PET
MACHINE

LANGUAGE

GUIDE

By ABACUS SOFTWARE

PET trademark of commodore Business Machines and Commodore International

PET MACHINE LANGUAGE GUIDE

By ARrNIE LEE

ABACUS SOFTWARE

P.0. Box 7211 _
GRAND RapiDs M1 49510

coPYRIGHT 1979 BY ARNIE LEE

TABLE OF CONTENTS

INTRODUCTION".lllI||’ll'l|.'"tl'Ill"ll”"ll""l‘ll
MACHINE LANGUAGE PROGRAMMING [I O I} '. |. LI | |. L B B B II L | .| LN BN BN I B B B
PROTECTION OF MACHINE LANGUAGE ROUTINES.::ssssssss

co oY N —

CLOCKS: AND TIMERS iz s i v viaiisi 37 v Seiwis o & saain i b 6 ¥ s
SCREEN DISPLAY AND CURSOR POSITIONING:::vsvevssannnvssss 11
WRETING TO THE SCREEN: s 4 xiiaias s o v snssdbe sunnns sy sunnwrss 1D
READING THE KEYBOARD: i v ssvveii s 5 omeiiis oo vewians v pomanais 1O
DISR: ETPEETERT: & cseichns oo s bt s s o A R . somircacn 3 = 2 0 momresmn 2 B0
NUMBER REPRESENTATION: v vt v vunnrennsssnorsanssanrsnnns 23
FIXED POINT NUMBERS s s s s vsnsnsnsnsnsnsnsnsnsnsnensnsess 2l
SEORTING POINT NUMBERSweis i 5 vissvis ii pana s s i vaanaive 20
FLOATING POINT ARITHMETIC: s s vsuvsssvnronnosnnnssnaness 29
ARTTHMETIC ‘FUNCTIONS oo 55 s avaias 55 cuminanpivannasis Jo
NUMBER CONVERSTONS: iz vaans s s ivmni it vonas i di@onaaiy 29
ROUTINES IDENTIFIED IN THE MANUAL.tvvsvunvvssssvansesss 39
ABBREVIATIONS USED IN THE MANUAL .+ ssssvenrsrsensnnenees 40
BIBLSOGRBBHY ¢ vawins 45 & winsss i i iawman v aaanssvemaanavin 4l
OTHER SOURCES OF PET INFORMATION. . ::ivvewvvsnnsssenssers A4l

ii

INTRODUCTION

For those of you who are not satisfied with programming
only in the BASIC language, for those of you who cannot make
BASIC run fast enough for your applications, for those of
you who are curious about the inner workings of your PET,
or for those of you who just want to buy another manual,
this gquide is dedicated.

The information contained in this guide was not readily
available from a single source when writing began on it.
I've had to hunt, scrape, rummage, and experiment for most
of it. The on-off switch on my PET is nearly worn out from
use, having had to power it off and back on after crashing
the operating system countless times.

This manuscript is entitled "PET Machine Language
Guide". You are probably familiar with the low level
languages or the title would not have attracted your
attention. This guide is not intended to be a tutorial
on programming in machine language. It is intended to
be a reference for the machine language programmer who
wants to use the built-in features of the PET. There
is no use in "reinventing the wheel" if you can use the
wheels already supplied with your PET, referring of course
to the built-in routines. Many programmers are commanding
more than $15 per hour for their services. If this guide
saves you an hour's time by showing you new or improved
ways to program, then I'd like to think that the guide has
more than paid for itself.

The routines used in this guide are relatively simple.
The routines use a very small portion of the 6502 instruc-
tion set. The beginning machine language programmer should
have little trouble learning the instructions that are used
here. The beginner should stick to simple and straight-
foward routines at first. Save the fancy instructions and
addressing modes for a later time. Loads and stores,
compares and branches, and the routines outlined here will
take the beginner a long way towards understanding machine
language programming.

As far as I can tell, the routines presented here
will run on all PET's produced to date. I have tested
all of them and all have run without problems. Although
many machine language monitors are available for the PET
(mostly through the popular user groups), I have chosen
to use the Commodore-supplied monitor because of its
general availability to all PET owners. If you don't
have a copy of the Commodore machine language monitor,
then you should see your PET dealer or write directly
to Commodore. It is a versatile piece of software and
does a nice job in allowing me to quickly enter machine
language routines into my PET.

As this guide goes to press, Commodore has announced
the availability of their new 16K and 32K PETs. It
remains to be seen whether major operating system changes
have been incorporated into these new models.

For those of you with criticism, comments, correc-
tions, questions, or praise, I would be glad to hear
from you. I'm hoping that you feel that you are getting
your money's worth from this guide. With the prices of
books and manuals as high as they are these days, ABACUS
SOFTWARE is trying to provide you with practical and
useful information at a reasonable cost.

THANK YOU.

ARNIE LEE

ABACUS SOFTWARE

P.O. BOX 7211

GRAND RAPIDS, MI 49510
FEBRUARY 2, 1979

NOTE-PET is a registered trademark of COMMODORE BUSINESS
MACHINES, INC.

MACHINE LANGUAGE PROGRAMMING

Shortly after the PET was born, it learned to speak
in a machine language dialect called 6502ese. Commodore
later on, taught the PET to speak a foreign language,
BASIC. Now the PET uses BASIC to talk to you because
it realizes that most of you are well-versed in the BASIC
language.

Since PET learned to speak 6502ese first, it prefers
to think in its native language. If you speak to it in
BASIC, the PET will require a little extra time to translate
the BASIC into 6502ese, but it will understand you. The
PET is no different from those of you who are bilingual.

You may speak more than one language, but all of your
thought processes are carried out in your native language.

Now BASIC is not your native language, but it more
closely resembles your native language than does 6502ese.
So if I talk to you in 6502ese, it will probably take you
a little time to translate the ideas into terms that you
can understand.

A machine language program is a series of binary
instructions that directs the microprocessor to carry
out very elementary tasks. The instructions perform very
primitive functions - reading and writing, adding and
subtracting, shifting and rotating, anding and oring -
functions that involve a single memory location.

Machine language programming involves considerable
effort when routines of any sizeable length are to be
written. The programmer must keep account of the memory
locations that the instructions reference. He must insert
the representation of those locations into the series of
instructions. If the programmer later on decides to insert
additional instructions into the program, then he may very
well have to change several of the previously calculated
memory locations. Programming in machine language becomes
very tedious and error-prone.

Assembly language programming is a step up from
machine language programming. Machine instructions are
defined mnemonically. Memory locations are symbolically
referenced. An assembler program processes the assembly
language statements, converts the mnemonics into their

machine language equivalents and converts the symbolic
references to memory locations into their appropriate
binary equivalents. Programming in assembler language
is much less error-prone than in machine language but
remains a tedious job.

