEGMENTS TO OUTPUT

INITIALIZE

GET CHARACTER
DISPLAY CHARACTER

NEXT CHARACTER

DONE, KEY DOWN?

***** HEX DUMP - MINI DIS *****

0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03AO
03BO
03CO

D8 A2
C9 20
19 FO
29 8F
01 FO
49 07
IF 95
E4 ED
OB DO
03 C9
FO EC
7F 8D
C8 CO

FF 9A AO
FO 3B 29
2C 29 OD
C9 02 DO
03 20 19
85 ED A4
E5 E8 68
90 EO 20
OE BA EO
12 DO OF
DO F7 C9
41 17 A2

00 A2
9F FO
C9 08
18 E6
IF 2C
EE Bl
29 OF
AF 03
FF
A5

FO
FA

14 DO
08 AO

06 90 F3 4C 3D

09 94
35 C9
FO 24
EC A9
07 17
FA 48
A8 B9
DO FB
20 68
48 A5
Dl 20
00 84
IF

E5 CA
92 FO
29 OC
FF 8D
30 EB
4A 4A
E7 IF
20 AF
85 FB
FB 48
19 IF

DO FB
1A A8
C9 OC
07 17
10 FO
4A 4A
95 E5
03 20
68 85
20 63
FO CC

FC B9 E6 00

E8 Bl FA
29 ID C9
FO 20 98
A5 EC 29
E8 E8 8A
A8 B9 E7
E8 E6 EE
6A IF C9
FA 4C 04
IF C6 EE
DO F9 A9
20 4E IF

126

MOVIT By Lew Edwards

ANOTHER move program? This one moves anything anywhere!
No limit to number of bytes, or locations in memory, or
overlapping of source and destination. Use it to lift sections
of code from other programs, close in or open up gaps for
altering programs, moving programs to another location (use
Butter-field's RELOCATE to take care of the branch and address
correction). Locate it wherever you have the^room .-

Use is straight forward. Old start address goes in D0,l ;
old end address in D2,3; new start address in D4,5 before
running the program which starts at 1780, or wherever you
want to have it in your system. Program uses zero page
locations DO thru D9 to do the job.

1780
1781
1783
1784
1786
1788
USA
178C
178E
1790
1791
1793
1795
1797
1799
179B
179D
179F
17A1
17A2
17A4
17A6
17A8
17AA
17AC
17AE
17BO
17B2
17B4
17B6
17B8
17B9
17BB

D8
AO FF
38
A5 D2
E5 DO
85 D8
A5 D3
E5 Dl
85 D9
18
A5 D8
65 D4
85 D6
A5 D9
65 D5
85 D7
E6 D8
E6 D9
38
A5 D4
E5 DO
A5 D5
E5 Dl
A2 00
90 02
A2 02
Al DO
81 D4
90 14
C6 D2
98
45 D2
DO 02

START

LOOP

MOVE

CLD
LDY
SEC
LDA DEAL
SBC OSAL
STA BCL
LDA OEAH
SBC OSAH
STA BCH
CLC
LDA BCL
ADC NSAL
STA NEAL
LDA BCH
ADC NSAH
STA NEAH
INC BCL
INC BCH
SEC
LDA NSAL
SBC OSAL
LDA NSAH
SBC OSAH •
LDX #$00
BCC MOVE
LDX #$02
LDA OSAL,X
STA NSAL,X
BCC DOWN
DEC OEAL
TYA
EOR OEAL
BNE NO

STORE TEST VALUE

HOW MANY BYTES?
TO MOVE?

ADD THE COUNT TO
THE NEW START TO
GET A NEW END

ADJUST THE BYTE COUNT
TO PERMIT ZERO TESTING

IF NEW LOCATION
HIGHER THAN OLD
CARRY FLAG IS SET

HIGH POINTER INDEX

LOW POINTER INDEX
MOVE OLD
TO NEW

ADJUST UP POINTER, COLD)
BELOW ZERO?

NO, ENOUGH

127

i

17BD
17BF
17C1
17C2
17C4
17C6
17C8
17CA
17CC
17CE
17DO
17D2
17D4
17D6
17D8
17DA
17DC
17DE

C6 D3
C6 D6
98
45 D6
DO 02
C6 D7
BO OC
E6 DO
DO 02
E6 Dl
E6 D4
DO 02
E6 D5
C6 D8
DO 02
C6 D9
DO CC
00

NOT

NEIN
DOWN

NYET

COUNT

ONE
DONE

DEC OEAH
DEC NEAL
TYA
EOR NEAL
BNE NEIN
DEC NEAH
BCS COUNT
INC OSAL
BNE NYET
INC OSAH
INC NSAL
BNE COUNT
INC NSAH
DEC BCL
BNE ONE
DEC BCH
BNE LOOP
BRK

YES, ADJUST THE HIGH BYTE
ADJUST THE OTHER ONE (NEW)

NEED HIGH BYTE ADJUSTED?
NO
YES, DO IT

ADJUST "OLD" DOWN POINTER
*>

AND THE HIGH BYTE IF NEEDED
AND THE "NEW" ONE

TICK OFF THE BYTES,
ENOUGH FINGERS?
USE THE OTHER HAND
'TIL THEY'RE ALL DONE
& BACK TO MONITOR

P.S. Don't forget to set the IRQ vector for the break
(KIM - 1COO at 17FE,FF)

***** Hex Dump - Movit *****

1780 D8 AO FF 38 A5 D2 E5 DO 85 D8 A5 D3 E5 Dl 85 D9
1790 18 A5 D8 65 D4 85 D6 A5 D9 65 D5 85 D7 E6 D8 E6
17AO D9 38 A5 D4 E5 DO A5 D5 E5 Dl A2 00 90 02 A2 02
17BO Al DO 81 D4 90 14 C6 D2 98 45 D2 DO 02 C6 D3 C6
17CO D6 98 45 D6 DO 02 C6 D7 BO OC E6 DO DO 02 E6 Dl
17DO E6 D4 DO 02 E6 D5 C6 D8 DO 02 C6 D9 DO CC 00

Addition: The last address filled can be displayed after the
program is complete by adding the following code:

(1) 85 FA between instructions now at 1795 and 1797
(2) 85 FB between instructions now at 179B and 179D
(3) replace the break at the end with 4C 4F 1C

Use Movit to move itself to another location and then again
to open up the necessary spaces!

128

Lewis Edwards, Jr.

Having trouble loading from tape, especially on "HYPERTAPE"? Suspect
the PLL adjustment might be off, but were afraid to adjust it, or didn't
have a meter or scope handy? Use this program and KIM's built in hardware
to make the adjustment. Hold the tip of the plug you plug into the tape
recorder's earphone jack to applications pin #14 and adjust the control
for O's or combinations of 7's and L's on the display. "L" means the PLL
TEST line is low and "7" means it's high. The program generates a signal
that alternates slightly below and slightly above theone generated by KIM
at 1A6B. The regular tape input channel is utilized and decoded to con-
trol the display.

1780
1782
1785
1787
178A
178C
178E
1791
1793
1795
1798
179A
179C
179F
17A2
17A5
17A7
17A9
17AB
17AD
17AF
17B1
17B2
17B5
17B7
17B9
17BB
17BE
17BF
17CO
17C2
17C4

A9
8D
A9
8D85
A9
8D
A2
AO
2C
30
AO
8c
8E
2C
10
E6
30
A9
DO
A9
EA
8D
A9
45
85
8D
E8
E8
EO
DO
FO

07
42
01
01
El
7F
41
09
07
42
02
38
40
42
47
FB
E2
04
91
03
93
44
01
El
El
00

15
CF
CB

17

17

17

17

17
17
17

17

17

BEGN

MORE

SEGS

DELA

HITO

LOTO

CLK1

IDA #07
STA SBD
LDA #01
STA PAD
STA El
LDA #7F
STA PADD
LDX #09
LDY #07
BIT SBD
BMI SEGS
LDY #38
STY SAD
STX SBD
BIT CLKRDI
BPL DELA
INC E2
BMI LOTO
LDA #91
BNE CLK1
LDA #93
NOP
STA CLK1T
LDA #01
EOR El
STA El
STA PAO
INX
INX
CPX #15
BNE NEXT
BEQ MORE

Set the input

and output ports

Initialize the toggle

Open display channels
Start with the first
digit Light top & right
if PLL output
is high
otherwise left & bottom
Turn on the segments
and the digit
Half cycle done?
No, wait for time up
Count the cycles
128 % cycles, send low tone
128 % cycles, send hi tone

Equalize the branches
Set the clock

Flip the toggle register

Toggle the output port

Next display digit
Last one?
No, do next
Yes, do more

1780 A9 07 8D 42 17 A9 01 8D 01 17 85 El A9 7F 8D 41
1790 17 A2 09 AO 07 2C 42 17 30 02 AO 38 8C 40 17 8E
17AO 42 17 2C 47 17 10 FB E6 E2 30 04 A9 91 DO 03 A9
17BO 93 EA 8D 44 17 A9 01 45 El 85 El 8D 00 17 E8 E8
17CO EO 15 DO CF FO CB

129

RELOCATE Jim Butterfield

Ever long for an assembler? Remember when you wrote that 300 byte
program - and discovered that you'd forgotten one vital instruction in the
middle? And to make room, you'd have to change all those branches, all
those addresses... Or the program with that neat piece of coding in it, thr •
you suddenly need to remove (say, to change it to a subroutine)...but if
you do, you'll have to fill all that empty space with NOPs? It's enough
to make a grown programmer cry...

Dry those tears. Program RELOCATE will fix up all those addresses
and branches for you, whether you're opening out a program to fit in an
extra instruction, closing up space you don't need, or just moving the whole
thing someplace else.

RELOCATE doesn't move the data. It just fixes up the addresses before
you make the move. It won't touch zero page addresses; you'll want them
to stay the same. And be careful: it won't warn you if a branch instruc-
tion goes out of range.

You'll have to give RELOCATE a lot of information about your program:

(1) Where your program starts. This is the first instruction in
your whole program (including the part that doesn't move).
RELOCATE has to look through your whole program, instruction
by instruction, correcting addresses and branches where neces-
sary. Be "sure your program is a continuous series of instruc-
tions (don't mix data in; RELOCATE will take a data value of
10 as a BPL instruction and try to correct the branch address),
and place a dud instruction (FF) behind your last program in-
struction. This tells RELOCATE where to stop.

Place the program start address in locations EA and EB, low
order first as usual. Don't forget the FF behind the last
instruction; it doesn't matter if you temporarily wipe out a
byte of data - you can always put it back later.

(2) Where relocation starts, this is the first address in your
program that you want to move. If you're moving the whole
program, it will be the same as the program start address,
above. This address is called the boundary.

Place the boundary address in locations EC and ED, low order
first.

(3) How far you will want to relocate information above the bound-
ary. This value is called the increment. For example, if you
want to open up three more locations in your program, the in-
crement will be 0003. If you want to close up four addresses,
the increment will be FFFC (effectively, a negative number).

Place the increment value in locations E8 and E9, low order
first.

130

A page limit, above which relocation should be disabled. For
example, if you're working on a program in the 0200 to 03FF
range, your program might also address a timer or I/O regist-
ers, and might call subroutines in the monitor. You don't
want these addresses relocated, even though they are above the
boundary! So your page limit would be 17, since these addresses
are all over 1700.

On the other hand, if you have memory expansion and your program
is at address 2000 and up, your page limit will need to be much
higher. You'd normally set the page limit to FF, the highest
page in memory.

Place the page limit in location E7.

Now you're ready to go. Set RELOCATE's start address, hit go - and
ZAP!-your addresses are fixed up.

After the run, it's a good idea to check the address now in OOEA and
OOEB - it should point at the FF at the end of your program, confirming
that the run went OK.

Now you can move the program. If you have lots of memory to spare,
you can write a general MOVE program and link it in to RELOCATE, so as to
do the whole job in one shot.

But if, like me, you're memory-deprived, you'll likely want to run
RELOCATE first, and then load in a little dustom-written program to do
the actual moving. The program will vary depending on which way you want
to move, how far, and how much memory is to be moved. In a pinch, you can
use the FF option of the cassette input program to move your program.

Last note: the program terminates with a. BRK instruction. Be sure
your interrupt vector (at 17FE and 17FF) is set to KIM address 1COO so
that you get a valid "halt".

RELOCATE Jim Butterfield

OOE?
OOE8
OOEA
OOEC

0110 D8
0111 AO 00
0113 Bl EA
0115 A8
0116 A2 07
0118 98
0119 3D 8E 01
011C 5D 95 01
011F FO 03

=+!
=+2

; following addresses must be initialized
; by user prior to run
PAGLIM
ADJST
POINT
BOUND
; main program starts here
START CLD

limit above which kill relocn
adjustment distance (signed)
start of program
lower boundary for adjustment

LDY #0
LDA (POINT),Y
TAY
LDX #7

LOOP TYA
AND TAB1-1.X
EOR TAB2-1.X
BEQ FOUND

131

get op code
+cache in Y

restore op code
remove unwanted bits
& test the rest

0121 CA
0122 DO F4
012*f BC 9D 01
012? 30 OD
0129 FO 22
012B E6 EA
012D DO 02
012F E6 EB
0131 88
0132 DO F?
013̂ FO DA

0136 c8
0137 30 D9
0139 C8
013A Bl EA
013C AA
0130 C8
013E Bl EA
OUtO 20 ?9 01
01̂ 3 91 EA
01̂ 5 88
01̂ 6 8A
OlU? 91 EA
01̂ 9 AO 03
Ol̂ B 10 DE

Ol̂ D C8
Ol̂ E A6 EA
0150 A5 EB
0152 20 79 01
0155 86 EO
0157 A2 FF
0159 Bl EA
015B 18
015C 69 02
015E 30 01
0160 E8
0161 86 E3
0163 18
016̂ 65 EA
0166 AA
016? A5 E3
0169 65 EB
016B 20 79 01
016E CA
016F CA
0170 8A
0171 38
0172 E5 EO
017̂ 91 EA
0176 c8
0177 10 B2

DEX
BNE LOOP

FOUND LDY TAB3,X
BMI TRIP
BEQ BRAN

SKIP INC POINT
BNE INEX
INC POINT+1

INEX DEY
BNE SKIP
BEQ START

; length 3 or illegal
TRIP INY

BMI START+2
INY
IDA (POINT) ,Y
TAX
INY
IDA (POINT) ,Y
JSR ADJUST
STA (POINT) ,Y
DEY
TXA
STA (POINT) ,Y
LDY #3
BPL SKIP

; branch: check "to" and
BRAN INY

LDX POINT
IDA POINT+1
JSR ADJUST
STX ALOC
LDX #$FF
IDA (POINT) ,Y
CLC
ADC #2
BMI OVER
INX

OVER STX LIMIT
CLC
ADC POINT
TAX
IDA LIMIT
ADC POINT+1
JSR ADJUST
DEX-
DEX
TXA
SEC
SBC ALOC
STA (POINT),Y
INY
BPL SKIP

on to the next test
...if any
length or flag
triple length?
branch?
mving right along..
..to next op code

illegal/end to BRK halt
set Y to 1
lo-order operand
...into X reg
Y=2
hi-order operand
change address, maybe
...and put it back
Y=l

...also hi-order
Y=3

"from" address
Y=l
"from" addrs lo-order
...Be hi-order
change, maybe
save lo-order only
flag for "back" branches
get relative branch

adjust the offset
backwards branch?
nope

calculate "to" lo-order
...and put in X
00 or FF
"to" hi-order
change, maybe
readjust the offset

recalculate relative branch
and re-insert
Y=2

132

0179 C5 E7
01?B BO 11
01?D C5 ED
01?F DO 02
0181 E*f EC
0183 90 09
0185 8̂
0186 8A
0187 18
0188 65 E8
018A AA
018B 68
Ol8c 65 E9
018E 60

018F OC IF OD
0192 87 IF FF
0195 03
0196 OC 19 08
0199 00 10 20
019C 03
019D 02 FF FF
01AO 01 01 00
01A3 FF FE

; examine address and adjust, maybe
ADJUST CMP PAGLIM

BCS OUT
CMP BOUND+1
BNE TES2
CPX BOUND

TES2 BCC OUT
PHA
TXA
CLC
ADC ADJUST
TAX
PLA
ADC ADJST+1

OUT RTS
; tables for op-code indentification
TAB1 .BYTE $OC,8lF,«OD,$87,SlF,$FF,$03

too high?

hi-order?
lo-order?
too low?
stack hi-order

adjust lo-order

unstack hi-order
and adjust

TAB2 .BYTE

TAB3 .BYTE

end

*OC,$19,$08,$00,$10,$20,$03

f02,$FF,$FF,$01,$01,$00,$FF,$FE

Credit for the concept of RELOCATE goes to Stan Ockers, who insisted
that it was badly needed, and maintained despite my misgivings that it
should be quite straightforward to program. He was right on both counts.

***** Hex Dump - Relocate *****

0110-
0120-
0130-
0140-
0150-
0160-
0170-
0180-
0190-
01A0-

0
D8
03
EB
20
A5
E8
8A
02
IF
01

\
A0
CA
88
79
EB
86
38
E4
0D
01

2
00
D0
D0
01
20
E3
E5
EC
87
00

i
Bl
F4
F7
91
79
18
E0
90
IF
FF

EA
BC
F0
EA
01
65
91
09
FF
FE

8̂
9D
DA
88
86
EA
EA
48
03

u
A2
01
C8
8A
£0
AA
C8
8A
0C

7
07
30
30
91
A2
AS
10
18
19

•%
98
0D
D9
EA
FF
E3
E2
65
08

<f
3D
F0
C8
A0
Bl
65
C5
E8
00

A
8E
22
Bl
03
EA
EB
E7
AA
10

£
01
E6
EA
10
18
20
B0
68
20

c
5D
EA
AA
DE
69
79
1 1
65
03

£
95
D0
C8
C8
02
01
C5
E9
02

01 F0
02 E6
Bl .EA
A6 EA
30 01
CA CA
ED D0
60 0C
FF FF

133

USING PROGRAM RELOCATE - an example. Jim Butterfield

Program RELOCATE is important, and powerful. But it takes
a little getting used to. Let's run through an example.
Follow along on your KIM, if you like.
Suppose we'd like to change program LUNAR LANDER.
When you run out of fuel on the lander, you get no
special indication, except that you start falling
very quickly. Let's say we want to make this minor
change i if you run out of fuel, the display flips
^over to Fuel mode, so that the pilot will see immediately.
Digging through the program reveals two things: (i) you
go to fuel mode by storing 00 into MODE (address El);
and, (ii) the out-of-fuel part of the program is located
at 02̂ C to 0257. So if we can insert a program to store
zero in mode as part of our out-of-fuel, we should have

.accomplished our goal. Closer inspection reveals that
we can accomplish this "by inserting 85 El (STA MODE)
right behind the LDA instruction at 02̂ -C.
Let's do it.
First, we must store value FF behind the last instruction
of our program. So put FF into address 02CC. That wipes
out the value ^5> but we'll put it back later.
Now, we put our program start address (0200) into addresses
EA and EB. Low order first, so 00 goes into address OOEA
and 02 goes into OOEB.
Next, the part that we want to move. Since we want to
insert a new instruction at address 02̂ -E, we must move
the program up at this point to make space. In goes
the address, low order first: Ê into address OOEC and
02 into address OOED.
The page limit should be set to 17, since we don't want
the addresses of the KIM subroutines to be changed
(SCANDS, GETKEY, etc.). So put 17 into address OOE7-
Finally, how far do we want to move the program to make
room? Two bytes, of course. Put 02 and 00 into
addresses OOE8 and OOE9 respectively.
We're ready to go. Be sure your vectors have been set
properly (at addresses 17FA to 17FF). Then set address
0110, the start address of RELOCATE, and press GO.
The display will stop showing 011̂ EA, confirming that
RELOCATE ran properly. Now check to see the whole program
was properly converted by looking at the addresses OOEA-B.
We put address 0200 there, remember? Now we'll see
address 02CC stored there - the address of the value FF
we stored to signal end of program.
Go back to 02CC, where we stored FF, and restore the
original value of ^5-

134

We've completed part I. The addresses have been corrected
for the move. Let's go on to part II and actually move
the program fo make room.
My favorite method is to use a tiny program to do the
move itself. For moving 1 to 256 bytes to a higher address ,
I use the program: BD xx 9D tt tt CA D0 F? 00.

In the above, nn is the number of bytes to be moved, and
$xxx and tttt are the from and to addresses of the data,
minus one. Since we want to move about 160 bytes from
a block starting at 02̂ -E to a block starting at 0250,
we code like this: ̂ ̂ gD ̂ Q2 ̂ ̂ Q2 CA ̂ F? 00.

This little program can be fitted in anywhere. Let's
put it in memory starting at address 00̂ 0. The final
byte, value 00, should end up in OO^B. Now back to
00̂ -0, hit GO ... and your data/program is moved over.
(The tiny program should stop showing address OO^D) .
There's nothing left to do but actually put the extra
instruction (85 El) into the program at 02̂ -E and 02̂ -F.
Now run the program. Try deliberately running out of
fuel and see if the display flips over to fuel mode
automatically when you run out.
If you have followed the above successfully with your
KIM, it all seems very easy. It's hard to realize that
program RELOCATE has done so much work. But if you
check, you'll find the following addresses have been
automatically changed:

0203 02̂ -B 0256/8 0263/5 0265/7 02A5/7
Do you think that you'd have caught every one of
those addresses if you'd tried to do the job manually?

135

SORT by Jim Pollock

This program will take any given block of data and
arrange it in numerical sequence, whether the data is
hex or BCD, or both. Since the program uses relative
branch addressing, it can be located anywhere in memory
without modification.

The instruction that determines whether data is arranged
in ascending or descending order is 01 IF, (B O -
descending order, 90 - ascending order).