Machine language and assembler language programs
operate on very primitive data elements. High level
languages such as BASIC are designed to operate on more
sophisticated data structures. Programming in high
level languages relieves the programmer of much of the
tedious work associated with the lower level languages.
Programs can be written in less time and are less error-
prone. You must pay a price for the advantages which
a high level language provides. The price 1is an increase
in the amount of memory used and an increase in run time.
Remember that the PET has to translate the foreign language
BASIC into 6502ese before it can understand what you want
it to do for you. BASIC therefore runs slower than pure
machine language instructions.

Now that I've convinced you that machine language
programs will run circles around BASIC programs, I will
lead you through the steps of building a machine language
program.

Firstly you must have a clear understanding of just
what it is that your program is to accomplish. You must
decide upon an approach to take in building that program.
Unfortunately this step is often given too little thought.
The programmer is too anxious to get into the programming
step that the program suffers. The author hasn't clearly
thought out the method. This step is vital regardless of
the programming language used. It must be addressed for
a program written in BASIC as well as machine or assembly
language.

For example, I decide that I need to compute the
logarithm (in base 10) of various arguments. I could
approach this program in several ways: a) creating a
table of the logarithms and looking them up as needed;
b) finding the logarithm from scratch by using a complex
series of formulas; c¢) using a derivative of a built-in
function. By using the PET's built+<in function I can
create a very simple program. This eliminates the need
for a complex program thereby simplifying the overall
task to be done, namely to compute the common logarithm
for a given argument.

Secondly you have to decide where in memory you will
place the machine language program. Most machine language
programs will run alongside a BASIC program. So you must
make sure that the machine language program is protected
from destruction by BASIC or the operating system. The
article following this one will cover this in detail. For
most machine language programs you can use the PET's
second cassette buffer (memory locations 826 to 1017).

Thirdly you have to write the program itself. Without
the aid of an assembler program, you will have to hand-
assemble the assembler language source. I'll leave it to
you to find a way of generating the resultant machine
language code. I'd advise you to keep your routines as
short as possible if you must resort to hand-assembly
techniques. Also take advantage of the routines that
are described in this manual. They will save you much
time and effort. The bibliography at the end of this
manual lists several sources for assembler programs for
the PET.

Forthly you have to decide how you will put the
resultant machine language program into memory. You can
poke the program into memory from a BASIC program. An
alternative way is to use a machine language monitor.

This is by far the superior alternative. By using the
monitor you can also alter and display memory, and you can
save and reload your programs on cassette. Of course the
assembler programs will probably assemble code directly
into PET's memory.

Lastly you have to decide how you will test your new
programs. It isn't too often that I write a program which
runs correctly the first time that I try it. Once again
the machine language monitor offers some help in testing
these programs. By inserting special instructions into
the program to be tested, you can cause the program to
temporarily halt execution. At this time you can examine
the contents of memory and registers and alter them if you
desire. Then you can continue execution of the program
from this breakpoint. If you don't use a monitor, then
you will have to test blindly. A single bad instruction
in the program could hang up the PET forcing you to turn
it off and back on to recover from the error.

PROTECTION OF MACHINE LANGUAGE ROUTINES

When the PET is turned on or the reset function is
called, the operating system initialized PET's memory for
BASIC. It sets up its working areas, constants and pointers
so as to maximize the number of BASIC statements which can
be fitted into the limited amount of available memory.

No problems arise with this method of initializing until
you want to use a machine language routine. The problem is:
"where in memory should the routine be placed so that BASIC
does not destory the routine?". Commodore recommends that
you use the cassette buffer for the second tape drive. This
provides you with 192 memory locations into which you can
place your routine.

But what if the routine is larger than 192 memory loca-
tions? Or what if the second cassette buffer is being used?
The easiest way to insure that the machine language routine
will not be destroyed by BASIC is by making BASIC think that
the amount of memory available to it is somewhat smaller
than the actual amount of memory.

On reset, the operating system determines the actual
amount of memory available. The operating system does this
by writing a specificc character to a single memory location
and then rereading this same location. If the character read
is the same as the character written then that memory location
really exists. This same procedure is then tried to the next
higher memory location. When the character read is not the
same as the character written, then it is determined that
the previous write and read was to the highest available
memory location. This location is placed in the pointer at
$86-S87. BASIC uses this pointer to determine how much
working area it can use for itself.

If you alter this pointer before BASIC begins storing
statements, variables, etc., then you can "protect" a
machine language routine from destruction by BASIC. In an
8K PET, the pointer normally contains $00 20 (LSB,MSB).

If you chang the pointer to $00 1C you will protect the

512 memory locations from $1C00 to $2000. The most straight-
foward way to change the pointer is to POKE the pointer with
the altered values. Locations $86-$87 correspond to 134 and

135 in POKE statements. Thus to protect a machine
language routine which begins at $1C00 you would do
the following:

POKE 134,0 LSB
POKE 135,28 MSB

$00
slc

0
28

These statments should be executed in direct mode
before any BASIC statments are stored. With the
pointer altered, BASIC is not aware that memory
locations greater than $1C00 exist. A maching language
routine placed anywhere between $1C00 and $2000 is free
from being destroyed by BASIC.

CLOCKS AND TIMERS

Every computer has at least one clock which paces the
execution of its instructions. The PET user has access to
several of these clocks. You are free to use the clocks
for whatever purpose you desire providing that you under-
stand the method of operation. The following lists several
of the clocks:

1) $0200- increments every 1092.1667 seconds

2) $0201- increments every 4.2667 seconds

3) $0202- increments every 1/60th of a second

4) SE848- decrements every microsecond(.000001 second)
5) SE849- decrements every 256 microseconds.

The clocks at memory locations $0200-0202 work together
to form the "jiffie" clock. The register at $0202 increments
every 1/60th of a second. It counts upward from 0 to 255.
When it rolls over from 255 to 0, it causes the register at
$0201 to be incremented by one. Similarly, the register at
$0201 counts from 0 to 255, and when it rolls over to 0, it
causes the register at $0200 to be incremented by one.

Thus the register at $0201 increments every 1/60 * 256 =
4.2667 seconds and the register at $0200 increments every
1/60 * 256 * 256 = 1092.1667 seconds.

When the BASIC user accesses TI, the jiffie clock, he
is actually accessing the three continuous bytes of memory
starting at $0200. The BASIC statement T = TI assigns to
the variable "T", the value in registers $0200-$0202. The
builtin function converts the three byte binary value at
thoses locations to the floating point variable "T".