This is a bubble sort. The top item is compared with
succeeding items and if a larger number is found, they
are swapped. The larger item (now at the top) is then
used for comparisons as the process continues through
the list. After one complete pass, the largest number
will have "bubbled" to the top. The whole process is
repeated using the second item to start, then again
starting with the third item. Eventually the whole list
will be sorted in sequence.

17F5
17F6
17F7
17F8

0200
0203
0205
0207
020A
020C
020E
0211
0213
0216
0218
02 1A
02 IB
021D
021F
0221
0223

AD
85
85
AD
85
85
AD
85
AD
85
A2
D8
Al
Cl
BO
Al
85

F5
E8
EA
F6
E9
EB
F7
EC
F8
ED
00

E8
EA
OC
E8
E7

17

17

17

17

START LO
START HIGH
END LO
END HI (NOTE: ENDING ADDRESS is ONE PAST LAST ITEM)
SORT LDA 17F5

STA OOE8
STA OOEA
LDA 17F6
STA OOE9
STA OOEB
LDA 17F7
STA OOEC
LDA 17F8
STA OOED
LDX tt$00
CLD

GET LDA (OOE8,X)
CMP (OOEA,X)
BCS INCN

SWAP LDA (OOE8,X)
STA OOE7

TRANSFER START POINTER
TO ZERO PAGE

TRANSFER END POINTER

INDEX TO ZERO (STAYS THERE)

GET DATA INDIRECT OOE8
GREATER THAN INDIR. OOEA?
NO, INCR. POINTER OOEA
SWAP DATA IN POINTER
LOCATIONS

136

0225
0227
0229
022B
022D
022F
0231
0233
0235
0237
0239
023B
023D
023F
0241
0243
0245
0247
0249
024B
024D
024F
0251
0253
0255
0257
0259
025B

Al EA
81 E8
A5 E7
81 EA
E6 EA
DO 02
E6 EB
A5 EA
C5 EC
DO E2
A5 ED
C5 EB
DO DC
E6 E8
DO 02
E6 E9
A5 E8
85 EA
A5 E9
85 EB
A5 EA
C5 EC
DO C8
A5 E9
85 EB
C5 ED
DO CO
4C 4F 1C

LDA COOEA,X)
STA COOES,/)
LDA OOE7
STA (OOEA,X)

INCN INC OOEA
BNE LASTN
INC OOEB

LASTN LDA OOEA
CMP OOEC
BNE GET
LDA 00ED
CMP OOEB
BNE GET
INC OOE8
BNE OVER
INC OOE9

OVER LDA OOE8
STA OOEA
LDA OOE9
STA OOEB
LDA OOEA
CMP OOEC
BNE GET
LDA OOE9
STA OOEB
CMP OOED
BNE GET
JMP 1C4F

SET UP NEXT COMPARISON
NO PAGE CHANGE
PAGE CHANGE
CK FOR LAST ITEM IN PASS

NOT YET
IS THIS LAST PASS/LOOP?

NO

NO PAGE CHANGE
PAGE CHANGE
INIT. VALUE FOR NEXT PASS

LAST ITEM IN LIST?

NO, NOT YET

LAST PAGE?
NO
BACK TO KIM, DONE

***** Hex Dump - Sort *****

0200 AD F5 17 85 E8 85 EA AD F6 17 85 E9 85 EB AD F7
0210 17 85 EC AD F8 17 85 ED A2 00 D8 Al E8 Cl EA BO
0220 OC Al E8 85 E7 Al EA 81 E8 A5 E7 81 EA E6 EA DO
0230 02 E6 EB A5 EA C5 EC DO E2 A5 ED C5 EB DO DC E6
0240 E8 DO 02 E6 E9 A5 E8 85 EA A5 E9 85 EB A5 EA C5
0250 EC DO C8 A5 E9 85 EB C5 ED DO CO 4C 4F 1C

137

SUPSR-DUPS
by Jim Butterfield

SUPER-DUPE is handy: it lets you duplicate a complete tape
containing many programs in jig time. SUPER-DUPE is
versatile: it will write various tape densities, from
regular to Hypertape . SUPER-DUPE is multi-purpose: if you
don't want to duplicate programs, you can use it for
cataloguing tapes, or for writing Hypertape.

The maximum size program that SUPER-DUPE can copy is
dependent on the amount of memory of the KIM system. The
basic IK system can copy programs up to 512 bytes long.

For duplicating tape, it's useful to have two tape
recorders: one for reading the old tape, one for writing
the new. They are connected in the usual way, at TAPE IN
and TAPE OUT. Pause controls are handy.

SUPER-DUPE starts at address 0000. Hit GO and start the
input tape. When a program has been read from the input
tape, the display will light, showing the start address of
the program and its ID. If you don't want to copy this
program, hit 0. Otherwise, stop the input tape; start the
output tape (on RECORD) ; then hit 1 for Hypertape , 6 for
regular tape, or any intermediate number. The output tape
will be written; upon completion, the display will light
showing 0000 A2. Stop the output tape. Now hit GO to copy
the next program.

SUPER-DUPE contains a Hypertape writing program which can
be used independently; this starts at address 0100.

Basically, SUPER-DUPE saves you the work of setting up the
SA, EA, and ID for each program, and the trouble of
arranging the Hypertape writer into a part of memory
suitable for each program.

0000 A2 03
0002 B5 E2
0004 95 EO
0006 CA
0007 10 F9
0009 A9 00
OOOB 85 F6
OOOD 85 F7
OOOF D8
0010 A9 07
0012 8D 42 17
0015 20 41 1A
0018 4& F9
001A 05 F9

START LDX #3
LOOP LDA POINT2,X

STA POINT, X
DEX
BPL LOOP
LDA #0
STA CHKSUM
STA CHKKI
CLD
LDA #7
STA SBD

SW JSR RDBIT
LSR INK
ORA INH

138

001C 85
001E C9
0020 DO
0022 20
0025 C6
0027 10
0029 C9
002B DO
002D 20
0030 85
0032 A2
0034 20
0037 95
0039 20
003C E8
003D 30
003F A2
0041 20
0044 C9
0046 FO
0048 20
004B DO
004D CA
004E DO
0050 81
0052 20
0055 E6
0057 DO
0059 E6
005B DO
005D 20
0060 C5
0062 DO
0064 20
0067 C5
0069 DO
006B 20
006E FO
0070 20
0073 85
0075 OA
0076 FO
0078 8D
007B 65
007D 8D
0080 A9
0082 85
0084 A9
0086 8D
0089 A2
008B A9

F9
16 TST
F3
24 1A
F9
F5
2A
Fl
F3 19
F9
FE
F3 19 ADDR
FC
91 IF

F5
02 BYTE
24 1A DUBL
2F
15
00 1A
1C

Fl
EO
91 IF
EO
02
El
E2 OVER
F3 19 WIND
F7
05
F3 19
F6
95 ELNK
IF IF FLSH
FB
6A IF
P5

88
BE 01
F5
CO 01
27
F5
BF
43 17
64
16

STA INK
CMP #$16 sync?
BNE SYN
JSR RDCHT
DEC INK
BPL TST
CMP #$2A
BNE TST
JSR RDBYT
STA INK
LDX #$FE neg 2
JSR RDBYT
STA POINTH+1, X
JSR CHK
INX
BMI ADDR
LDX #2
JSR RDCHT
CMP #$2F eot?
BEQ WIND
JSR PACKT
BNE ELNK error?
DEX
BNE DUBL
STA (POINT, X)
JSR CHK
INC POINT
BNE OVER
INC POINT+1
BNE BYTE
JSR RDBYT
CMP CHKHI
BNE ELNK error?
JSR RDBYT
CMP CHKSUM
BNE START (or 65?)
JSR SCANDS
BEQ FLSH display SA,ID
JSR GETKEY
STA GANG
ASL A
BEQ START
STA NPUL
ADC GANG
STA TIMG+1
LDA #$27 register mask
STA GANG
LDA #$BF
STA PBDD
LDX #$64
LDA #$16 sync

139

008D A2
008F A9
0091 20
0094 A9
0096 20
0099 A5
009B 20
009E A5
OOAO 20
OOA3 A5
OOA5 20
OOA8 AO
OOAA Bl
OOAC 20
OOAF E6
OOB1 DO
OOB3 E6
OOB5 A5
OOB7 C5
OOB9 A5
OOBB E5
OOBD 90
OOBF A9
OOC1 20
OOC4 A5
OOC6 20
OOC9 A5
OOCB 4C

64
16
61 01
2A
88 01
F9
70 01
FA
70 01
FB
70 01
00
E2
70 01
E2
02
E3
E2
EO
E3
El
E9
2F
88 01
F7
70 01
F6
54 01

DATA

SAMP

LDX
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDY
LDA
JSR
INC
BNE
INC
LDA
CMP
LDA
SBC
BCC
LDA
JSR
LDA
JSR
LDA
JMP

#$64
#$16
HIC
#$2A
OUTCHT
INK
OUTBT
POINTL
OUTBT
POINTH
OUTBT
#0
(POINT2)
OUTBT
POINT2
SAMP
POINT2+1
POINT2
POINT
POINT2+1
POINT+1
DATA
#$2F
OUTCHT
CHKHI
OUTBT
CHKSUM
EXIT

send 100
sync

start char

write ID

start adds

write data

next addrs

more data?
eot

checksum

OODO 4C 29 19

OOE2 00 02 00 02

JMP LOADT9 FFFF option

data area; set as desired

****** Hex Dump Super - Dupe ******

0000-
0010-
0020-
0030-
0040-
0050-
0060-
0070-
0080-
0090-
00A0-
03B0-
00C0-
00D0-
00E0-

A2
A9
D0
85
02
81
C5
20
F5
16
20
E2
2F
4C

03
07
F3
F9
20
E0
F7
6A
8D
20
70
D0
20
29

B5
8D
20
A2
24
20
D0
IF
C0
61
01
02
88
19
00

E2
42
24
FE
1A
91
05
C9
01
01
A5
E6
01

02

95
17
1A
20
C9
IF
20
07
A9
A9
FB
E3
A5

00

E0
20
C6
F3
2F
E6
F3
B0
27
2A
20
A5
F7

02

CA
41
F9
19
F0
E0
19
F4
85
20
70
E2
20

10
1A
10
95
15
D0
C5
85
F5
88
01
C5
70

F9
46
F5
FC
20
02
F6
F5
A9
01
A0
E0
01

A9
F9
C9
20
00
E6
D0
0A
BF
A5
00
A5
A5

00
05
2A
91
1A
El
95
F0
8D
F9
Bl
E3
F6

85
F9
00
IF
D0
D0
20
84
43
20
E2
E5
4C

F6
85
Fl
E8
1C
E2
IF
8D
17
70
20
El
54

85
F9
20
30
CA
20
IF
BE
A2
01
70
90
01

F7
C9
F3
F5
D0
F3
F0
01
64
A5
01
E9
FF

D8
16
19
A2
Fl
19
FB
65
A9
FA
E6
A9
EA

REMEMBER: You must also include HYPERTAPE! (page 119).

140

VERIFY TAPf 1
James Van Ornum

Do you want to verify the cassette tape you just recorded before the
information is lost? Then follow this simple procedure:

1. Manually verify that the starting address ($1?F5, 8l?F6), the
ending address ($17*7, $1?F8) and the block identification
(S17F9) locations are correct in memory.

2. Enter zeros (800) into CHKL ($1?E7) and CHKH ($17E8).

3. Enter the following routine:

17EC CD 00 00
17EF DO 03
17F1 IfC OF 19

kC 29 19

VEB cmp START
bne failed
jmp LOAD12

failed jmp LOADT9

Rewind the tape, enter address 8l88C, press GO and playback
the tape. If the tape compares, the LEDs will come back on
with address $0000. If there is a discrepancy between memory
and the tape, the LEDs will come on with address 8FFFF.

VU-TAPf Jim Butterfield

Program VUTAPE lets you actually see the contents of a KIM format
tape as it's going by. It shows the data going by very quickly, because
of the tape speed..but you can at least "sense" the kind of material on
the tape.

In case of tape troubles, this should give you a hint as to the area
of your problem: nothing? noise? dropouts? And you can prepare a test
tape (see below) to check out the tape quality and your recorder. The
test tape will also help you establish the best settings for your volume
and tone controls.

Perhaps VUTAPE1s most useful function, though, is to give you a
"feeling" for how data is stored on tape. You can actually watch the
processor trying to synchronize into the bit stream. Once it's synohed,
you'll see the characters rolling off the tape...until an END or illegal
character drops you back into the sync mode again. It's educational to
watch» And since the program is fairly short, you should be able to trace
out just how the processor tracks the input tape.

VUTAPE starts at location 0000 and is fully relocatable (so you can
load it anyplace it fits).

141

KIM UTILITY: VUTAPE

0000
0001
0005
0006
0008
OOOA
OOOD
0010
0012
0014
0016
0019
001B
001D
0020
0022
0024
0026
0029
002C
002F
0031
0033
0034
0035
0037
0039
003B
003D
0040
oo4i
0044
0047

D8
A9
8D
A9
85
8D
20
46
05
85
8D
C9
DO
20
C9
DO
A9
8D
20
20
DO
A6
E8
E8
EO
DO
A2
86
8E
AA
BD
8D
DO

7F
41
13
EO
42
41
F9
F9
F9
4o
16
E9
24
2A
F5
00
E9
24
00
D5
EO

15
02
09
EO
42

E7
40
DB

17

17
1A

17

1A

17
1A
1A

17

IF
17

START

SYN

TST

STREAM

-OVER

CLD
LDA #87F
STA PADD
LDA #$13
STA POINT
STA SBD
JSR RDBIT
LSR INH
ORA INH
STA INH
STA SAD
CMP #816
BNE SYN
JSR RDCHT
CMP #82A
BNE TST
LDA #800
STA SAVX
JSR RDCHT
JSR PACKT
BNE SYN
LDX POINT
INX
INX
CPX #815
BNE OVER
LDX #809
STX POINT
STX SBD
TAX
LDA TABLE,X
STA SAD
BNE STREAM

set display dir reg
..window 6 and tape in
and keep pointer

get a bit and
..slip it into
..the right-hand
..side:
show bit flow on display
..is it a SYNC?
nope, keep 'em rolling
yup, start grabbing
..8 bits at a time and..
..if it's not an "*"..
..then start showing
..characters 1 at a time

..converting to hexadec..

..if legal

Move along to next..
..display position
(If last digit,..
..reset to first)

change character read
..to segments and..
send to the display
unconditional jump

Checking Out Tapes/Recorders

Make a test tape containing an endless stream of SYNC characters
with the following program:

0050
0052
0055
0057
005A

AO BF
8c 43 17
A9 16
20 7A 19
DO F9

GO

LP

LDY #8BF
STY PBOD
LDA #816
JST DUTCH
BNE LP

directional..
...registers
SYNC
...out to tape

Now use the program VUTAPE. The display should show a steady
synchronization pattern consisting of segments b,c, and e on the right
hand LED. Try playing with your controls and see over what range the
pattern stays locked in. The wider the range, the better your cassette/
recorder.

142

1

EXPANDING YOIIK KIA\

EXPANDING YOUR KIM

Games and diversions using the keyboard and display are fine.
Programming in assembly language can even be a lot of fun,
once you get over the first few hurdles . But, sooner or later
you are going to get the urge to have your KIM act like the
"big machines". What do you have to add on? How much will
it cost? How much trouble is it going to be? Let's look at
a few of the options and you can decide for yourself.

Memory Expansion

If you only had more memory, you could do anything, right?
Well, not exactly, but let's see what's involved in adding
memory.

Computer buffs abreviate a thousand memory locations, more
or less, with the letter K. Your KIM-1 has a IK block of RAM
and 2K of ROM. Provision is also built into the KIM-1 for
easily adding an additional 4K of memory.

4K Expansion
If you want to add only 4K of memory, it's not especially
difficult. An article in Kilobaud #4, (April '77), gives
instructions for adding one of the lower priced 4K RAM kits.
It is primarily a matter of connecting wires between the
exoansion connector on your KIM and the new board. Depending
on the size of your present power supply, an additional supply
may be required for the new board.

Further Expansion
%

Adding more than 4K of memory is a bit more difficult. Part
of the problem has to do with address decoding. The expansion
connector is essentially an extension of the main arteries of
the computer, the address and data busses. These carry signals
between the CPU and memory. The data bus carries information
to or from a me mory location specified by the address bus.

The "Central Processing Unit1" (CPU), on the KIM has the
potential of addressing 64K however, so you can see that we
have barely begun to scratch the surface.

Decoding

The complete address bus isn't available to each memory chip
because there are just too many lines and not enough pins on
the chips. Instead , there is some extra circuitry which looks

144

1
at the entire address bus and determines which block,
(usually IK blocks), of memory should be allowed to function.
This is called decoding circuitry. Sub-addressing within
blocks is handled by the lower address lines which are
connected to all chips.

Decoding sufficient to select one of four IK blocks already
exists on the KIM and is brought out to the expansion connector.
If you add more than 4K of memory, additional decoding will
be required. Usually this is built into the memory board.

Buffering

If you start adding too many chips to the address and data
busses, the extra circuits begin to "load down" the bus and
cause it to not function prooerly. Additional boards are
sometimes isolated from the main busses with circuits
called "buffers" which prevent this from happening. Some
memory boards have buffers built in.

I

Another problem you should be aware of has to do with how fast
the CPU runs and how fast memory chips respond. Some CPU's
have a wait state so that if the memory is a little slow in
responding to entry or retrevial of information, the CPU can
wait for it. The 6502 processor in KIM doesn't have this
feature. This means that the memory used has to be fast enough
to work with the processor. G

What Board ?

We see then that memory expansion can get a little complicated
Further details are given in sections 3 .2 and 6.1 of the Kirn
User's Manual. Perhaps the easiest way to get around these
problems is to buy an assembled board made especially for the
KIM. All decoding, buffering etc. should already have been
taken care of in this case.

If you build from a kit, there are many solder connections that
are very close to each other; it's easy to make mistakes. Kit
or assembled board however, you should follow the instructions
of someone who has already done it.

What does it cost?

Here's the good part! Memory prices have been dropping and
are continuing to drop. Recently boards have been coming out
using 4K memory chips which have more bits per chip than the
older IK RAM. This reduces the cost further, especially on
boards having a lot of memory.

145

Any price quoted would soon be out of date and the price per
byte depends heavily on the size of board you buy. A quick
scan th rough a recent hobbyist publication should give you a
rough idea of what to expect.

How Much Do You Need ?

It depends primarily on what you want to do. Quite a bit
can be done with just the IK on the basic KIM-1. Even if you
add a terminal, this IK should be adequate for small games etc.
written in assembly language. If you want to use a lot of
text or go to a higher level language like Basic, you will have
to expand. Exactly how much you need to expand depends on how
elaborate your software is.

Motherboards

If you want to add more than just one board to the expansion
connector of your KIM, you should start thinking in terms of
a motherboard. A motherboard is a group of sockets connected
in parallel. Buffering is also usually provided so the extra
boards don't load the busses.

If you buy a motherboard specifically for the KIM-1, it will
also have provision for letting KIM know when one of its boards
is being addressed. This is so the decoding present on the
KIM will be disengaged and not conflict with decoding on the
expansion boards.

"Standard" Busses

The largest number of boards made for hobbyist use have a 100 pin
configuration that plugs into the so-called "S-100" bus. MOS
Technology also makes a motherboard for KIM with yet another
bus. It should be possible to hook the KIM to motherboards
made for other 8 bit machines too. One group is getting together
an expansion board for KIM based on the standard 44 pin connector.

Once you decide on a particular motherboard, you are pretty
much locked in to buying or building boards whose pins match
those in the sockets of the motherboard.

"S-100" Bus

The S-100 bus derives from the Altair^motherboard. Presumably,
any board which works in an Altair then should work in any other
S-100 machine. Unfortunately, that has not always been the case.
The S-100 bus is popular though and already a couple manufacturers
have advertised S-100 motherboards meant to be attached to the
KIM. Because of the competition, S-100 boards sometimes give
a cost advantage. This is especially true in the case of memory
boards where competition is fierce.

NOTE: Altair is a trademark of MITS, Inc.
146

A Caution

No matter what bus you decide on, you are going to need
programs written for KIM to drive certain boards you might
plug in. Unless there is a program for that particular board,
written for KIM, you are in for a lot of work.

The Serial Port

It's not necessary that all expansion take place along the
data and address busses of your KIM. There is another
entrance/exit for information - the serial ports. The serial
I/O, (Input and Output), ports also have the advantage that
most of the required software already exists in the ROM of KIM.
For example, to output a character, it is only necessary to
put that character in the accumulator and jump to the subroutine
OUTCH (1EAO). The character then comes spewing out the serial
output port, bit by bit.

ASCII

The code that is used in this process is the "American Standard
Code for Information Interchange", or ASCII for short. The
hardware connection is also standardized and is made of two
20 milliamp current loops. The device to be connected to KIM
should be set up for these standards. Connections are made
as shown starting on page 17 of the Kim User's Manual.

The Teletype^

The serial ports were obviously set up with a particular
machine in mind, the Teletype. The problem is that a new
Teletype will cost over $1000 and used ones aren't much cheaper.

Baudot Machines

Older model Teletypes and some other makes of teleprinters go
for $25 on up. The difference? These are Baudot machines.
Where the modern Teletype uses a 8 bit (8 level) code to
represent ASCII characters, the older machines use a 5 bit
(5 level) code called Baudot. A good place to find out what
is available etc. is a series of three articles appearing in
the April, May and June '77 issues of Byte magazine.