When you as the BASIC user access TIS, the time of day
clock, the PET software is actually converting the jiffie
clock to the time of the day. The following algorithm is
similar to the conversion routine that is performed by the
PET in evaluating TIS:

HH = INT(TI/(60*60%*60))
MM = INT((TI-(HH*60*60%*60))/(60%60))
SS = INT((TI~(HH*60*60%60)~ (MM*60*60))/60)

The jiffie clock begins counting when the PET is
turned on. It initially has a value of zero when first
powered on. It continues counting upwards from zero
unless reset by a BASIC assignment TIS$="HHMMSS" which
converts the HHMMSS of TIS to jiffies as below:

TI = (HH*60*60*60) + (MM*60*60) + (SS*60)

You may use the jiffie clock to time various functions.
Below is an example of a routine which will inform you when
ten seconds have elapsed:

10 S=TI: REM SAVE STARTING JIFFIE COUNT
20 PRINT"START OF INTERVAL HAS BEGIN"

30 IF TI-S10*60 THEN 30: REM LOOP UNTIL 10 SECS. ELAPSE
40 PRINT"TEN SECONDS HAVE ELAPSED"

You may also use the jiffie clock to time short
intervals. Below is an example of a routine which computes
the time that it takes you to react to a message that is
displayed on the screen. The routine will flash a message
on the screen and wait for you to depress any key.

10 PRINT" (CLR CD CD CD)WHEN YOU SEE THE NEXT MESSAGE
APPEAR ON"

20 PRINT" (CD) THE SCREEN, DEPRESS ANY KEY AND I WILL"

30 PRINT" (CD) MEASURE YOUR REACTION TIME."

40 PRINT" (CD)":TAB(12) ;"GET READY"

50 DELAY=TI: REM START OF WAIT PERIOD

60 IF TI-DELAY{ 60*3 THEN 60: REM WAIT A FEW SECONDS

70 PRINT" (CLR)"

80 DELAY=TI

90 IF TI-DELAYL 60*3 THEN 90: REM WAIT A FEW MORE SECONDS

100 PRINT "(CD CD CD CD)"

110 POKE 525,0: REM IGNORE ANY KEYS ALREADY DEPRESSED
120 PRINT"PRESS ANY KEY NOW"

130 S=TI: REM START TIMING

140 GET AS$: IF AS$="" THEN 140: REM LOOP UNTIL KEY DEPRESSED
150 P=TI: REM END OF TIMING LOOP

160 PRINT" (CD CD)YOUR REACTION TIME WAS" (P-S) /60 "SECONDS"

170 END

The above routine is suitable for measuring intervals
which do not require more resolution than several jiffies.
A BASIC statement may require several milliseconds for
execution, so the jiffie clock cannot resolve very small

time intervals.

When high resolution timing is required, you must
write routines at a machine language level. The register
at $E848 counts down from 255 to 0 every microsecond.
When it reaches zero, it rolls over to 255 again and
causes the register at $E849 to count down by one. Thus
every 256 microseconds, register S$E849 is decremented.
Technically we call these registers timers and not
clocks. The timers are similar to the familiar "oven
timer". Once set, it would count down. When it reached
zero the little bell would go off. This is similar to
how the PET's timers work.

The following routine is a rough estimate of the time
that is required to count to 100 in machine language.
The routine uses the microsecond timers at SE848-SE849.
Keep in mind that they cound downwards from 255 to 0.

ADDR VALUE LABELL, OPC OPERAND COMMENTS

033A A9 00 LDA #S00 reset accumulator
033C 8D 49 ES8 STA SE849 reset timer

033F 8D 48 ES8 STA S$SE848 " !

0342 C8 CLC clear carry flag
0343 D8 CLD insure binary mode
0344 69 01 LOOP ADC #01 add to accumulator
0346 C9 64 CMP #100 compare for 100
0348 DO FA BNE LOOP loop if not done
034A AD 48 E8 LDA S$SE848 save the two

034D AE 49 ES8 ILDX SE849 ..timers in A,X
0350 00 BRK

After running the above program using the Commodore
machine language monitor the following results appeared:

PE SR AC XR YR SP
0351 XX 3A FD XX XX
100 100
-FD -3A
03 C6=198qg--~--~
+
e 966 microseconds

3%256=7687 g==-=-——==========-~

The 966 microseconds is an interval which could not
be measured with the jiffie clock whose resolution is
only .01600 seconds.

10

SCREEN DISPLAY AND CURSOR POSITIONING

The PET uses a memory mapped video display. Char-
acters are displayed on the screen by storing the binary
coded representation into reserved memory locations.
Each reserved memory location is associated with a
specific screen position. Ascending memory locations
are displayed on the screen from left to right, and from
top to bottom, in a pattern identical to reading a page
in a book. These memory locations begin at $8000 and
extend to $83E7. Memory location $8000 is displayed on
the screen at the upper left-hand corner while memory
location $83E7 appears at the lower right-hand corner.
These memory locations account for the 1000 display
positions on the PET's screen.

There are two basic ways to write to the screen: by
storing characters directly into the video display memory
or by using the operating system's routines which in turn
write to the screen.

The first method of screen display is similar to
poking memory from BASIC. One character's coded repre-
sentation is stored into a mapped memory location. The
exact location is determined by where you want the char-
acter to appear on the screen. POKE 32768,1 will cause
the letter "A" to appear at the upper left-hand corner of
the screen. Location 32768 corresponds to $8000 and '1l'
is the coded representation for the letter "A". -

The screen display hardware expects the mapped memory
to contains a coded representation different from PET's
ASCII code. The screen display's coded representation
closely resembles the ASCII code. Bit 1 of the ASCII code
is dropped. These resulting codes represent the 64 normal
printable characters. By using bit 1, an additional 64
graphic characters can be represented. This gives 128
printable characters. Finally by using bit 0, the above
128 printable characters can be reversed. This allows for
a total of 256 different printable characters.

The following short routine will display the char-
acters that result from storing values into the mapped
memory. The values are in ascending sequence from 0 to 255
and cause a unique character to appear on the screen. Thus
poking a '0' generates a "@", 'l' generates a "A", '2!'
generates a "B", etc.

11

10 FOR I=0 TO 255: REM CODED REPRESENTATION

20 : REM .FOR VIDEO HARDWARE

30 : REM . .AND INDEX FOR SCREEN LOC.
40 POKE 32768,I: REM STORE INTO MAPPED MEMORY
50 NEXT I: REM REPEAT 255 TIMES

60 END

Of course if yo prefer to do the same thing in a
machine language routine, the following will accomplish
the same goal:

ADDR VALUE LABEL. OPC OPERAND COMMENTS
033A A2 00 LDX #00 zero index register
033C 8A LOOP TXA copy into accumulator
N33D 90 00 80 STA $8000,X display on screen
* .via mapped memory
0340 ES8 INX bump to next character/
* .next screen position
0341 DO F9 BNE LOOP repeat 255 times
0343 00 BRK

The second method of display involves the use of the
oeprating system's display routines. These routines make
use of the cursor position registers. When calling an
output to screen routine such as WRT or STROUT, the PET
will begin writing at the screen position pointed to by
the cursor position registers.