Teleprinters are noisey, smelly and slow. What's more, the
interface of a Baudot machine to your KIM is far from a trivial
problem. Why then even bother with the teleprinter? One reason
it's great to have a hardcopy of your program, a piece of paper
you can sit down and take a pencil to when something goes wrong.

Video Terminals

Also easily connected through the serial port are stand alone
video terminals. These units contain a cathode ray T.V. tube,

i <
*H

H

147
Teletype is a trademark of Teletype Corp.

(CRT), keyboard and all necessary guts to display a large
number of lines of characters on the screen at once. Common
are 12 or 24 lines of 80 characters each. With 80 characters,
a full 72 character Teletype line can be duplicated, making
the unit indeed a "Glass Teletype".

Fewer Characters - Lower Price

The price of most video terminals is still up around $1000 even
in kit form. One way to reduce the cost is to reduce the number
of characters and display the results on an ordinary T.V. set.
16 lines of 32 or 64 characters are common.

This type of unit can be purchased as a video board alone or
along with a keyboard in a nice case. If purchased seperately,
you will also need a serial interface board.

Serial/Parallel Conversion

Remember that we had planned to use the serial I/O ports on KIM.
The video board or the keyboard is more than likely hooked up
to input or output in bytes, (parallel input or output). A whole
byte appears on 8 seperate pins along with a timing pulse, called
a strobe, on yet another pin. The strobe is used to indicate when
data is valid. We have to convert this type of input or output to
the sequential bit by bit information required by the serial port.

Luckily, there are chips designed especially to do this. They
are called UART's and are found on serial interface boards.
One such board was described in issue #1 of Kilobaud, (Jan. '77).

Wha>to look for

Video boards vary considerably in the features they offer.
The simplist boards begin writing characters in the upper left
of the screen and continue on down the page. When the end of
the last line is reached, they return to the upper left corner
and start over. The only control you might have is a "home"
signal which returns you to the starting point. Any carriage
returns, linefeed etc. have to be taken care of by a program which
is keeping track of exactly where you are.

A better scheme is to have a cursor which is usually a flashing
or solid white square located where the next character will
appear. In more advanced units, you can move this cursor around
under software (or hardware) control. That way, it's easy to
back up and go over any mistakes.

Another handy feature is scrolling. When you reach the end of
the last line on the screen, it's a little confusing to have

148

the next line start at the top. Instead, some boards automatically
push every line up to make room for the incoming line, (the top
line goes off the screen).

Blank to end-of-line and blank to end-of-screen features are
necessary to keep from having a lot of unwanted characters left
on the screen. Be sure to check to find out exactly what features
are included on the board you are buying. If you can, find
someone who has a similar board up and running.

Back To The Busses

It's not manditory that a video board work off the serial ports.
There are boards made to plug into most "standard" motherboards.
These work off the data and address busses directly. In many
cases, they include memory to hold the characters which looks
just like any other memory to the processor. This has the
advantage that any character can be changed instantaneously.
A board like this is undoubtedly going to require software to keep
things organized and you'll have to provide programs written
especially for KIM.

Hardware vs Software

With the prices of memory continuing to drop, it's becoming
cheaper to replace many hardware functions with software. In
the case of video, you can use software not only to keep track
of what characters go where; you can also use it to generate
most of the display itself. This tends to reduce the cost
considerably.

Using this fact, Don Lancaster describes a T.V. Typewritter
addition to the KIM for $25-$35, (Kilobaud #6, June '77 or
Popular Electronics, July '77 and August '77). But a word of
caution. You'll have to "chop up" your KIM a bit to implement
this-^the project involves cutting a piece of KIM's printed
circurTfoil, plus wiring in a whole bunch of new wires. And
while the changes don't affect KIM's operation, you have to
recognize that memory expansion becomes a different ball game
Don uses the addresses from 2000 to EFFF, and that means
that you can't just add on extra memory in those areas.

Dedicating the processor to running the display in this manner
also means that it is going to have to "steal" time from this
job to run your programs. This can slow things up a bit.

Keyboards

The keyboard also doesn't have to come into the serial port.
Some video boards have a keyboard port built in. Another
possibility is the parallel I/O ports on the KIM itself. Again,
you'll have to provide the necessary software, but it would
save you from having to buy a serial interface board.

149

If you are thinking of running both the keyboard and video board
off the parallel ports of KIM, you should add up the total number
of lines you need. By the time you include all necessary strobe
lines, you will probably find you don't have enough ports available,

Hooking To Your T.V.

When you hook a video board to a T.V. set, make sure that the
T.V. has a transformer which isolates the set from the A.C.
line. 110 volts can ruin a lot of chips in a hurry!

There are two ways of putting the video signal in the T.V.
If you want to go into the antenna terminals, you will need a
board which generates a regular T.V. frequency signal with
the video signal being imposed upon it. Kits are available
for $10 - $15.

A method less susceptible to interference problems is to go
directly into the video amplifier of the set. A T.V. repair
shop should be able to handle this if you can't. About the
simplest circuit was given in July '76 Byte, p. 38. Another
appeared in Kilobaud #7, (July '77 p. 30). Kits are available
to make this type of conversion also.

Video Monitors

A video monitor is like a T.V. set without the ability to pick
up channels. It just takes a standard video signal (like
the one coming from a video board) and puts it on the screen.
Because they have a larger bandwidth than the normal T.V. set,
they can display more information without the characters getting
fuzzy.

Costs

At the present time, (Summer '77), you can expect to pay $150 -
$250 for a video board, $50 - $150 for a keyboard and over $300
for the combination in a box along with a serial interface.
Most of the serial interface is in the UART chip which sells
for about $10. Kits may be available for about $25 - $50.
Motherboards run $100 - $150 and a video monitor will cost
around $150 - $200.

Graphics

If you want to use your KIM for simulating video games on a
T . V . , you should be thinking in terms of a graphics board.
The graphics boards that are used with T.V. sets generate many
tiny white rectangles, squares or dot patterns on the screen,
these can be individually turned on or off at will. Some video
boards meant to display characters also have limited graphics
capability.

150

Printers

There are a number of printers on the market which use many
small solenoids to form dot patterns through a typewritter
ribbon onto paper. These dot patterns form characters faster
than can be done with a typewritter or teleprinter. Some use
adding machine paper and others, a standard size sheet. Prices
run from $250 on up.

Also available are printers which use a specially sensitized
paper and print using a thermal process.

Floppy Disks

Once you start reading in programs which require 4K or more of
memory, you are going to find the cassette interface on your
KIM a little slow. Even with Hypertape, it will take about
1 1/2 minutes to read in 4K.

There are faster tape units on the market, but the ultimate as
far as the hobbist is now concerned is the "floppy" . The floppy
disk is like a flexable phonograph record coated with iron oxide
as is used on tapes. A read/write head is moved radially outward
from the center to read or write on different "tracks". The main
advantage over tape is the speed at which any block of information
can be located. The information is also put on very compactly
and reading it back takes only a few seconds at most.

The mechanism to do all this is a precision piece of equipment
and quite expensive. Prices are continuing to drop however
as the demand becomes greater. The electronics necessary is
also quite complex, but as with the UART, single chips are now
being made which do most of the job.

Floppies are often used in pairs. One reason for this is to
be able to back up what is stored on a disk. One disk is
simply copied to another. Since each disk may store over 1/4
million bytes, you can see how time consuming this would be
if you tried to read all information into memory and back out
on another disk. Smaller versions of floppies using a 5"
diskette (with less storage capacity) are also available at
somewhat lower prices.

Again, you need not only the floppy drive and controller
(electronics), but also the necessary software written for KIM.
The operating system software that goes with floppies is quite
complex. But then, it's also very powerful.

151

SOFTWARE TO EXPAND YOUR KIM

In addition to building extra devices onto your KIM system,
like teletype, display, or more memory, you can increase the
power of your system with special programs called software.

The name, software, is often misunderstood. Software, strictly
speaking, refers to programs that help you do the job.
They are helping programs, not doing programs. For example,
if you write a program to play a game, that's not software -
it's called an application program, for it actually does something,
But the programs that help your game, such as the Monitor
subroutines that you may call, are software. They don't do the
job, but they sure help.

Most of the extra software that we'll talk about here will
require extra memory to be fitted to your KIM system.

Assemblers

If you've tried writing a program, you may have noticed that
converting your coding into KIM's machine language is quite
a tedious job. For example, you may have written the command
LDA TOTAL to load the accumulator with a zero page quantity
that you have called TOTAL. Before you can enter the program,
you must convert this to the 6502 code: A5 (for LDA from zero page),
63 (the zero page location you have chosen for TOTAL).
Not too hard, perhaps; but you must look up the code and keep
track of the addresses If your program contains dozens of
instructions, this conversion - called hand assembly - can
become quite a chore.

An assembler program will do the conversion for you, quickly,
neatly, and without error. If you have a hard copy printing
device, it will give you a complete printout (called a "listing")
of your program.

A resident assembler works on program data held entirely within
KIM's memory. It's very fast, but it does need lots of memory
to hold all of your program information. Other assemblers work
from data stored on magnetic tape or on floppy disk. They are
slower, since the data must be copied into memory as it's needed,
but allow your programs to be almost unlimited in size.
A cross-assembler will assemble your KIM program on a completely
different machine, such as a Digital Equipment Corporation PDP-11
or a commercial time-sharing processor. Because these other
computers are not so limited in size compared to the KIM, they
can be very powerful.

152

Pis-Assemblers

A disassembler works in reverse from an assembler. If you have
a program in KIM machine language, the disassembler will print
it out in the more easily readable assembly language . Very
handy for investigating a working program, if you don't have
the listing.

For example, if you have coding starting at address 02OF that
reads: CA 10 F8 AD 04 17 85 80 .. . , the disassembler would
print something like this:

02OF CA
0210 10 F8
0212 AD 04 17
0215 85 80

DEX
BPL 02 OA
IDA 1704
STA 0080

As you can see, this is much more readable.

Interpreters (BASIC.FOCAL, etc.)

There are several "high level" languages that are much easier
for writing programs than KIM (6502) machine language.
With the proper software package, KIM can translate these
high level instructions and perform the desired actions.
The translation job takes time, so KIM will run many times slower
than its normal "machine" speed. Programming convenience is
so great, however, that most users don't mind the loss of speed.

Interoreters can take up quite a bit of memory - anywhere from
2K to 16K locations - so you'll have to be fitted with the
appropriate amount of memory expansion. If you hear of an
8K Basic interpreter, you'll know that means 8,000 locations
for the program; and of course you'll need to provide extra
memory to fit your own programs in.

A brief example will show how simple a language like BASIC
can be for programming. To input a number from your keyboard,
and type its square, you need only write:

50 INPUT A receive value "a" from keyboard
60 LET B»A*A "*" means multiplication
70 PRINT "THE SQUARE OF ";A;" IS ";B
80 STOP

See how easy it is? KIM must read each line, character by character,
decide what it means: inputting, calculating, printing or whatever,
and then perform that action. KIM works hard, but you don't .

I J

153

Text Editors

It can be very handy to compose a number of lines of material
such as a letter, a program, or general data; put it into your
KIM system; save it permanently on tape or disk; and then later
recall it and change, insert or delete information.

If you're writing a letter, you can correct mistakes and insert
new thoughts as they occur to you, perhaps even generating
several slightly different versions to mail to various people.
If you have a program, you can correct bugs as you find them
and insert new coding as needed Data files can be kept up
to date.

Text Editors are very important with other software such as
assemblers and interpreters; often, they are built in.

Mathematical Packages

Each memory location in KIM can store a number from 0 to FF
hexadecimal, or 0 to 255 decimal. Ther are no fractions,
and you have to make special arrangement for signed (positive
and negative) numbers. You can link memory locations together
to hold larger numbers; but extremely large numbers and fractions
call for special mathematical techniques to be used. In addition,
KIM gives you only addition and subtraction; you have to work
out multiplication and division for yourself, to say nothing of
more complex functions like square roots and powers.

You can program all this yourself, if you have the time and
the mathematical background. But if you really need to perform
advanced math on your KIM, you'll be better off to obtain
a pre-written mathematical package.

Floating-point on computers means about the same as the term
"Scientific Notation" on calculators. It lets you use fractions
and deal with very large and very small values . In addition,
you'll often get extra functions - powers, roots, logarithms,
and trigonometric functions such as sines and cosines.

Many mathematical functions are often included in large interpreters

154

CONNECTING
TO THE WOKIJI

KIM RUNS THE WORLD OR HOW TO CONNECT YOUR MICROPROCESSOR

TO EXTERNAL DEVICES

By Cass Lewart

Introduction - Calculator versus Computer

Most of you are familiar with the ubiquitous pocket
calculator. From the simple "four-banger" to the most
sophisticated card-programmable, the sequence of ope-
rations is always the same. You enter numbers from
either the keyboard or a program card, depress a few
keys, the calculator "crunches" your input and out
come the processed numbers on the display or printer.

Though a calculator will do a great job of processing
numbers, just try to make it perform a simple trick
of a different kind - e.g., ring a bell after comple-
ting the 150th iteration. No way! A calculator is
a closed system. In general it is not possible to
attach to it external devices not envisioned during
the original design. A microprocessor such as KIM is
quite different in this respect. In fact frequently
its main functions are not to "crunch" numbers but to
receive signals from various sensors such as photocells,
thermostats, switches or pressure transducers, to do
a small amount of processing of these inputs and then
to control devices such as lights, motors, relays
or even to play music.

In this chapter we will try to show you how easy it is
for KIM to perform operations of the type described.
KIM via its input/output ports can receive and transmit
control signals. Its built-in precision quartz crystal
controlled time reference and a built-in interval timer
further simplify various controlling tasks.

KIM Ports - KIM Talks and Listens

KIM has four special memory locations which are used
for input, output and various applications. Great
things happen if you store numbers in these locations!

156

Location

1700

1701

1702

1703

Contents of Application Port A

Data Direction of Port A

Contents of Application Port B

Data Direction of Port B

The data contents locations 1700 and 1702 store the
data transmitted to or from KIM while the data direction
locations 1701 and 1703 determine which port operates
in the input and which in the output mode. These four
special memory locations can be accessed by KIM programs
in the same way as any other location. In addition
the application port A in location 1700 and the appli-
cation port B in location 1702 are also accessible on
connector pins. They represent the physical interface
of KIM. By monitoring the appropriate pins with a volt-
meter one can detect the data stored in memory locations
1700 and 1702 when KIM is in the output mode. By setting
the appropriate pins to ground or to Vcc (+5 Volts) one
can feed data into KIM in the input mode.

As KIM is an 8-bit microprocessor, each of the two
ports A and B actually consists of eight independent
inputs or outputs. Each of the eight bit positions
from 0 through 7 appears on a different connector pin
and is a port in itself. The following are connector
pin assignments for the A and B application ports.
For example PAD represents the 0-th or the least sig-
nificant bit of port A and PA7 the 7-th or the most
significant bit. Pin A-14 means Application connector
(lower left), the 14-th pin counting from the top,
on the upper side of the connector (the lower side
of the connector is designated by letters instead of
numbers).

Connector Pin Assignments

Port Pin

PBO A-9

PB1 A-10

157

Port Pin Port Pin

PA2 A-3 PB2 A-ll

PAS A-2 PB3 A-12

PA4 A-5 PB4 A-13

PAS A-6 PB5 A-16

PA6 A-7 PB6 Not accessible

PA7 A-8 PB7 A-15

To assign any of the above connector pins to either
input or output mode we have to store a "magic"
number in location 1701 to control port A or in
location 1703 to control port B. A "1" stored in
a specific bit position makes the corresponding
port into an output, a "0" into an input. For
example, to assign PA7 to output and PAD through
PA6 to input requires storing 10000000 or SÔ ex ̂ n

location 1701. In the following example although
we deal only with port A, all the remarks apply
equally to the port B.

Example - Burglar Alarm

Let's suppose that we want to design a system under
KIM control such that PAO through PA6 are connected
to seven normally closed burglar alarm switches
while PA7 should control a warning bell. We want
the bell to start ringing as soon as one of the
contacts opens. The bell should keep ringing even
if the contact closes again. We will first describe
the software, or the programming part of the problem,
and then will show you the actual circuit. We assume
that by now you scanned through the KIM software
chapters and are familiar with its basic instruction
set.

158

Burglar Alarm Program

Comments

/Set PAD through PA6 to

(.input and PA7 to output

Set output to 0

Will affect PA7 only

/Read 1700 to find if PAO

4 through PA6 contain all

V'l"s (closed switches)

All are closed, go to OA

/At least one switch open,

Csound alarm

Stay in the loop

Now let's look at the simple circuit to operate our
burglar alarm. We connect PAO through PAS pins directly
to the switches. If a switch is closed then the voltage
at that port is 0 Volts (ground); as soon as the switch
opens, an internal resistor located on the KIM board
"pulls" the port to the positive voltage Vcc of 5 Volts.
All ports except PB7 are equipped with built-in resis-
tors, called "pull-up" resistors connected to Vcc, which
set voltage at a port to VGC when the port is in the
input mode and is not connected to ground. On the output
port PA7 is connected to the base of an amplifying tran-
sistor which drives a relay to operate an alarm bell.
The transistor is necessary because the maximum availa-
ble current of each KIM port is only on the order of
1 mA. This current would not be sufficient to drive
a relay directly.

Loc

00

02

05

07

OA

OD

OF

11

13

15

18

Code

A9 80

8D 01 17

A9 00

8D 00 17

AD 00 17

29 7F

C9 7F

FO F7

A9 80

8D 00 17

4C 13 00

Mnemonic

LDA #80

STA 1701

LDA #00

STA 1700

LDA 1700

AND #7F

CMP #7F

BEQ OA

LDA #80

STA 1700

JMP 0013

159

B U R G L A R A L A R M C I R C U I T

Multiple Drives

Now suppose you want KIM to drive several devices
rather than a single one. For example you may want
to connect a 3 x 3 matrix of LED lights to the A and
B ports to play tic-tac-toe. The simplest way to do
this is by using one of the inexpensive digit driving
ICs, such as 75492 used in many calculator circuits.
Each of these ICs will drive up to 6 lights, relays
or what have you with the simple circuit shown below.
The six 1C outputs act as "sinks", which requires
that you connect one side of your electric load to
the positive battery voltage and the other side to
one of the 1C outputs. When the appropriate port is
"on" current will flow through your load; when the
port is "off", current will stop. The maximum current
through each load is 200 mA.

?

M U L T I P L E K I M I N T E R F A C E

6 +5-dttM.TS /-,-L f +

|N4*»1
-Si

UMIOS

160

AC Control

To go one step further we can show you how KIM can
operate AC devices without relays. However we would
like to caution you that the power line voltage of
110 Volts AC and the low voltages in your KIM do not
mix easily. You may even achieve a non-voluntary
beautiful pyrotechnic display. In other words, if
you are not careful in your soldering techniques
and like to leave a few wires dangling "just in case"
we would recommend that you skip the following
paragraph.

The circuit we show here electrically separates KIM
from the power line by means of a lamp/photocell
interface. The amplified voltage from one of the
KIM ports turns on an incandescent lamp or an LED
which lowers the resistance of a photocell which
then turns on the electronic TRIAC switch. This
simple and inexpensive circuit can easily control
an AC lamp or appliance of up to 600 Watts.

A C I N T E R F A C E

•f-SV
•i«r
$>«*'\p

FROM
75191

** * *(R.S.276-H4o)

_>, TO LIGHT
* OR

RADIO SHACK 176-1080

TO IIOV
OUTLET

161

KIM versus Hardwired Logic

We have showed you how KIM qan control relays, lights
and AC operated devices but these applications hardly
tap KIM's capabilities. With the same methods you
can also switch tracks on a model train layout, control
traffic lights, and keep your fans and air conditioners
going. The beauty of performing such tasks with a com-
puter rather than with hardwired relay logic is that
logical responses and changes in rules can easily be
implemented by changing a few statements in your prog-
ram. A redesign of a hardwired circuit on the other
hand is always difficult, time consuming, frequently
impossible without starting your design from scratch.

D/A and A/D ̂ Converters

So far we have discussed on/off type controls such as
switches or relays which are either open or closed.
However, there are many areas where a proportional
control with "shades of gray" instead of black or white
would be more desirable. For example if you are inte-
rested in electronic music you would like to shape
the electric signals driving your amplifiers and speakers
into sinusoids, triangles and seesaws to mimic various
instruments. Though even with a simple on/off control
you can create sounds, their acoustical range is very
limited. If you connect an audio amplifier to one of
the KIM ports and listen to the sound generated by
the 5 Volt pulses of various length and at various
repetition rates the sound will remind you only of
a variety of buzz saws and not of musical instruments.
The next step therefore is to develop a digital-to-
analog (D/A) interface for your KIM. Such an interface
will, for example, translate an 8-bit binary number
on ports AO through A7 into a voltage proportional
to the numerical value stored in location 1700 (Port A).
A number FFftex stored in 1700 could then generate
2.0,Volts, while 20hex stored in the same location
would generate (32/255) x 2.0 = 0.25 Volts. Though
we will not describe a D/A converter in detail, it
can easily be built with either separate amplifiers
or with specially designed ICs. An example of a rela-
tively inexpensive converter is MC1408L by Motorola.

162

Similarly an analog-to-digital (A/D) converter inter-
face can be used to turn KIM into a measuring instrument
such as a digital voltmeter, thermometer or even a
speech recognizer. Applications of a microprocessor
equipped with D/A and A/D converters are limited only
by your imagination and by your wallet.