These registers are located at SE0-$E2. The register
pair at SEO0-$El1 contains the mapped memory location(least
significant byte, most significant byte) of the screen line
at which the cursor is currently positioned. The register
at $E2 contains the number of positions into the line at
which the cursor is currently positioned. The operating
system calculates the screen position by adding the contents
of the register $E2 to #E0-SE1l to produce the mapped memory
location for the cursor display. If the cursor were positioned
at line 2, position 10 of the screen, then the cursor registers
would contains:

registers—-—--—--- SEO SE1 SE2
contents=—======- 28 80 0A
LSB MSB —-=———position within line

-addr of line-

12

If you want to write a string at a specific location
on the screen, you would set the cursor position registers
with the appropriate values before calling the STROUT
subroutine. The example below demonstrates how you would
write the string "ABC" to the screen starting at line 11,
position 20:

ADDR VALUE LABEL, OPC OPERAND COMMENTS

033A A9 68 LDA #$90 set up the

033C 85 EO STA SEO .cursor position
033E A9 81 LDA #S$81 ..registers to point
0340 85 E1 STA SEl1 e...to line 11

0342 A9 14 LDA #20 = and to

N344 85 E2 STA SE2 = s e s position 20
0346 A0 03 LDY #>STRING point to the string
0348 A9 4E LDA #<STRING ..in Y,A registers
034A 20 27 CcA JSR STROUT go write the string
034D 00 BRK

034E 41 42 43 STRING ASC 'ABC'

0351 00 DC $00 delineate string

You will note that the operating system's routines
use the PET's ASCII character representation and not
the representation required by the video display hardware.

The following table shows the correspondence between
the mapped memory locations and the screen line numbers:

LINE NO MEMORY LOC(SE0-S$E1) LINE NO MEMORY LOC(SEO0-SE1l)
1 00 80 14 08 82
2 28 80 15 30 82
3 50 80 16 58 82
4 78 80 17 80 82
5 A0 80 18 A8 82
6 C8 80 19 DO 82
7 FO 80 20 F8 82
8 18 81 21 20 83
9 40 81 22 48 83

10 68 81 23 70 83
L 90 81 24 98 83
12 B8 81 25 CcO 83
13 E0 81

13

The cursor position registers may also be used for
cursor positioning during input. Before using the
routine RDT, the operating system's input routine with
the cursor, you would set the cursor position registers
with the desired values. The flashing cursor would then
signal that input is required, but the cursor would be
positioned at the screen position that you requested and
not at the position which the PET wanted.

14

WRITE A SINGLE CHARACTER TO THE SCREEN

1) Load the accumulator with the character to be
displayed.

2) Call subroutine WRT at SFFD2

EXAMPLE-
033A A9 41 LDA #S41 letter 'A' into Accum.
033C 20 D2 FF JSR WRT call WRT subroutine
033F 00 BRK

15

WRITE A CHARACTER STRING TO THE SCREEN

1) String may be any length containing any characters
but must end with X'00'.
2) Load the Y-register with the most significant byte
of the string's beginning address
3) Load the Accumulator with the least significant byte
of the string's beginning address
4) Call subroutine STROUT at S$CA27
EXAMPLE-
033A A0 03 LDY #>STRING MSB of string addr
033C A9 42 LDA #<STRING LSB of string addr
033E 20 27 CA JSR STROUT call STROUT subroutine
0341 00 BRK
0342 41 42 43 STRING ASC 'ABCDEF'
0345 44 45 46
0348 00 =500

16

CLEAR THE SCREEN

1) cCall subroutine CLSCR at SE236

EXAMPLE-
033A 20 36 E2 JSR CLRSCR go clear the screen
033D 00 BRK

CARRIAGE RETURN AND LINE FEED SCREEN

1) cCall subroutine CRLF at $C9D2

EXAMPLE-
033A 20 n2 c9 JSR CRLF go return carr./line feed
033D 00 BRK

SCROLL SCREEN ONE LINE

1) call subroutine SCROLL at $SE559

EXAMPLE-
033A 20 59 E5 JSR SCROLL go scroll screen
033D 00 BRK

17

GET A CHARACTER FROM THE KEYBOARD

1) Call subroutine GET at S$SFFE4

2) If zero flag is set then no key was depressed.
Go to step 1)

3) If zero flag is not set then key was depressed.
The value of the key depressed is now in the

accumulator.
EXAMPLE-
033A 20 E4 FF GETLP JSR GET call GET subroutine
033D FO FB BEQ GETLP if no key drepressed-goback
033F 20 D2 FF JSR WRT repeat character on screen
0342 00 BRK

18

INPUT FROM THE KEYBOARD

1) Initialize the X-register for keeping count of the
number of characters inputted.

2) Call subroutine RDT at SFFCF

3) ASCII code of inputted character will be returned
in the accumulator

4) If "end of input" character has been inputted (usually
the return key = X'0D') then go to step 8

5) Store accumulator value into an input buffer (the
memory locations from $000A to $005A may be used).

6) Increment the X-register.

7) Go to step 2

8) 1Input now is in your input buffer with length of
the string in X-register.

EXAMPLE-

BUFFER=$000A
033A A2 00 LDX #00 zero length register
033C 20 CF FF INPUT JSR RDT call input subroutine
033F C9 0D CMP #S0D end of input char.?
0341 FO0 06 BEQ DONE yes-branch around
0343 95 0A STA BUFFER,X no-save character
0345 E8 INX increment length
0346 4C 3C 03 JMP INPUT go back for more
0349 A9 0A DONE LDA #<BUFFER point A,Y to the
034B A0 00 LDY #>BUFFER ..input buffer
034D 20 27 CA JSR STROUT repeat string on screen
0350 4C 8B C3 JMP READY go back to BASIC
* Note --- I was not able to run this routine under

the machine language monitor supplied by
It seems that the monitor

COMMODORE.

inteferes with the input routine RDT.

You

may use the monitor to load memory with the

above program.

After loaded type the X-command

to return to BASIC then enter the command
SYS(826) .

19

USR FUMNCTION

The USR function provides a technique for calling a

machine language routine from a BASIC program. The format
of the function is:

1)

2)

3)

100 B=USR(A)

where A is the argument to be passed
to the machine language routine
and where B is the function to be returned
to the BASIC program from the
machine language routine.

To use a USR function:

Load the machine language routine into memory by poking,
loading from tape or using a monitor.

Set up the USR vector by placing the entry point of the
machine language routine into memory locations $0001
(LSB) and $0002(MSB) .

Assign a value to the variabhle to be passed to the
machine language routine as the argument(A in the above
example) .

Call the machine language routine using the USR function.
The machine language routine will compute its function
and place it into the floating point accumulator ($B0-$B4).
The function value in the floating point accumulator is
assigned to the variable on the left-hand side of the
USR call(B in the above example).

EXAMPLE :

10.

PET BASIC does not have a logarithm function for base
It does have a logarithm function for base e. We can

use the following equality to produce the base 10 logarithm.

LOGlofx) = LOGe(X) * LOGlO(e)

Although this is a veryv simple example which could very
easily be implemented entirely in BASIC, we will create
a short machine language routine which demonstrates the
USR function.

20

ADDR

033A
033D
033F
0341
0344
0347
0348
034B

First we must load the following machine language
routine into memory (use the machine language monitor
to insert the code beginning at memory location X'33A').

VALUE

20
A0
A9
20
20
60
1F
D8

BF
03
48
5E
00

5E
9A

LABEL OPC

D8 LOGl0 JSR
LDA
LDY
D9 JSR
D9 JSR
RTS

OPER

LOGE
#>CONST
#<CONST
MVAFAC
FPMULT

5B CONST =$7F5E5BD89A

COMMENTS

call LOGe of FPAC
point to constant

« i A, Y

move CONST to AFAC
FPAC = FPAC * AFAC
return to BASIC
-43429448 (logjg(e))

Then we create the BASIC program:

10 POKE 1,58:

20 POKE 2,3:

30 A=6027:

40 B=USR(A) :

50 PRINT"LOG OF";A;"IS";B:
60 END

RUN

LOG OF 6027 IS 3.78010118

READY

lato

REM
REM
REM
REM
REM

SET UP THE USR

.. .FUNCTION VECTOR
ARGUMENT VALUE

CALL MACHINE LANGUAGE ROUT.
PRINT OUT ANSWER

When BASIC encounters statment 40, it evaluate the
argument A and places it into the floating point accumu-
Next a linkage is set up so that control is passed
back to the USR function for evaluation of B after the
machine language routine completes.
passed to the machine language routine.

r.

Finally control is

The machine language routine does the following:

1) The argument passed from BASIC has already been placed
into the floating point accumulator. Subroutine LOGE
is called (at $D8BF) to compute the natural logarithm

of this function.

point accumulator.
2) A pointer is set up in the A and Y registers for the
subroutine MVAFAC which will move the value pointed

to by A,Y into the alternate floating point accumu-
Subroutine MVAFAC is called (at $D95E) thereby
placing the constant (loglO(e)} into the alternate
floating point accumulator.

lato

i

21

The result is left in the floating

3) Subroutine FPMULT is called to compute the product
of the floating point accumulator and the alternate
floating point accumulator with the result being
left in the later. Thus the floating point accumu-
lator contains the logarithm in base 10 of the argu-
ment which was passed to the machine language routine.

4) Since the product is already in the floating point
accumulator (where BASIC expects the function to be),
we execute a return from subroutine to go back to the
BASIC program. B is evaluated in statment 40 by
assigning to it the value from the floating point
accumulator. Execution continues with the remainder
of the BASIC program.

In this case, when we run the program we find that the
function returned to our BASIC program is 3.78010118. We
can verify the answer by directly entering the command:

PRINT 10TB which prints a result of 6026.99979, the
difference being caused by conversion and rounding .

22

NUMBER REPRESENTATIOM

PET BASIC uses two methods of representing numbers
internally. They are referred to as fixed point repre-
sentation and floating point representation. Each has
its advantages and disadvantages and will be discussed
separately. The fixed point numbers are the easier of
the two to understand and will be introduced first.

23

FIXED POINT NUMBERS

Fixed point numbers are often referred to as integers.
Variables of this type may assume only integer values, that
is they may not have any fractional portions. Fixed point
variables are specified by using a variable name with a '%',
such as A% or B2%. A fixed point number is stored in two
memory locations inside the PET. Another way of putting
this is that 16 bits are required for each fixed point
representation. One of these bits is the sign bit. Variables
may therefore range in value from -32768 to +32767.

The high order bit is called the sign bit. A zero in
this position indicates a positive number, while a one in
this position indicates a negative number. The remaining
15 bits represent the magnitude of the number. Positive
numbers are represented in true binary form. Negative
numbers are represented in two's complement form.

EXAMPLE-

What is the fixed point representation of +1000?
sign hit

1000, = $600 00T 11In 1060 = X'03E8
" MSB ' LSB '

What is the fixed point representation of -1000?

iign bit -
-1000,, = 1111 1100 0001 1000 = X'FF18'
" MSB) LSB

Fixed point numbers as used in PET BASIC have a 15
bit precision and would normally require only two memory
locations. However single(non-array) fixed point variables
actually occupy five memory locations thus wasting the
remaining tree. Arrays of fixed point numbers occupy only
two memory locations for each element with no waste.

24

You can save memory by using arrays of fixed point
numbers if the limited range in values is suitable for
your application. We can demonstrate the savings of
memory between fixed and floating point numbers in two
short programs.

10 REM ***PIXED POINT EXAMPLE***
20 DIM A%(100)
30 PRINT FRE(0)

RUN

6931

10 REM ***FLOATING POINT EXAM***
20 DIM AA(100)
30 PRINT FRE(0)

RUN

6628

In each example we merely dimensioned two arrays and
then displaved the amount of free space that remained.
The difference in free memory locations is 6931 - 6628 =
303. The savings in memory of the fixed point program
over the floating point program is the result of saving
3 memory locations for each fixed point element in the
array (100 elements + 0th element).

Arithmetic operations using fixed point numbers are
faster than when using floating point numbers. The 6502
instructions for addition and subtraction are designed
to operate directly with numbers represented in the fixed
point format.

25

FLOATING POINT NUMBERS

Floating point variables may assume fractional as
well as integer values. They are useful because they
may take on values with a very wide range. Floating
point variables are specified by default. If they are
not integer('%') nor string('S$') then the variable is
assumed to be of the floating point type. Each floating
point number occupies five memory locations inside the
PET whether it be a single element or an array.