Interval Timer

Many applications which interface KIM to the outside
world benefit from the addition of a timer. For
example, you may want the train in a model train
layout to stop for exactly 45 seconds at a station
under seme conditions but for only 30 seconds under
other conditions. For this and other purposes as well,
KIM has a built-in interval timer which can be set to
various multiples of its crystal controlled cycle
time of 1 microsecond (10~6 sec.). By storing a number
K between 1 and FF^QX in one of the special memory
locations listed below we direct the timer to count
a specific number of cycles. The special memory lo-
cations used by the interval timer and the longest
count-down period are as follows«

Location Timer Count

1704

1705

1706

1707

(microseconds)
K x 1

K x 8

K x 64

K x 1024

Max. Period (sec.)
For K = FFhex
0.000255

0.002

0.016

0.26

Location 1707 is also used to sense that the timer
has finished counting. By putting the interval timer
inside a loop the timing can be lengthened to seconds,
minutes and hours. The timer starts counting as soon
as a number between 1 and FFhex ̂ s stored in one of
the above four locations by means of the STA (STore
Accumulator in memory) instruction. When time runs
out the BIT (test BITs in memory with accumulator)
instruction returns a non-positive value from lo-
cation 1707.

163

I

Timer Example

The following short program illustrates the use of
the interval timer. The program will leave the loop
after 5 x 64 = 320 microseconds count is detected
by the BIT instruction. While the timer counts,
other tasks can be performed by KIM.

Mnemonic

LDA #05

STA 1706

Comments

(Start timer by storing

5 in 1706

Perform other tasks

10 2C 07 17

'13 10 FO

15

BIT 1707

BPL 05

Check if timer finished?

If still counting, go to 05

Otherwise continue

How KIM Communicates with its ovn Keyboard and Display

At first glance the KIM keyboard and the LED display
seem to be a hardwired fixed part of the micropro-
cessor and as difficult to access as if they would
belong to a calculator. Fortunately it is not so.
Both the keyboard and the display can be used quite
differently from the way they are used by the KIM
built-in operating system program. You can run the
display and the keyboard under the control of your
own programs to perform all kinds of tricks. For
example, you can program the LEDs to display any
pattern in any digit position which can be made with
the seven LED segments. Similarly the keyboard can
be used as input to various programs with individual
keys performing functions unrelated to their numerical
labels. For example, the "B" key in your program can

164

indicate a "Backward", command, while the "F" key can
mean "Forward". Various game programs shown in other
sections of this book are examples of such applications,

We have tried in this chapter to give you a feeling for
what KIM can do in the way of control applications.
We hope that by now you have gained some appreciation
for KIMs potential.

I]

165

GUIDELINES FOR WRITING KIM PROGRAMS

1. Use of Memory.

—Wherever possible, place your programs in pages 2 and 3 —
addresses 0200 to 03FF. It's handy to keep page zero for
variables - values that change during program run; and
page one is best left alone because the program Stack
uses it. The Stack, by the way, only uses a few locations
- usually. But a small program error can sometimes make
the stack run wild, which would destroy your page one data.

— Your variables (changeable data) should be kept in page zero,
in locations 0000 to OOEE. These addresses are easy to use,
since you can use zero-page addressing modes which save you
time and memory.

2. Program and constants.

—Set UD your programs in the following pattern: first,
the main program (starting at address 0200 or higher);
then your subroutines; and finally your data.
Keep them all fairly close together, so that when you
dump the whole thing to cassette tape it won't take
extra time to write the 'blank spaces in between'.

3. Initial values.

—Don't assume anything about the beginning values in your
registers or in zero page. If you want to be out of
decimal mode (and you usually do), make your first command
a CLD (D8). If you want the accumulator to be zero,
load it with IDA #$00 (A9 00). Every zero page variable
that needs to start at a certain value should be set
to that value by the program. For example, if you
want address 0043 to start out with a value of 7, write
IDA #$07, STA 0043 (A9 07 85 43).

4. General.

—-Make your subroutines simple, with clearly visible entry
and return points. One of the stickiest problems to find
is a subroutine that doesn't return via a RTS command,
but instead jumps straight back to your main coding ...
or a subroutine that you somehow get into without giving
the vital JSR command.

—Avoid super clever programming, such as having the program
change itself. (It can work . .. but if it misbehaves, you
can have a bad time).

5. Remember: Computers are dumber than humans, but smarter
than nTwrrammorethan programmers

167

LIGHTING THE KIM-1 DISPLAY Jim Butterfield

A. SIX-DIGIT HEXADECIMAL.

The easiest way to display six digits of data is to use
the KIM-1 Monitor subroutine SCAND.

Calling JSR SCAND (20 19 IF) will cause the first four digits
to show the address stored in POINTL and POINTH (OOFA and OOFB),
while the last two digits of the display show the contents
of that address.

If you look at the first three lines of subroutine SCAND
(lines 1057 to 1059 on page 25 of the listing), you'll
see how the program 'digs out' the contents of the
address given by POINTL/PQINTH and stores it in location
INH (OOF9). It's neat programming, and worth studying
if you're not completely familiar with the 6502's indirect
addressing operation.

Thus, if you skip these three lines, and call JSR SCANDS
(20 IF IF) you will be displaying , in hexidecimal, the
contents of three locations: POINTH, POINTL , and INH
This, of course, takes six digits.

To recap: SCAND will display four digits of address and
two digits 3& contents. SCANDS will display six digits
of data.

Important: in both cases, the display will be illuminated
for only a few milliseconds. You must call the subroutine
repeatedly in order to obtain a steady display.

B. DRIVING THE BITS OF THE DISPLAY DIRECTLY.

1. Store the value $7F into PADD (1741). This sets the
directional registers .

2. To select each digit of the display, you will want to
store the following values in location SBD (1742):

, z ^ H <• 6 7
Digit 1: $09 i
Digit 2: $OB 0 '
Digit 3: $OD a V * u x

Digit 4: $OF , t> ^ l° ' 1 0 M 1
_ Digit 5: $11
_\ Digit 6: $13r

Note that this can easily be done in a loop, adding two
to the value as you move to the next digit.

O
o |> o \

168

\

Now that you have selected a particular digit, light
the segments you want by storing a 'segment control1

byte into location SAD (1740). The segments will be
lit by setting the appropriate bit to 1 in SAD according
to the following table: 7

Pit: 6
center

i
s

5
upper
left

f
4

lower
left

3
bottom

\
2

lower
right

1
upper
right

il

0
top

•W:
4| \ '

?>
"g"

o

"f

H
"e" "c"

\

"a"

For example, to generate a small letter 't1, we
would store $78 (center, upper left, lower left, bottom)
into SAD. t Q

4. Now that you have picked a digit and lit the appropriate
segments, wait a while. Sit in a delay loop for
about 1/2 millisecond before moving on to the next digit.

THE KIM-1 ALPHABET.

Some letters, like M and W, just won't go onto a 7-segment
display. Some, like E, are only possible in capitals; others,
like T, can only be done in lower case. So here's an
alphabet of possibles:

6 f
\0 l l) | 00f

O O O Q

A
B
C
D
E
F
G
H
I
J
L

0
P

Ŝ

U
Y

- $F7
- $FF
- $B9
- $BF
- $F9
- $F1
- $BD
- $F6
- $86
- $9E
- $B8

- $BF
- $F3

- $ED

- $BE
- $EE

b
c
d

f
g
h
i
J
1
n
0
p
r

t
u
y

- $FC
- $D8
- $DE

- $F1
- $EF
- $F4
- $84
- $9E
- $86
- $D4
- $DC
- $F3
- $DO

- $F8
- $9C
- $EE

minus

1
2
3
4
5
6
7
8
9
0

- $86
- $DB
- $CF
- $E6
- $ED
- $FD
- $87
- $FF
- $EF
- $BF
- $CO

169

The following is reprinted from the KIM-1 User Manual with permission
from MOS Technology.

Interval Timer

1. Capabilities

The KIM-1 Interval Timer allows the user to specify a preset
count of up to 25610 an<^ a clock divide rate of 1, 8, 64, or 1024
by writing to a memory location. As soon as the write occurs,
counting at the specified rate begins. The timer counts down at
the clock frequency divided by the divide rate. The current timer
count may be read at any time. At the user's option, the timer
may be programmed to generate an interrupt when the counter counts
down past zero. When a count of zero is passed, the divide rate
is automatically set to 1 and the counter continues to count down
at the clock rate starting at a count of FF (-1 in two's comple-
ment arithmetic). This allows the user to determine how many clock
cycles have passed since the timer reached a count of zero. Since
the counter never stops, continued counting down will reach 00
again, then FF, and the count will continue.

2» Operation

a. Loading the timer
The divide rate and interrupt option enable/disable are

programmed by decoding the least significant address bits. -The
starting count for the timer is determined by the value written to
that address.

Writing to Address Sets Divide Ratio To Interrupt Capability Is
1704
1705
1706
1707
170C
170D
170E
170F

1
8
6k
1024
1
8
64
1024

Disabled
Disabled
Disabled
Disabled
Enabled
Enabled
Enabled
Enabled

b. Determining the timer status
After timing has begun, reading address location 1707 will

provide the timer status. If the counter has passed the count of
zero, bit 7 will be set to 1, otherwise, bit 7 (and all other bits
in location 170?) will be zero. This allows a program to "watch"
location 1707 and determine when the timer has timed out.

c. Reading the count in the timer
If the timer has not counted past zero, reading location

1706 will provide the current timer count and disable the inter-
rupt option; reading location 170E will provide the current timer
count and enable the interrupt option. Thus the interrupt option
can be changed while the timer is counting down.

170

yif the timer has counted past zero, reading either memory
location 1706 or 170E will restore the divide ratio to its pre-
viously programmed value, disable the interrupt option and leave
the timer with its current count (not the count originally writ-
ten to the timer). Because the timer never stops counting, the
timer will continue to decrement, pass zero, set the divide rate
to 1, and continue to count down at the clock frequency , unless
new information is written to the timer.

d. Using the interrupt option
In order to use the interrupt option described above, line

PB7 (application connector, pin 15) should be connected to either
the IRQ (Expansion Connector, pin *f) or NMI (Expansion Connector,
pin 6) pin depending on the desired interrupt function. PB7
should be programmed as in input line (its normal state after a
RESET).

NOTE: If the programmer desires to use PB7 as a normal
I/O line, the programmer is responsible for dis-
abling the timer interrupt option (by writing or
reading address 1706) so that it does not inter-
fere with normal operation of PB7. Also, PB7 was
designed to be wire-ORed with other possible inter-
rupt sources; if this is not desired, a 5. IK resis-
tor should be used as a pull-up from PB7 to +5v.
(The pull-up should NOT be used if PB7 is connected
to NMI or IRQ.)

•V
IMPORTANT ! ! ;

The KIM Cassette Tape Interface i

The KIM-1 USER GUIDE doesn't emphasize one vital
instruction in telling you how to read and write tapes.

BEFORE READING OR WRITING MAGNETIC TAPE , BE SURE
TO SET THE CONTENTS OF ADDRESS OOF1 TO VALUE 00.

This ensures that the computer is not in Decimal Mode.
The key sequence is AD _0 0_F_ IDA 0_ 2. AD.

If you forget to do this, you're likely to have trouble with
audio tape. You might write bad tape - which can never be
read back in correctly; and you might find yourself unable
to input properly from tape . Many of us have run into this
problem, and have wasted countless hours trying different
tapes and recorders or even investigating KIM's electronics.