The format of a floating point number is as follows:

exponent s%gn mantissa I
1 L I [l 1 |

assumed radix point

The exponent occupies one memory location. The ex-
ponent is a power of two bhut is stored in excess 128
notation. This means that 128 has been added to the
true exponent to allow for the easier handling of nega-
tive exponents. Thus if the exponent of a number is 16,
then you would add 128 yielding 144 = X'90'. This
last value, X'90" would be stored as the floating point
exponent. Similarly if the exponent of a number is -12,
then you would add 128 yielding 116 = X'74' which you
would store as the floating point exponent.

The mantissa is the fractional part of the floating
point number. It is always normalized. This means that
the fraction has been adjusted and the exponent likewise
adjusted until the most significant binary digit of the
mantissa is to the right of the assumed radix point.

Since PET BASIC always normalized the mantissa, the
leftmost bit of the fraction is always a one. This is
redundant and so the position is used for another purpose.
This bit is used as the sign bit for the number. Thus the

26

fraction has an "assumed" most significant bit. A
zero sign bit indicates a positive floating point
number, while a one sign bit indicates a negative
floating point number.

The example below shows how you may derive the
representation for a floating point number.

PROBLEM-What is the floating point representation

for 100010?

1.) 100010 .= 0000 0011 1110 10002 . = X'03ES8'
radix radix

2) Shifting the radix point 10 positions to the left
in order to normalize the fraction while raising
the exponent by a power of 10 gives us:

.1111 1010 0000 0000 * 210

3) The number is positive so we can set the sign bit
to zero.

.0111 1010 0000 0000 * 210

4) The exponent is 10, but in excess 128 notation the
exponent is 10 + 128 = 138 = 100 10102

5) Combining the exponent and mantissa we find that the
resultant appears as follows:

1000 1010 0111 101n 0000 0ONO 0000 0NOOOO 0000 00002
which if restated in hexadecimal would be:
8A 7A 00 00 00

6) A negative value would have a sign bit of one. Thus
-100010 would be represented as:

1000 1010 1111 1010 0000 0000 0000 0OOOND 0000 00002
or in hexadecimal form:

8A FA 00 00 00

27

Of course PET BASIC carries the precision further
than the examples above have shown, but the method is the
same. As stated at the beginning of this section, floating
point variables may take on an extremely wide range of

values.

By experimenting with BASIC I have found what this
range is for the PET.

PRINT 24126.99999995

1.70141174 E+38

PRINT 24-127

5.87747176 E-39

28

FLOATING POINT ARITHMETIC

The following descriptions are the fundamental

arithmetic operations that PET BASIC performs on its
floating point variables. The descriptions will allow
you to use these routines from a machine language
program.

ADDITION- FACC = FACC + AFAC

1)
2)

3)
4)

5)
6)

Place the first operand in the floating point
accumulator.

Insure that the format of the number in the FACC
is non-true binary. The most significant bit of
$Bl must be off if the number is positive or on

if negative and the sign bit of $B5 must be off

if positive and on if negative.

Place the second operand in the alternate floating
point accumulator.

Insure that the format of the number in the AFAC
is non-true binary. The most significant bit of
$B9 must be off if the number is positve or on

if negative and the sign bit of $BD must be off

if positive and on if negative.

Call subroutine FPADD at $D73F.

The sum will be found in the floating point accumu-
lator.

SUBTRACTION- FACC = AFAC - FACC

1)
2)
3)
4)

5)
6)

Place the subtrahend into the alternate floating
accumulator.

Insure that the format of the number in the AFAC
is non-true binary.

Place the minuend into the floating point accumu-
lator.

Insure that the format of the number in the FACC
is non-true binary.

Call subroutine FPSUB at $D728.

The difference will be found in the floating point
accumulator.

29

MULTIPLICATION- FACC = AFAC * FACC

1)
2)
3)
4)

5)
6)

Place the multiplicand into the alternate
floating point accumulator.

Insure that the format of the number in the AFAC
is non-true binary.

Place the multiplier into the floating point
accumulator.

Insure that the format of the number in the FPAC
is non-true binary.

Call subroutine FPMULT at $D900.

The product will be found in the floating point
accumulator.

DIVISION- FACC = AFAC / FACC

1)
2)

3)
4)

5)
6)

Place the dividend into the alternate floating

point accumulator.

Insure that the format of the number in the AFAC

is non-true binary.

Place the divisor into the floating point accumulator.
Insure that the format of the number in the FACC

is non-true binary.

Call subroutine FPDIV at S$D9EA4.

The quotient will be found in the floating point
accumulator.

EXPONENTIATION- FACC = AFAC FACC

1)
2)
3)
4)

5)
6)

Place the base into the alternate floating point
accumulator.

Insure that the format of the number in the AFAC
is non-true binary.

Place the exponent into the floating point accumu-
lator.

Insure that the format of the number in the FACC
in non-true binary.

Call subroutine FPEXP at S$DEZ2E.

The result will be found in the floating point
accumulator.

30

ARITHMETIC FUNCTIONS

The following descriptions are the arithmetic functions

that PET BASIC performs on it floating point variables. The
descriptions will allow you to use these routines from a
machine language program.

ABS -
1)

2)
3)

ATN -
1)

2)
3)

Ccos -
1)

2)
3)

EXP -
1)

2)
3)

compute the absolute value of the argument

Place the floating point argument into the floating
point accumulator.

Call the subroutine ABS at $DB2A.

Function is returned in the floating point accumu-
lator.

compute the arctangent of the argument

Place the floating point argument into the floating
point accumulator.

Call the subroutine ATN at $E048.

Function (expressed in radians) is returned in the
floating point accumulator.

compute the cosine of the argument.

Place the floating point argument (expressed in
radians) into the floating point accumulator.

Call the subroutine COS at $DF9E.

Function is returned in the floating point accumu-
lator.

compute the exponential function of an argument.

Place the floating point argument into the floating
point accumulator.

Call the subroutine COS at $DEAO.

Function is returned in the floating point accumu-
lator.

31

INT -

1)

2)
3)

LOG -
1)

2)
3)

SIN -
1)

2)
3)

SQR -
1)

2)
3)

TAN -
1)

2)
3)

computes the largent integer less than or equal
to the floating point argument.

Place the floating point argument into the floating
point accumulator.

Call the subroutine INT at S$DB9E.

Function is returned in the floating point accumu-
lator.

computes the natural logarithm of an argument.

Place the floating point argument into the floating
point accumulator.

Call the subroutine LOG at S$D8BF.

Function is returned in the floating point accumu-
lator.

computes the sine of an argument.

Place the floating point argument (expressed in
radians) into the floating point accumulator.

Call the subroutine SIN at S$DFAS.

Function is returned in the floating point accumu-
lator.

computes the square root of an argument.

Place the floating point argument into the floating
point accumulator.

Call the subroutine SQR at SDE24.

Function is returned in the floating point accumu-
lator.

computes the tangent of an argument.

Place the floating point argument(expressed in
radians) into the floating point accumulator.

Call the subroutine TAN at $DFEE.

Function is returned in the floating point accumu-
lator.

32

CONVERT INTEGER TO FLOATING POINT

1) Load the Y-register with the least significant
byte of the integer to be converted.

2) Load the Accumulator with the most significant
byte of the integer to be converted.

3) Call subroutine INTFLP at $D278.

4) The floating point number is returned in the
floating point accumulator $B0-$B4 with the
sign in a separate location $B5. A zero in
the most significant bit of $B5 indicates a
positive number while a one in the bit indicates
a negative number. Note that the mantissa is in
true binary form (normalized bit is not assumed).

EXAMPLE-
ADDR VALUE LABEL OPC OPERAND COMMENTS
033A D8 CLD set to binary mode
033B AD 51 03 LDA INT+1 least significant
033E A8 TAY ..byte to Y-register
033F AD 50 03 LDA INT most sign. byte in Accum.
0342 20 78 D2 JSR INTFLP call INTFLP subroutine
0345 00 BRK
0350 03 ES8 INT WORD 1000
RESULT-
+7 SBO $B1 $B2 $B3 SB4 SB5

+1000 03E8 - 8A FA 00 00 00 00

-1000 FCl8 - 8A FA 00 00 00 FF

33

1)
2)
3)
4)
5)
EXAMPLE-
ADDR VALUE
033A D8
033B A2 00
033D 86 B5
033F BD 60
0342 95 BO
0344 ES8
0345 EO 05
0347 DO F6
0349 A9 80
034B 0D 61
034E 85 Bl
0350 A9 80
0352 2D 61
0355 FO 02
0357 C6 B5
0359 20 A7
035C 00
RESULT-
FPNUM 8A
FPAC 8A
AFTER

CONVERT FLOATING POINT TO INTEGER

Place floating point number into the floating point
accumulator S$SB0-SB4.

Set $Bl most significant bit on to make the number a
true binary representation.

Place the sign of the number into the floating point
A zero in the most significant

sign location $BS5.

bit of $B5 indicates a positive number while a one
in the bit indicates a negative number.

Call subroutine FLPINT at SDOA7.

The integer will be returned at location $B3-$B4
in true binary form if positive or in two's compelement
form if negative.

L.ocation-$B0

LABEL
FPAC
03 LOOP
03
03
DO POSIT
+1000
7A 00 00 00
FA 00 00 00
03 E8

Bl B2 B3 B4

OPC
EQU
CLD
LDX
STX
LDA
STA
INX
CPX
BNE
LDA
ORA
STA
LDA
AND
BEQ
DEC
JSR
BRK

00

B5

OPERAND
S00B0N

#00
$SB5
FPNUM, X
FPAC, X

#05
LOOP
#580
FPNUM+1
FPAC+1
#580
FPNUM+1
POSIT
$B5
FLPINT

COMMENTS

insure binary mode

zero X-index reg

set FP sign to positive
load part of FP number
store in FP accumulator
increm. index reg.

are we done?

no-go bhack for more
mask into accum.

OR in the rest of byte
make true binary

pick up mask

AND to determine sign
skip if positive

set sign to S$FF

call FLPINT subroutine

8A FA 00 00 00
8A FA 00 00 00 FF

FC 18

$BO Bl B2 B3 B4 BS5

34

CONVERT ASCII NUMBER STRING TO INTEGER

1) The number to be converted must be in ASCII format
with a value less than 64000. The last character
must be a blank.

2) Set the program pointer at $00C9-00CA to point to
the ASCII string - 1.

3) Call subroutine CHRGET at $00C2.
4) Call subroutine ASCINT at $C863.

5) The fixed point number will be returned at memory
location $0008-$0009 (LSB,MSB)

EXAMPLE-
ADDR VALUE LABEL OPC OPERAND COMMENTS
033A A2 4F LDX #«4NUMBER-1 set up pointer
033C 86 C9 STX $C9 .at $C9-SCA to
033E A2 03 LDX #»NUMBER-1 ..point just behind
0340 86 CA STX SCA ...ASCII number
0342 20 C2 00 JSR CHRGET go scan string
0345 20 63 C8 JSR ASCINT go convert to integer
0348 00 BRK
0350 31 32 :33 ASC '1234 string to convert
0353 34 20

RESULT- $0008-30009 will contain D6 04 (LSB,MSB)

35

CONVERT ASCII TO FLOATING POINT

Through my experiments over the past few months, I
have not found a direct way to convert a number from its
ASCII representation to floating point representation.
However the following method may be used as an alternate
way to convert to floating point representation.

The method is based upon the BASIC USR function which
is described elsewhere in this guide. The USR function
evaluates an argument, converts it to floating point
representation and places it into the floating point accu-
mulator before giving control to a machine language routine.
If you could examine the floating point accumulator after
the evaluation of the argument then you would have let
BASIC do the conversion for you.

The following BASIC program places a short machine
language routine into the second cassette buffer. This
routine moves the contents of the floating point accumu-
lator to a save area where it may later be examined by
the BASIC program. It is necessary to relocate the
contents of the floating point accumulator because upon
return to BASIC from the machine language routine its
contents will be destroyed by subsequent BASIC statement
execution.

The machine language routine is as follows:

ADDR VALUE LABEL OPC OPER COMMENTS

FPAC EQU $00B0O
033A A2 05 LDX #05 set up to save 6 locations
033C B5 BO LOOP ILDA FPAC,X load FPAC indexed by X-reg
033E 9D 47 03 STA SAVE,X save value in "safe" place
0341 cCA DEX decrement X-reg index
0342 10 F8 BPL LOOP if positive or
0344 FO F6 BEQ LOOP ..0r zero keep saving
0346 60 RTS otherwise return to BASIC

0347 00 00 00 SAVE =$000000000000 save area
034A 00 00 00

36

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

210
220
230
240
250
260
270
280
READ
RUN

The BASIC program which will place the machine
language routine into the second cassette buffer and
then display the converted numbers is shown below:

FOR I=0 TO 18:
READ XX:

POKE 826+1 ,XX:
NEXT I

REM MACHINE LANG.ROUT. 19 LOCATIONS
REM READ VALUE TO BE POKED
REM POKE ROUTINE INTO CASETTE BUFF.