You'll find KIM audio tape to be 100% reliable, even on
inexpensive recorders, providing you follow this rule and
always ensure that location OOF1 is set to zero.

171

NOTES ON A RANDOM NUMBER GENERATOR Jim Butterfield

It's not my original idea - I picked up it from a technical
journal many years ago. Wish I could remember the source,
so I could credit it.

This program produces reasonably random numbers, and it won't
"lock up" so that the same number starts coming out over and
over again. The numbers are scattered over the entire range
of hexadecimal 00 to FF. A Statistician would observe that
the numbers aren't completely "unbiased", since a given
series of numbers will tend to favor odd or even numbers slightly.
But it's simple, and works well in many applications.

Here's how it works. Suppose the last five random numbers
that we have produced were A, B, C, D and E. We'll make a
new random number by calculating A + B + E + 1. (The one
at the end is there so we don't get locked up on all zeros).
When we add all these together, we may get a carry, but
we just ignore it. That's an. The new "last five" will
now be B, C, D, E and the new number. To keep everything
straight, we move all these over one place, so that B goes
where A used to be, and so on.

The program:

xxxx D8 RAND
xxxx 38
xxxx A5 13 h^>
xxxx 65 16
xxxx 65 17
xxxx 85 12 i?7-
xxxx A2 OU
xxxx B5 12 *"*- RPL
xxxx 95 13̂
xxxx CA
xxxx 10 F9

OLD clear decimal if needed
SEC carry adds value 1
LDA RND+1 last value (E)
ADC RND-̂ i add B (+ carry)
ADC RND-»5 add C
STA RND new number
LDX #U move 5 numbers
LDA RND,X
STA RND+1, X ..move over 1
DEX
BPL RPL all moved?

The new random number will be in A, and in RND, and in RND+1.
Note that you must use six values in page zero to hold the
random string ... I have used 0012 to 0017 in the above coding.

You often don't want a random number that goes all the way
up to 255 (Hexadecimal FF). There are two ways of reducing
this range. You can AND out the bits you don't want;
for example, AND #$7 reduces the range to 0-7 only.
Alternatively, you can write a small divide routine, and
the remainder becomes your random number; examples of this
can be seen in programs such as BAGELS.

172

.,.;*
If The one publication that devotes all of its space to the KIM-1/6502

hines is:
KIM-1/6502 USER NOTES
109 Centre Ave.,
W. Norriton ?

Six issues of this bimonthly newsletter costs U.S. $5*00 for North
American subscribers and U.S. $10. 00 for international subscribers.

Here's some pointers to other KIM-1/6502 articles-

BYTE-
November 1975 (p.56) - Son Of Motorola

- A description of the 6502 instruction set and comparison
with the 6800.

May 1976 (p.8) - A Date With KIM
- An in depth description of KIM

August 1976 (p. Mf) - True Confessions; How I Relate To KIM
- How to; use cheap memories with KIM by stretching the clock;
expand memory; implement interrupt prioritizing logic; sim-
ulate a HALT instruction.

March 1977 (p. 36) - 6502 op code table

March 1977 (p.70) - Simplified Omega Receiver Details
- Using the 6502 for signal processing in a low cost navigation
receiver (Mini -Omega).

April 1977 (p.8) - Kirn Goes To The Moon
- A real-time lunar lander program for KIM

April 1977 (p. 100) - Navigation With Mini-0
- Software details for a phase-tracking loop filter using Jolt
or KIM.

June 1977 (p.l8) - Designing Multichannel Analog Interfaces
- Hardware and 6502 software for an 8 channel analog I/O. j

June 1977 (p.̂ 6) - Teaching KIM To Type |
- Hardware and software for hooking KIM up to a Selectric.

June 1977 (p.76) - Come Fly With KIM
- Hardware and software for interfacing a Fly Paper Tape Reader
to KIM.

July 1977 (p. 126) - Giving KIM Some Fancy Jewels
- How to outboard KIM's seven -segment displays.

DR. DOBBS-
March 1976 (p. 17) - £502 Breakpoint Routine

August 1976 (p. 17) - 6502 Floating Point Routine
*•

August 1976 (p. 20) - Monitor For The 6502

173

August 1976 (p.21) - Lunar Lander For The 6502

September 1976 (p.22) - 6502 Disassembler

September 1976 (p.26) - A 6502 Number Game

September 19?6 (p.33) - 6502 String Output Routine

November 1976 (p.50) 6502 String Output Routine

November 1976 (p.57) - 6502 Floating Point Errata

February 1977 (p.8) - More 6502 String Output Routine

INTERFACE AGE-

September 1976 (p.l4) - A 6502 Disassembler

October 1976 (p.65) - Interfacing The Apple Computer
- How to: hook a SWTPPR-40 to the Apple 6502.

November 1976 (p.12) - Build A Simple A/D
- Hardware and 6502 software for simple joystick (or
whatever) interface.

November 1976 (p.103) - Floating Point Routine For 6502

April 1977 (p.l8) - "Mike"-A Computer Controlled Robot
- Hardware and 6502 software for a KIM controlled robot like
vehicle.

KILOBAUD-

January 1977 (p.11*0 - A Teletype Alternative
- How to: Convert a parallel input TVT to serial operation;
interface to KIM.

February 1977 (p»8) - Found; A Use For Your Computer

April 1977 (p.7*0 - KIM-1 Memory Expansion
- How to: Add an $89.95 ̂ K Ram board to KIM.

May 1977 (p.98) - Adding "PLOP" To Your System
- A 6502 noisemaker for computer games.

June 1977 (p.50) - A TVT For Your KIM

NOTE; Kilobaud now has a monthly KIM column.

MICHOTREK-

August 1976 (p.7) - KIM-1 Microcomputer Module
- A very in depth look inside KIM0

POPULAR ELECTRONICS-

July 1977 (p.̂ 7) - Build The TVT-6
- How to: KIM-1 TVT (same as Kilobaud #6).

174

73 MAGAZINE
January 1977 (p. 100) - Bionic Brass Pounder

- How to: Turn KIM into a smart morse code keyboard.

6502 SOFTWARE SOURCES
(as of summer 1977)

ARESCO
314 Second Ave.
Haddon Hts., New Jersey

08035

The Computerist
P.O. Box 3
S. Chelmsford MA

01824

Itty Bitty Computers
P.O. Box 23189
San Jose, Calif.

95153

MICROWARE
27 Firstbrooke Rd.
Toronto, Ontario
CANADA M4E 2L2

MICRO- SOFTWARE SPECIALISTS
P.O. Box 3292
E. T. Station
Commerce, Texas 75428

6502 Program Exchange
2920 Moana Lane
Reno, Nevada 89509

Pyramid Data Systems
6 Terrace Ave.
New Egypt, New Jersey

08533

Julien Dub6
3174 Rue Douai
Ste-Foy, Quebec G1W 2X2
Canada

Focal, 2 1/2K assembler
6K assembler/text editor
(send S.A. S.E. for info)

Please Package, Help,
editor and mailing list
packages
(send S.A.S.E. for info)

Tom Pittman's
Tiny Basic
(send S.A.S.E. for info)

MICROCHESS, (Chess in
Ik), assembler
(s end S.A.S.E. for info)

2K assembler /editor
(send S.A.S.E. for info)

Focal, Focal programs,
Kim and TIM programs
(send 50£ for program list)

IK monitor system,
(send S.A.S.E. for info)

Baudot Monitor
(send S.A.S.E.)

175

Jim Butterfield
14 Brooklyn Avenue
Toronto, Ontario, Canada

M4M 2X5

Lew Edwards
1451 Hamilton Ave.
Trenton 9, N.J. 08629

Ron Kushnier
3108 Addison Ct.
Cornwells Hts., Penna.

19020

Stan Ockers
R.R.#4, Box 209
Lockport, 111.

60441

Charles Parsons
80 Longview Rd.
Monroe, Conn.

06468

Eric Rehnke
109 Centre Ave.
W. Norriton PA

19401

Charles Eaton
19606 Gary Avenue
Sunnyvale, California

94086

Peter Jennings
27 Firstbrooke Rd.
Toronto, Ontario Canada

M4E 2L2

Cass Lewart or
Dan Lewart
12 Georjean Drive
Holmdel, N.J. 07733

James Van Ornum
55 Cornell Drive
Hazlet, N.J.

07730

Jim Pollock
6 Terrace Ave.
New Egypt, New Jersey

08533

Joel Swank
#186
4655 S.W. 142nd
Beaverton, Ore. 97005

**

Here are the folks responsible. They eagerly await your
praise, comments, criticism, indignation - whatever...
Please do the courtesy of enclosing a self-addressed
stamped (if possible) envelope (SASE) if you wish a reply.

176

5119-0
$8.95

THE FIRST BOOK OF KIM
JIM BUTTERFIELO. STAN OCKERS, and ERIC REHNKE

Here is a step-by-step guide that will take you through the fundamentals of
writing KIM programs. This beginner's guide includes dozens of examples
of programs that are run on a basic KIM-1 system. These programs include
games and puzzles such as Blackjack, Chess Clock, Horserace, Lunar
Lander, Music Box, and Ping Pong, which are fully described so that you
can learn from the programming techniques illustrated as well as have fun
playing the games.

The authors go into detail on how you can expand your KIM from the
bas>c small-but-powerful KIM-1 system to a huge-and-super-powerful ma-
chir-e. They include diagnostic and utility programs to help you build extra
devices onto your KIM system, such as teletype, display, or more memory.
The book also covers the jargon of KIM programming and what's available
in both hardware and software i'->r the KIM microprocessor.

Other Books of interest...

HOW TO BUILD A COMPUTER-CONTROLLED ROBOT
TOD LOCFBOURROW

Use the KIM-1 microprocessor t ; build your own computer-controlled robot,
hfcij are ster by-step directions for the construction of a robot with the
complete control program^ clearly written out. Photographs, diagrams, and
tabies direct you through the construction. #5681-8, paper.

BASIC BASIC: An introduction to Computer Programming in
BASIC Language, Second Edition
ar.d
ADVANCED BASIC: Applications and Problems
BOTH by JAMLS S. COAN

The complete picture of the BASIC language. One introduces the Isnguage
through an integration of programming and the teaching of mathematics.
The otr';r offers advanced techniques find applications. Both begin with
short, complete programs ,and progress to more sophisticated problems.
Basic BASIC, £5106-8, paper, #5107-7, cloth; Advanced BASIC, #5855-1,
paper, #5856-)', cloth.

HQh'-E COMPUTER SYSTEMS HANDBOOK
SOL LIP'ES

An ov >rview of the new world or home computing. Provides the basics of
digital logic, number systems, computer hardware, and software to intel-
ligent y purchase, assemble, and interconnect components, and to program
the microcomputer. #5678-8, paper.

X
HAYDEN ROOK COMPANY, INC,

Rochelle Park, New Jersey

ioSN 0-8104-5113-0