DATA 162,5,181,176,157,71,3

DATA 202,16,248,240,246,96

DATA 0,0,0,0,0,0
DIM B%(5)

HEX$="0123456789ABCDEF":
PRINT" (clr) ASCIT TO FLOATING POINT DISPLAY"

PRINT :PRINT :PRINT"NUMBER TO CONVERT F.P. VALUE" :PRINT
POKE 1,58: POKE 2,3:

INPUT A:
PRINT" (cu) " ;TAB(20)
X=USR(A) :

FOR I=0 TO 5:

B% (I)=PEEK(839+1I)
NEXT I

FOR I=0 TO 4

-
r

IF I=1 AND B%(5)€128
SIGN BIT FROM SECOND

XH%=B% (I) /16:
XL%=B% (I)—-(XH%*16) :

REM STRING FOR HEX CONVERSION

REM
REM

REM
REM
REM

SETUP USR FUNCTION VECTOR
READ A VALUE TO BE CONVERTED

GO SAVE F.P. NUMBER
LOOP FOR RETRIEVING SAVED VALUES
MOVE TO ARRAY B%

THEN B%(1)=B%(1)-128: REM CONVERT
BYTE

XH$=MIDS (HEXS, XH%+1,1) :
XL$=MIDS$ (HEXS$,XLg%+1,1) :

XX$S=XHS+XLS+" "
PRINT XXS$;:
NEXT I

GOTO 130
T

REM
REM
REM
REM

REM

ASCII TO FLOATING POINT DISPLAY

NUMBER TO CONVERT F.P. VALUE
? 1000 8A 7A 00 00
? =1000 8A FA 00 00
? 6027 8D 3C 58 00
?2 1.524 81 43 12 6E
7 1.5El2 A9 2E 9F 7B
2 1,5E-12 59 53 1B 32
7 =l.5FE=12 59 D3 1B 32

37

00
00
00
97
ce
10
10

CONVERT B-ARRAY TO HEX CHAR.
n

n n n "
LU} n n n n

" " n n LL]

DISPLAY CONVERTED VALUE

CONVERT FLOATING POINT NUMBER TO ASCII

1) Place floating point number into the floating point
accumulator $B0-S$B4.

2) Set $Bl most significant bit on to make the number a
true binary representation.

3) Place the sign of the number into the floating point
sign location $B5. A zero in the most significant
bit indicates a positive number while a one in
the bit indicates a negative number.

4) Call subroutine FLPASC at S$DCAF.

5) ASCII representation will be found beginning at
location $100 and continuing until X'00' character.

* NMote that the routine MVFACC will move the FP number
to the floating point accumulator, generate the
proper sign and make the number true binary.

ADDR VALUE LABEL OPC OPERAND COMMENTS

033A D8 CLD insure binary mode
033B A9 03 LDA #>FPNUM MSB of FP number addr
033D 85 71 STA S71 save in pointer

033F A9 58 LDA #<FPNUM LSB of FP number addr
0343 20 78 DA JSR MVFACC call sub. to move to FPAC
0346 20 AF DC JSR FLPASC convert to ASCII

0349 A0 01 LDY #01 point A,Y to

034B A9 00 LDA #00 ..$0100

034D 20 27 CA JSR STROUT print string on screen
0350 00 BRK

0358 8A 7A 00 FPNUM FP '+1000"
035B 00 00

38

ROUTINES THAT ARE

IDENTIFIED IN THIS MANUAL

ABS - $DB2A - computes the absolute value of the
floating point argument.

ACSINT- $C863 - converts ASCII string to integer.

ATN - SE048 - computes the arctangent of the
floating point argument.

CLRSCR- $E236 - clears the screen.

CO0S - SDF9E - computes the cosine of the floating
point argument.

CRLF - $C9D2 - forces a carriage return and line feed.

EXP - SDEAO0 - computes the exponential function of a
floating point argument.

FLPASC- SDCAF - converts floating point to ASCII string.

FLPINT- S$DOA7 = converts floating point to integer.

FPADD - $D73F = adds two floating point numbers.

FPDIV - $D9E4 - divides one floating point number by another.

FPEXP - $DE2E - computes the value of one floating point
number raised to a second floating point num.

FPMULT- $D900 - multiplies two floating point numbers.

FPSUB - $D728 - subtracts one floating point number from
another.

GET - $FFE4 - get a character from the keyboard.

INT - $DB9E - computes the integer function of a floating
point argument.

INTFLP- $D278 - converts an integer to floating point.

LOG - $D8BF - computes the log function of a floating
point argument.

RDT - SFFCF - input a character from the screen with cursor.

SCROLL- $E559 - scroll the screen up one line.

SIN - $DFA5 - computes the sine of floating point argument.

SQOR - $DE24 - computes the square root of a floating point
argument.

STROUT- $CA27 - write a character string to the screen.

TAN - SDFEE - computes the tangent of a floating point
argument.

WRT - $FFD2 - write a character to the screen.

39

ABBREVIATIONS

THAT ARE USED IN THIS MANUAL

AFAC - alternate floating point accumulator

(CLR) - symbol for clear screen character

(CD) - symbol for cursor down character

(cu) - symbol for cursor up character

LSB % least significant byte

MSB - most significant byte

$ = symbol indicating that the following numbers

are in hexadecimal representation.

BIT CONVENTION

BIT 0 i 2 3 4 5 6 7

most significant bit least significant bit

40

BIBLIOGRAPHY

Foster, Caxton c¢., Programming a Microcomputer: 6502,
Addison-Wesley, 1978

Fylstra, Daniel, "6502 Assembler in BASIC", computer
program on cassette for the PET from Personal Software,
P.0. Box 136, Cambridge, MA 02138

McCann, Michael J., "A Simple 6502 Assembler for the PET",
MICRO-The 6502 Journal, No. 6 AUG-SEPT 1978, pp 17-21

zaks, Rodney, Microcomputer Programming: 6502, Sybex, 1978,
from Sybex 2020 Milvia St., Berkeley, CA 94704

Zimmerman, Mark, "Assembler for the PET", Personal Computing,
DEC 1978, pp 42-45.

PET INFORMATION

PET GAZETTE, 1929 Northport Dr. Room 6, Madison WI 53704, free

PET USER MANUAL, Commodore Business Machines, 901 California
Ave., Palo Alto, CA 94303, free with the PET, otherwise $10.

PET USER NOTES, P.O. Box 371, Montgomeryville, PA 18936,
$6.00/year (six issues).

SPHINX PET NEWSLETTER, Lawrence Hall of Science, Computer

Project, University of California, Berkeley, CA 94720,
$4.50/year(six issues).

41

TR ';I_;

4

- s E
R T S '

LA :-*-..;-ﬂ- |
P L 2R i
|

o= RN U Ly el L
\ W -l am

e ML e g osmm S SRR G i o ﬁ
P = |
il St o Gl I R ity M S :
= ML A0 el Fressmomnall | Hi I-J I:l--ql I

I

.

T Al M S = U

- 1

P
A T ey
Al i Nl e
4 - b eI

